JPS59162270A - Surface coating method - Google Patents
Surface coating methodInfo
- Publication number
- JPS59162270A JPS59162270A JP3649583A JP3649583A JPS59162270A JP S59162270 A JPS59162270 A JP S59162270A JP 3649583 A JP3649583 A JP 3649583A JP 3649583 A JP3649583 A JP 3649583A JP S59162270 A JPS59162270 A JP S59162270A
- Authority
- JP
- Japan
- Prior art keywords
- ticl4
- al2o3
- amt
- surface coating
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】 イ、技術分野 本発明は、超硬合金の表面被覆方法の改良(こ関する。[Detailed description of the invention] B. Technical field The present invention relates to improvements in methods for coating surfaces of cemented carbide.
口、背景技術
チタン、ジルコニウム、ハフニウム、バナジウム、ニオ
ブ、タンタル、クロム、モリブデン、タングステンから
なる群から選んだ一種以上の炭化物および/又は炭窒化
物の一種以上を鉄族金属で結合した、いわゆる超硬合金
を暴利とし、その表面Gこ化学蒸着法によって、硬質薄
膜を被覆した表面被覆超硬合金いわゆるコーティングチ
ップ(以下コーティングチップと称する)は、基材の強
靭性と表面の耐摩耗性を兼ねそなえた切削工具材として
、ひろく実用に供している。硬質被覆として炭化チタン
、炭窒fヒチクン、窒化チタン、窒化ハフニウム、酸化
アルミニウムなどが使用されている。近年、能率向上を
はかるため切削速5度の高速fヒかさかん(こなってき
ており、切゛利工具材料としてもその対応をはかるため
、高温ての硬さ、fじ学的安定性、++’IJt酸化性
、等の緒特性かとす伶は重環となってきており、その見
池からは硬質成膜として主として酸化物、とりわけ酸化
アルミニウムが使用されるようになってきた。その製造
方法としては5 D D ”C〜1500’Cに加熱し
た超硬合金基材を、水素、三塩化アルミニウム、酸化剤
および/又は加水分解剤、通常は水、二酸化炭素、−酸
化炭素からなる群より、火んだ一陣以−1−からなる反
応気体(こ接触させることQこよって基材表+rt目こ
酸比アルミニウム被覆するいわゆる化学蒸着法か実用(
こ供している。酸化アルミニウムの表面被部法として公
知の水素、三塩化アルミニウム、酸化剤および77又は
加水分解剤からなる反応気体から暴利表面Qこ被覆する
化学蒸着法ては、酸化アルミニウムの1模の成し速度が
01μm / hr 〜0.31b m / hrと非
常Qこ遅いため、コーティングチップとして広く実用(
こ供している酸化アルミニウムのjll−\厚である1
、 Q p、 rn −5,0μmを被覆するQこは1
011旨71以1゜の長時間か必要である。基材をかか
る高(:++’hで長時間加熱すること(こよる劣化が
みられることから好ましくない。この解決策としてね開
閉54 10314号(こ公知の化学蒸着法による酸化
アルミニウムの表面被覆法である化学蒸11%法の反応
気体(こ、四価のチタン、シルコニ・クム、および/又
は・・フニウムイオンを0.08〜口5容jlH二%1
・−フ゛することQこよって酸化アルミニウム膜の成長
速度を著しく増大させるノブ法が開示されている。この
特開111”154−10614号の実施例10こ記載
の酸化アルミニウム被覆条件(こしとすぎ市販のTic
コーティングチップ(商品名AC720)型番SNMN
4ろ2.1000ケをIM+ −1のステンレス製u1
50mmX500mmの反応容器(こ装入し +%%
、(ヒアルミニラムの被覆を行なった。なお酸化アルミ
ニウム被覆条件は反応気体の組成とじて■(2か90容
i;jニ%1、へICl3か2容:I):%、C02が
6容;、1部%、Ticlが04刀50Torr、反応
/ll+’1度osc’c、反応時111」ろ時;1」
てあったうその鯖−果は、反応気体の尋人部(第’i
IKI Al”テ1.)では、12μmの酸化アルミニ
ウムがM f、Mされていたのζこ苅し、反応気体へ排
気部(、第1図B部)(こおいては酸化アルミニウムが
06μ誦り力付皮4“(さオtてお(もず、王粟生r2
’rj上適していると考えられる1十02μmという酸
化アノノミニウム1暎Jj;;、 f、こ被覆し得たの
は図1のA部から0部まてQこ装入したわずか600ケ
のスロー7ウエーチノフ(こ、−4−きす牛5開11f
454− I O314−号(・こ開示された方法は工
業的(こ生産lす能な方法とはし・(・かたかった。BACKGROUND TECHNOLOGY So-called superstructures are made by bonding one or more carbides and/or carbonitrides selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten with an iron group metal. Surface-coated cemented carbide chips (hereinafter referred to as coating chips), which are made of hard metal and coated with a hard thin film by chemical vapor deposition, have both the toughness of the base material and the wear resistance of the surface. It is widely used as a cutting tool material. Titanium carbide, carbonitride, titanium nitride, hafnium nitride, aluminum oxide, etc. are used as the hard coating. In recent years, in order to improve efficiency, cutting speeds of 5 degrees have been increasing, and in order to respond to this trend as cutting tool materials, we have improved hardness at high temperatures, mechanical stability, ++'IJtOxidizing properties, etc.Kasutrei has become a heavy ring, and from that point on, oxides, especially aluminum oxide, have come to be used mainly for hard film formation.Production The method involves heating a cemented carbide substrate to 5D D''C to 1500'C and treating it with hydrogen, aluminum trichloride, an oxidizing agent and/or a hydrolyzing agent, usually from the group consisting of water, carbon dioxide, -carbon oxide. Then, a reaction gas consisting of a flaming gas (1) is brought into contact with the surface of the substrate + rt to coat aluminum using the so-called chemical vapor deposition method (
I'm offering this. A known method for coating the surface of aluminum oxide is a chemical vapor deposition method in which a reactive gas consisting of hydrogen, aluminum trichloride, an oxidizing agent, and a hydrolyzing agent is coated on the surface of the surface. Q is very slow at 01 μm/hr ~ 0.31 b m/hr, so it is not widely used as a coating chip (
The thickness of the aluminum oxide provided is 1
, Q p, rn -5,0 μm is covered by 1
It is necessary to hold it for a long time of 1° from 011 to 71. Heating the substrate at such high temperatures for long periods of time is undesirable as it can cause serious deterioration.As a solution to this problem, surface coating with aluminum oxide by the known chemical vapor deposition method is proposed. The reaction gas of the 11% chemical vaporization method, which is a method of
A knob method has been disclosed which significantly increases the growth rate of aluminum oxide films. Example 10 of this Japanese Patent Application Laid-open No. 111''154-10614 Aluminum oxide coating conditions described here (Koshitosugi commercially available Tic
Coating chip (product name AC720) model number SNMN
4ro 2.1000 IM+ -1 stainless steel u1
50mm x 500mm reaction vessel (charged +%%
, (Coating with hyaluminum laminate was performed. The aluminum oxide coating conditions were as follows: (2 to 90 volumes i; j 2% 1, to ICl 3 to 2 volumes: I): %, C02 6 volumes; , 1%, Ticl is 04 50 Torr, reaction/ll+'1 degree osc'c, reaction time is 111'';1''
The lie that was told is that the reaction gas
In the IKI Al"te 1.), 12 μm aluminum oxide was removed from Mf, M, and the reaction gas was discharged into the exhaust section (Fig. 1, section B) (here, aluminum oxide was 06 μm thick). 4" (Mozu, Wang Ao r2
Only 600 throws charged from part A to part 0 in Fig. 7 Waychinov (ko, -4-kisuushi 5 open 11f
No. 454-IO314-(The disclosed method is difficult to produce industrially.
ハ9発明の開示
本発明の1−1的はこれらの間;吊点をit+イ決し工
業き
的生産の1げ能な著しく膜の成長速度の速い、酸化アル
ミニウム、の表面被拉法の提供Gこある。発明者はq、
lJ開開閉4−1031.〜号(・二開示された方法で
作成した、酸化アルミニウム被覆チップの表面酸化アル
ミニラl、層の組成をオーシJ−市J’−分光法をもっ
て分i7i してみたところ第11ス:A部のヌI:−
フ′ウエ−チ、ノフかもはチタンが二酸化チタンの形で
ひ存すると仮定して63重ニー1ト%も検出されたの(
こλ・↑して図−1B部では二酸化チタンの形て口′:
・E、: ili:%以ドしか検出されなかった。この
ことは、身1開11r(54−10314号(こも開示
されている刀・ごとく酸化アルミニウムのカシ木の成長
速度は反応気体Oこ添加する四塩化チタンの量(こ依佇
するた、!/)、四#、7、化チタンの濃度の高い反応
気体の導入部である第1図A部ではO,F3p、m /
hr Gこもおよふ′高速の酸1ヒアルミニウムの膜
の成長速度が得られたの(こ反し、四塩化テクノか消費
されたこと(こまってその濃度の低い反応気体の排気部
ではわずか(こ02μm7hrの成長速度しか得らnな
かったものと考えられる。C.9 Disclosure of the Invention 1-1 of the present invention is among the above; providing a method for surface ablation of aluminum oxide, which has a significantly high film growth rate and is a major enabler of industrial production; There is G. The inventor is q,
lJ open/close 4-1031. The composition of the surface aluminum oxide layer of the aluminum oxide coated chip prepared by the disclosed method was analyzed using spectroscopy. Nu I:-
Assuming that titanium exists in the form of titanium dioxide, as much as 1% of 63-fold neat was detected (
λ・↑In Figure 1B, the shape of titanium dioxide is:
・E,: Only ili:% or less was detected. This indicates that the growth rate of oak wood in aluminum oxide, which is also disclosed in Japanese Patent No. 54-10314, is the same as the amount of titanium tetrachloride added to the reaction gas. /), 4#, 7, O, F3p, m /
A high rate of growth of the hyaluminum acid film was obtained (on the contrary, only a small amount of tetrachloride was consumed in the exhaust section of the reactant gas, which has a low concentration). It is considered that a growth rate of only 0.2 μm and 7 hours was obtained.
4′f開昭54−10314−υ−ては、反応へを体中
に添加する四JAj+化チタンの量を006〜05容量
%好圧しくl工0.2容量%以下とずべきと開示されか
つこの四」ff+・、化チタン添加量(こ苅する酸化ア
ルミニウムの成長速度(こついては、四塩化チタンかほ
ぼ012容士辻%までしか開示されていない。発明者は
この四JXjr・比チタンの添加:I:]をもっとふや
したらとのようになるのか実験を行なってみた。実験の
結果を第2図(こ示ず。この結果四塩化チタンの冷力j
i 、FBニーか7−こしか(こ少ない間は四塩化チタ
ンの添加量(こ、膜の成しζ坏度は依存するか、0,5
容量%以上てはほぼ一定となるという驚くべきことを発
見しゾこ。従かって工業的(・こ酸化アルミニウムを被
覆する(・こは、反応気体(こ四塩化チタンを少なくと
も05′rφ11)[%以上好ましくは1容量%以上添
加するならば、四塩化チタンの濃度(こ膜の成長速度か
依−6’ Lないため、反応容器の場所Qこよらず、一
定の膜成Ju 、11j I=か得られるのではないか
と、!6えた。この考え力(こ従がって実際Qこ第1図
の設備で四塩化チタンを1.5容;云%添加して実験を
行なったところ予想とおりの効果がイ(Iられな。なお
、四J11.百にチタンの反応気体への添加量か口5容
量%以ト−て膜の成長速度がほぼ一足になる詳細な理由
は不明であるが、05容呈:%以下の添加状態ではチタ
ンは酸化アルミニウム(こ固溶するが、それ以上ては酸
化チタンが析出してくるのではないかと考えられる、。4'f 1986-10314-υ- discloses that the amount of titanium tetrahydride added to the reaction should be 006-05% by volume under favorable pressure and 0.2% by volume or less. However, the amount of titanium oxide added (the growth rate of aluminum oxide) is disclosed only up to approximately 0.12 volume percent of titanium tetrachloride. I conducted an experiment to see what would happen if the addition of titanium (I:) was increased.The results of the experiment are shown in Figure 2 (not shown).As a result, the cooling power of titanium tetrachloride
i, FB knee or 7-koshika (the amount of titanium tetrachloride added (this depends on the film formation and zeta conformity, 0,5
I discovered the surprising fact that it remains almost constant above the capacity %. Therefore, if the reaction gas (titanium tetrachloride is at least 05'rφ11) [% or more, preferably 1% by volume or more] is added, the concentration of titanium tetrachloride ( Since the growth rate of this film does not depend on the location Q of the reaction vessel, I thought that it would be possible to obtain a constant film formation Ju, 11j I=. Therefore, when we actually conducted an experiment using the equipment shown in Figure 1 with the addition of 1.5% titanium tetrachloride, the effect was as expected. The detailed reason why the film growth rate is almost the same when the amount added to the reaction gas is less than 5% by volume is unknown, but when the amount of titanium added to the reaction gas is less than 5% by volume, titanium It is thought that titanium oxide will precipitate out if the titanium oxide is dissolved in solid solution.
なおこの効果は四塩化チタンQこ限らず、四基rヒ/)
vコニウム、四塩化ハフラウム(こも認められ、′1.
1に四塩化ジルコニウムを月J(・ると酸化アルミニウ
ムと酸化ジルコニウムの混合体がマ:)られ著しく、切
削′]y:に能が向上することがわかった。又1・、6
加する塩
物質は酸化物以外のハロゲン化物でも効果Gこ変わりの
ないことはいうまでもない。なお、四塩化チタンの添加
−七は05容呈%以丁であれは膜の成長速度か四塩化チ
タンの濃度(こ依存するため好ましくなく30容呈%以
」―では酸化アノノミニウム被覆11つ\の硬度低下が
著しく l;JJ削拌性能−好ましくない。Note that this effect is not limited to titanium tetrachloride Q, but also to titanium tetrachloride.
Vconium, hafraum tetrachloride (also recognized, '1.
It was found that when zirconium tetrachloride was added to No. 1, the cutting ability was significantly improved when a mixture of aluminum oxide and zirconium oxide was added. Also 1・, 6
It goes without saying that the effect G remains the same even if the salt substance to be added is a halide other than an oxide. In addition, the addition of titanium tetrachloride is less than 0.5% by volume, but it depends on the growth rate of the film or the concentration of titanium tetrachloride (it is not preferable to exceed 30% by volume because it depends on this). Significant decrease in hardness l; JJ grinding performance - unfavorable.
以上、実施例(こて説明する3、
実施例1
市販のTicコーチインク−チア〕 (商IJIl’l
名A C720)型番SNMN432.1000ケを
図=1の没411tl jこて酸化アルミニウドを被覆
した。なお酸化アルミニウムの被覆条件は以1・の通り
であった。As mentioned above, Examples (Explanation 3, Example 1 Commercially available Tic coach ink - Chia)
Name A C720) Model number SNMN432.1000 was coated with aluminum oxide using a trowel. Note that the conditions for coating aluminum oxide were as shown in 1. below.
反応気体組成 H290容11)%
AlCl32 yt
CO2’ (5//
TiCl4t5 yt
Co Q、 5 //
グ応気体流速 2m、7秒
反応気体圧力 50 To r r
111□lV、ツ 950″C
反応時間 6時間
その結果は10DOグずへてのスローアウェーチ7・ブ
(こおいて酸化アルミニウム被覆膜の厚さカ1O−D2
μmであった。第1図A、B、C部ζこおいたスロー7
ウエーチノブをそれぞitA、B、Cとし、比■咬のた
め市販の酸化アルミニウム17Li’n、TTlC61
L被覆されたものをDとし以上の条件(こでりj削テス
トを行なった。Reaction gas composition H290 volume 11)% AlCl32 yt CO2' (5// TiCl4t5 yt Co Q, 5 // Reaction gas flow rate 2 m, 7 seconds Reaction gas pressure 50 To r r 111□lV, 950"C Reaction time 6 The result is a throw away tube of 10 DOs (where the thickness of the aluminum oxide coating is 10-D2
It was μm. Figure 1 A, B, C section ζ Coated throw 7
The weight knobs were designated as itA, B, and C, respectively, and commercially available aluminum oxide 17Li'n and TTIC61 were used for comparison.
The material coated with L was designated as D, and a hardness cutting test was conducted under the above conditions.
被削剤 F C25
1;IJ削条件 V−150m/’分子二0.4 Q
mn1.7 r
d = 2 mm
10分間りj削したところA、B、C,Dともにフラン
ク摩耗はQ、 i 3 mm〜0.22mmGこていず
れも未だ切削+iJ能であった。Cutting agent F C25 1; IJ cutting conditions V-150m/' molecule 20.4 Q
mn1.7 r d = 2 mm After cutting for 10 minutes, the flank wear of A, B, C, and D was Q, i 3 mm to 0.22 mm, and all of the G trowels still had cutting +JJ performance.
実施例2
市販のTicコーティンクチノフ(商品名AC720)
型番SNMN 432 Gこて以]この条件(こで酸(
にアルミニウドの被覆を行なった。なお、反)=を気体
の組成以外は実施例1の条件と同しである。Example 2 Commercially available Tic coating Kutinoff (trade name AC720)
Model number SNMN 432 G trowel] Under these conditions (acid (
Then, aluminum coating was applied. Note that the conditions were the same as in Example 1 except for the composition of the gas.
表 −1
Eから■のスロー7ウエーチノブ(こて実施例1のζi
J削条+’l−(こて5分間切削した0、5′のフラン
ク摩耗はEがQ1’t5 +’、:n+、FがQ13m
m、GがQ21mm、HがCI22+i+iilてあっ
たの(こ対し王は0.58 mmてあった。又Jは4分
15秒しか切削出来なかった。Table-1 Throw 7 way knobs from E to ■ (ζi of iron example 1)
J cutting edge +'l- (Flank wear of 0 and 5' cut for 5 minutes with a trowel is Q1't5 +', :n+, F is Q13m)
m, G was Q21mm, H was CI22+i+iil (on the other hand, King was 0.58mm. Also, J could only be cut in 4 minutes and 15 seconds.
ISO,MIOりル−トの超硬合金、型第SN、VIN
432 GコTieを6μm ’01 +Qしたのち
以下の条件(こて酸化アルミニラlを被覆した。。ISO, MIO root cemented carbide, type No. SN, VIN
After coating 432G CoTie with a thickness of 6 μm '01 +Q, it was coated with aluminum oxide l under the following conditions.
反応気体組成 H288笠1.:%AlCl3
3容:119%
CO26答:11:%
ZrCl45容量%
反応気体流速 15m/秒
反応気体圧力 2 Q Torr
反応温度 950℃
反応時間 3時間
その結果酸化アルミニウムが1.0μm被□□□された
3、本ヌローアウェーチノブで実施例1の切削巣作で1
0分間切削したところフランク摩耗はQ″16mmであ
った。Reaction gas composition H288 Kasa1. :%AlCl3
3 Volume: 119% CO26 Answer: 11:% ZrCl45% by volume Reaction gas flow rate 15 m/sec Reaction gas pressure 2 Q Torr Reaction temperature 950°C Reaction time 3 hours As a result, 1.0 μm of aluminum oxide was coated 3, 1 with the cutting nest of Example 1 using this Narrow Away Knob.
After cutting for 0 minutes, flank wear was Q''16 mm.
実施例4
実施例6と同じ実験でZrC,Lのかわり!YHfCL
を添加として行なった。その結果は酸(ヒアル1ニウム
が09μm被覆された。Example 4 Same experiment as Example 6, but with ZrC and L instead! YHfCL
was added as an addition. The result was a coating of 09 μm of acid (hyalium monium).
1は塩化アルミニウム発生装置、2は電気炉、6は反応
容(社)、4は電気炉、5はコールドトラップ、6は真
空抽気装置、11は金属AIの装入部、61は暴利の装
入部を示す。1 is an aluminum chloride generator, 2 is an electric furnace, 6 is a reactor, 4 is an electric furnace, 5 is a cold trap, 6 is a vacuum extraction device, 11 is a charging section for metal AI, and 61 is a profiteering device. Indicates joining.
第2図は四塩化チタンの添加が膜の成長速度くこおよほ
す影7;:1を示しており、Aは反1.ご温度1oo。Figure 2 shows the effect of adding titanium tetrachloride on the film growth rate of 7;:1, where A is the opposite of 1. Temperature 1oo.
℃、B ハ950℃、Cii 900 ”Cを示ず。℃, B 950 ℃, Cii 900''C not shown.
代理人 弁理士 −に 代 哲 司、1.。Agent: Patent Attorney - Tetsuji Nidai, 1. .
7.1)子7 7p図 芹を図 ■:〔p4(容量%)7.1) Child 7 7p figure Figure Chrysanthemum ■: [p4 (capacity%)
Claims (1)
、セラミツクスからなる基材を水素、三塩化アルミニウ
ム、酸化剤および/又は加水分解剤からなる反応気体(
こ接触させることをこよって暴利表面Q二酸化アルミニ
ウムを被覆する表面被覆法において、反応値体中に05
〜60容量%の四塩化チタン、四はh化ジルコニウム、
四温化ハフニウ500 to 1500°C (heated base material made of cemented carbide, cermet, or ceramics) is heated to a reaction gas of hydrogen, aluminum trichloride, an oxidizing agent, and/or a hydrolyzing agent (
In the surface coating method of coating the profiteer surface Q aluminum dioxide by contacting it, 05
~60% by volume of titanium tetrachloride, zirconium tetrahide,
Four-warm heating system
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3649583A JPS59162270A (en) | 1983-03-04 | 1983-03-04 | Surface coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3649583A JPS59162270A (en) | 1983-03-04 | 1983-03-04 | Surface coating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59162270A true JPS59162270A (en) | 1984-09-13 |
Family
ID=12471404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3649583A Pending JPS59162270A (en) | 1983-03-04 | 1983-03-04 | Surface coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59162270A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0275978A2 (en) * | 1987-01-20 | 1988-07-27 | Valenite Inc. | A method for depositing composite coatings |
DE3544975C1 (en) * | 1985-12-19 | 1992-09-24 | Krupp Gmbh | Process for producing a coated molded body |
US5770261A (en) * | 1996-01-10 | 1998-06-23 | Mitsubishi Materials Corporation | Method of manufacturing coated cutting tool and coated cutting tool made from |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410314A (en) * | 1977-06-09 | 1979-01-25 | Sandvik Ab | Coated sintered carbide body and method of making same |
JPS5739168A (en) * | 1980-08-14 | 1982-03-04 | Sumitomo Electric Ind Ltd | Coated super hard alloy member and preparation thereof |
-
1983
- 1983-03-04 JP JP3649583A patent/JPS59162270A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5410314A (en) * | 1977-06-09 | 1979-01-25 | Sandvik Ab | Coated sintered carbide body and method of making same |
JPS5739168A (en) * | 1980-08-14 | 1982-03-04 | Sumitomo Electric Ind Ltd | Coated super hard alloy member and preparation thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3544975C1 (en) * | 1985-12-19 | 1992-09-24 | Krupp Gmbh | Process for producing a coated molded body |
EP0275978A2 (en) * | 1987-01-20 | 1988-07-27 | Valenite Inc. | A method for depositing composite coatings |
US5770261A (en) * | 1996-01-10 | 1998-06-23 | Mitsubishi Materials Corporation | Method of manufacturing coated cutting tool and coated cutting tool made from |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4619866A (en) | Method of making a coated cemented carbide body and resulting body | |
US3837896A (en) | Sintered cemented carbide body coated with two layers | |
JP4312989B2 (en) | α Alumina coated cutting tool | |
US4269899A (en) | Surface hafnium-titanium carbide coated hard alloy and method | |
US3874900A (en) | Article coated with titanium carbide and titanium nitride | |
US4442169A (en) | Multiple coated cutting tool and method for producing same | |
US4463062A (en) | Oxide bond for aluminum oxide coated cutting tools | |
EP0022349A1 (en) | Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity | |
USRE29420E (en) | Sintered cemented carbide body coated with two layers | |
JP2001254177A (en) | DEPOSITION OF GAMMA-Al2O3 BY CVD | |
US4490191A (en) | Coated product and process | |
Schuster et al. | Characterization of chromium nitride and carbonitride coatings deposited at low temperature by organometallic chemical vapour deposition | |
JPH10158861A (en) | Coated cutting tool and its production | |
JPS59162270A (en) | Surface coating method | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
US4501786A (en) | Coated product with oxide wear layer | |
EP0045291B1 (en) | Method of making a coated cemented carbide body and body produced in such a manner | |
JP4114741B2 (en) | Titanium chromium compound coating tool | |
JPS6135271B2 (en) | ||
EP0083842A1 (en) | Surface-coated hard metal body and method of producing the same | |
JPS5935872B2 (en) | Coated cemented carbide parts | |
CA1139160A (en) | Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity | |
EP0573645B1 (en) | Method for coating a surface with a resistant facing by chemical-vapor deposition | |
JPS6324067B2 (en) | ||
JPS6148582B2 (en) |