JPS6274076A - Production of multi-layer coated hard alloy - Google Patents

Production of multi-layer coated hard alloy

Info

Publication number
JPS6274076A
JPS6274076A JP21566685A JP21566685A JPS6274076A JP S6274076 A JPS6274076 A JP S6274076A JP 21566685 A JP21566685 A JP 21566685A JP 21566685 A JP21566685 A JP 21566685A JP S6274076 A JPS6274076 A JP S6274076A
Authority
JP
Japan
Prior art keywords
hard
al2o3
hard alloy
coating
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21566685A
Other languages
Japanese (ja)
Inventor
Minoru Nakano
稔 中野
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21566685A priority Critical patent/JPS6274076A/en
Publication of JPS6274076A publication Critical patent/JPS6274076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a coating for high-speed cutting having excellent toughness and wear resistance on the surface of a sintered hard alloy material by coating the surface of said material with the carbide or nitride of a specific metal and the oxide of a specific element contg. >=1 kinds among V, P and B and heating the same in a vacuum or gaseous halogen. CONSTITUTION:The hard film consisting of the hard carbide or nitride of >=1 kinds selected from the group 4a, 5a, 6a metal of periodic table and B and the hard oxide such as TiO2, ZrO2 or Al2O3 is coated on the surface of a cutting tool consisting of a sintered hard alloy, cermet, ceramics, etc. having high hardness. The oxide layer of Al2O3 and V is formed thereon in succession thereto and Al2O3 and the oxide layer of B are formed. Such tool is heated to 1,100-1,400 deg.C in a vacuum or gaseous halogen such as HCl or reducing atmosphere to coat the hard Al2O3 layer on the surface, by which the wear resistance of the cutting tool is improved and the service life is extended.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、高速切削用のコーティング工具に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to coated tools for high speed cutting.

〔従来技術の背景〕[Background of conventional technology]

周期律表IVa、Va及びVla族遷移金属の1種以上
と、C,N及びOからなる群より選ばれた非金属元素の
1種以上を含有する化合物の1種以上とをFe、Go、
Ni、Cr、−〇、−からなる群より選ばれた一種以上
の金属で結合した超硬合金やサーノ7)、セラミックを
基材とし、その表面に酸化アルミニウム、炭化チタン、
窒化チタン等からなる¥ii膜を1層もしくはそれ以上
、厚さ5〜10μ被覆してなる被覆超硬合金は、基材の
強靭性と、表面被覆層の耐摩耗性を兼ね備えた材質を持
つものとして、従来の超硬合金切削工具材料にかわって
広く実用に供されている。
Fe, Go,
The base material is a cemented carbide bonded with one or more metals selected from the group consisting of Ni, Cr, -〇, -, or ceramic, and the surface is coated with aluminum oxide, titanium carbide,
Coated cemented carbide, which is made by coating one or more layers of ¥II film made of titanium nitride or the like with a thickness of 5 to 10μ, has a material that combines the toughness of the base material and the wear resistance of the surface coating layer. As a material, it is widely used in place of conventional cemented carbide cutting tool materials.

特に近時実業界においては、コストの軽減を追求するた
めもあって、高速切削に適した工具材料への関心が急激
に高まっており、被覆超硬合金においても、TtC,T
iN等の被覆膜に始まり、より高速切削に適した酸化ア
ルミニウムを被覆したものへと移行しつつある。
Particularly in recent years, interest in tool materials suitable for high-speed cutting has been rapidly increasing in the actual industry, partly due to the pursuit of cost reduction.
Starting with coatings such as iN, there is a shift to aluminum oxide coatings, which are more suitable for high-speed cutting.

〔発明が解決し7ようとする問題点〕 しかしながら、酸化アルミニウムを被覆してなる被覆超
硬合金は、炭化チタンの被覆膜厚みが5〜15μであっ
たのに対し、酸化アルミニウムの被覆膜厚は1.0〜4
.0μ程度にとどまっていた。
[Problems to be Solved by the Invention] However, coated cemented carbide coated with aluminum oxide has a coating thickness of 5 to 15 μm for titanium carbide, whereas the coating thickness of aluminum oxide is 5 to 15 μm. Film thickness is 1.0~4
.. It remained at about 0μ.

その理由は、アルミナの靭性が、TiCに比較し、劣る
という欠点をもつことのほか、アルミナ膜は、TiCと
異なり、切削チップ全体に均一にコーティングすること
が出来ないためと考えられる。
The reason for this is thought to be that the toughness of alumina is inferior to that of TiC, and in addition, unlike TiC, alumina film cannot be coated uniformly over the entire cutting tip.

即ち、切刃稜線部は、他の部分に比較し、アルミナ膜が
数倍以上に厚くなり、この結果、平均的なアルミナ膜は
、たかだか4μmにとどまっているのである。本発明の
目的は3〜10μmの厚いアルミナを均一にコーティン
グする方法を提供することにある。
That is, the alumina film is several times thicker at the edge of the cutting edge than at other parts, and as a result, the average alumina film remains at most 4 μm thick. The object of the present invention is to provide a method for uniformly coating alumina with a thickness of 3 to 10 μm.

〔問題点を解決するための手段〕[Means for solving problems]

上述の□問題点を解決するため、発明者は種々検討した
結果、アルミナ膜に、V、P、Bの1種以上を固溶せし
め、しかる後、1100〜1400℃の真空あるいはハ
ロゲンガス中、又は還元性雰囲気中において加熱処理を
行えばよいことを見い出した。これらV、I”、B、の
酸化物は、Al2O:lニ固溶し2、あルイi、を化合
物を生し、比較的、1000”Ci’iii後の低温に
て液相を生しるので、この液相を通して表面での物質移
動が極めて活発となり、切刃稜線部との他の部位との成
長速度の差が緩和されるためと考えられた。さらにV、
 P、 Bの炭化物や窒化物あるいは、これらの化合物
を中間層として、アルミナを分割し。
In order to solve the above-mentioned □ problem, the inventor made various studies and, as a result, dissolved one or more of V, P, and B in an alumina film as a solid solution, and then in a vacuum or halogen gas at 1100 to 1400°C. Alternatively, it has been found that heat treatment can be performed in a reducing atmosphere. These oxides of V, I'', and B form a solid solution in Al2O:l to form a compound of Al2, which forms a liquid phase at a relatively low temperature after 1000''Ci'iii. This is thought to be due to the fact that mass transfer on the surface becomes extremely active through this liquid phase, and the difference in growth rate between the cutting edge ridge and other parts is alleviated. Furthermore, V,
Alumina is divided using P and B carbides, nitrides, or their compounds as an intermediate layer.

た多重層構造をとればよいことを見い出した。We discovered that it is sufficient to adopt a multilayer structure.

これらの中間層は、アルミナ中のV、P、Bの一部を吸
収し、成長するので、アルミナと密着性良く、かつ強度
的にも優れるので、アルミナの靭性改良に効果がある。
These intermediate layers absorb some of the V, P, and B in alumina and grow, so they have good adhesion to alumina and are excellent in strength, so they are effective in improving the toughness of alumina.

一方かような物質の存在は、アルミナの耐熱性を低下さ
せるので、本構造を構成する各コーテイング膜の生成工
程中、又は後に、1100〜1400℃中の温度で、真
空中あるいはハロゲンガス中又は還元性雰囲気中で加熱
処理を施して、アルミナ中のL P、 Bを減少せしめ
ればよいことも見い出した。
On the other hand, the presence of such substances lowers the heat resistance of alumina, so during or after the production process of each coating film constituting this structure, the coating film is heated in a vacuum or in a halogen gas at a temperature of 1100 to 1400°C. It has also been found that heat treatment can be performed in a reducing atmosphere to reduce L P and B in alumina.

1100〜1400℃中でl1c1等のハロゲンガス中
、あるいは■2等の還元性雰囲気又は真空中で加熱する
と、V、P、Bの酸化物が優先的に反応あるいは蒸発し
、アルミナの純度が高くなるので、膜の耐熱性を向上せ
しめることが出来る。さらには、中間層生成工程中、あ
るいは工程後に、真空中で、加熱処理を行えば、アルミ
ナ中より、V、P、Bが中間層に拡散してアルミナ中の
濃度が低下して、アルミナの耐熱性向上の効果を存する
。’1lOO℃以下では、ν。
When heated at 1100 to 1400°C in a halogen gas such as l1c1, or in a reducing atmosphere such as Therefore, the heat resistance of the film can be improved. Furthermore, if heat treatment is performed in a vacuum during or after the intermediate layer generation process, V, P, and B will diffuse into the intermediate layer from within the alumina and the concentration in the alumina will decrease. It has the effect of improving heat resistance. ' Below 1lOO℃, ν.

P、Bの拡散が遅< 1400℃を越えると、母材の硬
質相が粗大化するので好ましくない。
If the diffusion of P and B is slow and exceeds 1400°C, the hard phase of the base material will become coarse, which is not preferable.

以上、アルミナについてのみ説明してきたが、アルミナ
にTiあるいはZrの酸化物を固溶せしめた場合も、同
様の効果がある。
Although only alumina has been described above, the same effect can be obtained when Ti or Zr oxide is dissolved in alumina.

本発明によって、4μmを越えるアルミナ膜を均一に被
覆することが出来るので耐欠損性もよく、高速切削も可
能な工具を提供することができる。
According to the present invention, since it is possible to uniformly coat the alumina film with a thickness exceeding 4 μm, it is possible to provide a tool that has good fracture resistance and is capable of high-speed cutting.

実施例1 85重量%−〇、10重量%(Ti、Ta、W)C及び
5重量%Coからなる超硬合金に、1000℃にて、5
容量χのTiCj4 とC1+、残)1□ガスよりTi
C3,c1mコーティング後、第2層として5容量χU
a、、S容、5iχCO2゜5容量I  VCl、残1
1.ガス中で、A/ zO,と Vの酸化物層 1μm
 を生成せしめ、しかる後、5容量χ−(〜シ Vcf、50容Mzsz、  残H2中テVNヲ:) 
−−r イ:/I、1100℃にてlIC7ガス中で加
熱後、第4層として5容量χu cl s、 5容量χ
 B(Jx、5容1xco2、残11□中で^!20.
とB酸化物層2ttmを生成し、しかる後同様に潰空中
で加熱した。この後5容廿χのBCI、、及びTi(J
、とsz、 I+□の混合ガス中r(lh/N2 = 
1)Ti (BN)を生成し、最終層として、5容量χ
AI C1z、 0 、1容量!Pc1t5容蟹χCO
7残11□ガスこのコーティングチップの断面IJ1i
tを観察すると、刃先稜線部と他の部分でのアルミーノ
・膜厚の差は、小さく、本発明によらないものは、2倍
の差があった。これらのチップを切削速度300m /
min送り0.30mm/rev、切込み211Imで
SC?I 435(II、1280)で切削テストを行
った。
Example 1 A cemented carbide consisting of 85% by weight - ○, 10% by weight (Ti, Ta, W)C and 5% by weight Co was heated at 1000°C with
TiCj4 and C1+ with capacity χ, remaining) 1□ Ti from gas
After C3, c1m coating, 5 capacitance χU as the second layer
a,, S volume, 5iχCO2゜5 volume I VCl, remaining 1
1. Oxide layer of A/zO, and V 1 μm in gas
After that, 5 volumes χ-(~shiVcf, 50 volumes Mzsz, remaining H2 medium te VNwo:)
--r I: /I, after heating in lIC7 gas at 1100°C, 5 volumes χ u cl s, 5 volumes χ as the fourth layer
B (Jx, 5 volume 1xco2, 11□ remaining ^!20.
2 ttm of B oxide layer was produced, and then heated in the same manner in a crushed atmosphere. After this, 5 volumes of BCI, , and Ti(J
, and sz, r (lh/N2 =
1) Generate Ti (BN) and as the final layer, 5 capacitance χ
AI C1z, 0, 1 capacity! Pc1t5 amount crab χCO
7 Remaining 11□ Gas Cross section of this coating chip IJ1i
When observing t, the difference in the alumino film thickness between the ridgeline of the cutting edge and other parts was small, and the difference was twice as large in the case not according to the present invention. Cutting speed of these chips is 300m/
SC at min feed 0.30mm/rev, depth of cut 211Im? Cutting tests were carried out on I 435 (II, 1280).

本発明品は、V、・0.30mmまでの時間が12分の
ところ、本発明によらないものは、1分にて異常摩耗を
生じた・
The product of the present invention took 12 minutes to reach V of 0.30 mm, while the product not according to the present invention experienced abnormal wear in 1 minute.

Claims (1)

【特許請求の範囲】[Claims] (1)超硬合金、サーメット、セラミックスを母材とし
て、該母材表面に、IVa、Va、VIa族金属及び、Bか
らなる群から選ばれた1種もしくは、それ以上の炭化物
および/又は窒化物とTi、Zr、Alの酸化物の1種
以上からなる硬質膜を被覆し、かかる酸化物膜中にV、
P、Bの1種以上を含有せしめ、該酸化物膜をV、P、
B、の1種又はそれ以上を含む固溶体あるいは化合物又
は混合物からなる中間層で分割してなり、各被覆工程中
、あるいは工程後に、1100〜1400℃の温度にて
、真空中あるいはハロゲンガス中又は、還元性雰囲気中
で加熱処理を行うことを特徴とする多重層被覆硬質合金
の製造法。
(1) Using cemented carbide, cermet, or ceramic as a base material, one or more carbides and/or nitrides selected from the group consisting of IVa, Va, and VIa group metals and B are added to the surface of the base material. V, V,
The oxide film contains one or more of P and B, and the oxide film contains V, P,
It is divided by an intermediate layer consisting of a solid solution or a compound or a mixture containing one or more of B. During or after each coating step, at a temperature of 1100 to 1400 ° C. in vacuum or in a halogen gas or , a method for producing a multi-layer coated hard alloy, characterized by carrying out heat treatment in a reducing atmosphere.
JP21566685A 1985-09-27 1985-09-27 Production of multi-layer coated hard alloy Pending JPS6274076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21566685A JPS6274076A (en) 1985-09-27 1985-09-27 Production of multi-layer coated hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21566685A JPS6274076A (en) 1985-09-27 1985-09-27 Production of multi-layer coated hard alloy

Publications (1)

Publication Number Publication Date
JPS6274076A true JPS6274076A (en) 1987-04-04

Family

ID=16676158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21566685A Pending JPS6274076A (en) 1985-09-27 1985-09-27 Production of multi-layer coated hard alloy

Country Status (1)

Country Link
JP (1) JPS6274076A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846784A2 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
EP1452621A2 (en) * 2002-09-04 2004-09-01 Seco Tools Ab Composite structured wear resistant coating
FR2936817A1 (en) * 2008-10-07 2010-04-09 Varel Europ PROCESS FOR MANUFACTURING A WORKPIECE COMPRISING A BLOCK OF DENSE MATERIAL OF THE CEMENT CARBIDE TYPE, HAVING A LARGE NUMBER OF PROPERTIES AND PIECE OBTAINED
US8647562B2 (en) 2007-03-27 2014-02-11 Varel International Ind., L.P. Process for the production of an element comprising at least one block of dense material constituted by hard particles dispersed in a binder phase: application to cutting or drilling tools
US8858871B2 (en) 2007-03-27 2014-10-14 Varel International Ind., L.P. Process for the production of a thermally stable polycrystalline diamond compact

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846784A2 (en) * 1996-12-04 1998-06-10 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
EP0846784A3 (en) * 1996-12-04 2000-12-20 Sumitomo Electric Industries, Ltd. Coated tool and method of manufacturing the same
EP1452621A2 (en) * 2002-09-04 2004-09-01 Seco Tools Ab Composite structured wear resistant coating
EP1452621A3 (en) * 2002-09-04 2004-09-08 Seco Tools Ab Composite structured wear resistant coating
US7083868B2 (en) 2002-09-04 2006-08-01 Seco Tools Ab Composite structured wear resistant coating
US8647562B2 (en) 2007-03-27 2014-02-11 Varel International Ind., L.P. Process for the production of an element comprising at least one block of dense material constituted by hard particles dispersed in a binder phase: application to cutting or drilling tools
US8858871B2 (en) 2007-03-27 2014-10-14 Varel International Ind., L.P. Process for the production of a thermally stable polycrystalline diamond compact
FR2936817A1 (en) * 2008-10-07 2010-04-09 Varel Europ PROCESS FOR MANUFACTURING A WORKPIECE COMPRISING A BLOCK OF DENSE MATERIAL OF THE CEMENT CARBIDE TYPE, HAVING A LARGE NUMBER OF PROPERTIES AND PIECE OBTAINED
WO2010040953A1 (en) * 2008-10-07 2010-04-15 Varel Europe Process for manufacturing a part comprising a block of dense material constituted of hard particles and of binder phase having a gradient of properties, and resulting part.
US8602131B2 (en) 2008-10-07 2013-12-10 Varel International, Ind., L.P. Process for manufacturing a part comprising a block of dense material constituted of hard particles and of binder phase having a gradient of properties, and resulting part

Similar Documents

Publication Publication Date Title
JP4593852B2 (en) Coated hard alloy
JP5078615B2 (en) Al2O3 ceramic tool with diffusion bonding enhancement layer
EP0074759A2 (en) Sintered hard metal products having a multi-layer wear-restistant coating
CN1203637A (en) Coated cutting insert and method of making it
JPS63192870A (en) Extremely thin stratified oxide coating and method
JP2003340610A (en) Cutting tool insert
US8574728B2 (en) Aluminum oxynitride coated article and method of making the same
JP2001205505A (en) Coated cutting insert for application to milling and lathing
WO2001018272A1 (en) Coated cemented carbide insert
JP2851279B2 (en) Wear-resistant articles
JPS63195268A (en) Cutting tool made of surface coated sintered hard alloy
JPS6274076A (en) Production of multi-layer coated hard alloy
JPS6119367B2 (en)
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JPS586969A (en) Surface clad sintered hard alloy member for cutting tool
JPS6354495B2 (en)
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2626779B2 (en) Composite coating method
JP2006334720A (en) Coated tool member
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS61201778A (en) Coated sintered hard alloy
EP1222316A1 (en) Coated cemented carbide insert
JPS5935872B2 (en) Coated cemented carbide parts
JPS6033603B2 (en) High-speed cutting tool coated with a hard layer