JPS6033603B2 - High-speed cutting tool coated with a hard layer - Google Patents

High-speed cutting tool coated with a hard layer

Info

Publication number
JPS6033603B2
JPS6033603B2 JP10202977A JP10202977A JPS6033603B2 JP S6033603 B2 JPS6033603 B2 JP S6033603B2 JP 10202977 A JP10202977 A JP 10202977A JP 10202977 A JP10202977 A JP 10202977A JP S6033603 B2 JPS6033603 B2 JP S6033603B2
Authority
JP
Japan
Prior art keywords
coating layer
titanium
speed cutting
cutting tool
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10202977A
Other languages
Japanese (ja)
Other versions
JPS5435484A (en
Inventor
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP10202977A priority Critical patent/JPS6033603B2/en
Publication of JPS5435484A publication Critical patent/JPS5435484A/en
Publication of JPS6033603B2 publication Critical patent/JPS6033603B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、旋盤削り、フライス盤削りなどに使用する
切削工具の表面に硬質被覆層を施した高速切削用工具に
係り、従来周知の硬質被覆層を施した切削用工具に比し
高速切削に於いて優れた耐摩耗性と鞠性をもった高速切
削用工具を提供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-speed cutting tool used in lathe cutting, milling, etc., in which a hard coating layer is applied to the surface of the cutting tool. The object of the present invention is to provide a high-speed cutting tool that has superior wear resistance and ballability in high-speed cutting compared to the previous one.

従来こうした高速切削用工具には酸化アルミニウムおよ
び/または炭化チタンを主体とするセラミック工具が用
いられてきたが、これらのセラミック工具は高速切削で
耐摩耗性が高いけれども籾性に乏しい欠点があり、例え
ば重切削におけるように刃先に大きな荷重がか)る場合
に於いて欠け易い難点があった。
Conventionally, ceramic tools mainly made of aluminum oxide and/or titanium carbide have been used for such high-speed cutting tools, but although these ceramic tools have high wear resistance in high-speed cutting, they have the disadvantage of poor graininess. For example, when a large load is applied to the cutting edge, such as during heavy cutting, there is a problem that the cutting edge is easily chipped.

これに対し靭性はあるが高速切削で耐摩耗性の乏しい超
硬合金に対し、この表面に耐摩耗性の炭化チタンや窒化
チタンを被覆した工具が従来の被覆層をもたない籍硬合
金に比し、優れた耐摩耗性をもつことが知られているが
150〜20仇h/分以上の高速切削に於いては耐摩耗
性がセラミック工具に比し劣っていた。
In contrast, tools coated with wear-resistant titanium carbide or titanium nitride on the surface of cemented carbide, which has toughness but poor wear resistance during high-speed cutting, can replace conventional hard alloys that do not have a coating layer. In contrast, although it is known to have excellent wear resistance, its wear resistance was inferior to that of ceramic tools when cutting at high speeds of 150 to 20 h/min or higher.

また前記チタン等の炭化物や窒化物の被覆を施した上に
更に耐摩耗性の高い酸化アルミニウムや酸化ジルコニウ
ムの被覆を設けた2重被覆層をもつ切削用工具も開発さ
れたが、超綾合金に被覆したチタン等の炭化物や窒化物
と酸化アルミニウムとこれら2つの層の間の基本的な化
学的結合様式の違いにより、化学的親和性が乏しく、結
合強度が十分に得られないために、重切削に用いた場合
、被覆層の剥離や異常摩耗等が起って酸化物本来の耐摩
耗性が十分に発揮できないという問題があった。本発明
はか)る硬質被覆層を施した切削工具の欠陥を改良し、
超硬工具表面に強鰯で耐摩耗性の強い被覆層を設けた高
速切削用工具を提供するもので、超硬合金よりなる基体
上に1〜10山の厚みをもつ炭化チタン、窒化チタンお
よび炭窒化チタンの1種よりなる第1被覆層を設けその
外側に0.5〜10ムの厚みをもつ窒化アルミニウムお
よび/または酸窒化アルミニウムの1種または2種より
なる第2被覆層を設け、更にその外側に0.5〜5仏の
厚みをもつ酸化アルミニウムよりなる第3被覆層を設け
、これら3被覆層の厚みの合計が2〜15山であること
を特徴とした高速切削用工具を要旨とするものである。
In addition, cutting tools with a double coating layer, which is coated with a carbide or nitride such as titanium and further coated with highly wear-resistant aluminum oxide or zirconium oxide, have been developed; Due to the difference in the basic chemical bonding between carbides and nitrides such as titanium coated on the aluminum oxide and aluminum oxide, the chemical affinity is poor and sufficient bonding strength cannot be obtained. When used for heavy cutting, there is a problem that peeling of the coating layer, abnormal wear, etc. occur, and the inherent wear resistance of the oxide cannot be fully demonstrated. The present invention improves the defects of cutting tools provided with a hard coating layer,
This product provides a high-speed cutting tool that has a tough and wear-resistant coating layer on the surface of the cemented carbide tool.It is made of titanium carbide, titanium nitride, and A first coating layer made of one type of titanium carbonitride is provided, and a second coating layer made of one or two types of aluminum nitride and/or aluminum oxynitride with a thickness of 0.5 to 10 μm is provided on the outside thereof, Furthermore, a third coating layer made of aluminum oxide having a thickness of 0.5 to 5 mm is provided on the outside thereof, and the total thickness of these three coating layers is 2 to 15 peaks. This is a summary.

こ)で第1被覆層として炭化チタン、窒化チタンまたは
炭窒化チタンの1種を選んだのは、硬質材料の中で最も
化学的性質が超硬合金に近いため化学的親和性が高く超
硬合金との接着力が極めて高く且つ第2被覆層の窒化ア
ルミニウムまたは酸窒化アルミニウムとの化学的親和性
も超硬合金と窒化アルミニウムまたは酸窒化アルミニウ
ムとの化学的親和性より良好であるためである。
In this case, one of titanium carbide, titanium nitride, or titanium carbonitride was selected as the first coating layer because its chemical properties are the closest to those of cemented carbide among hard materials, so it has a high chemical affinity with cemented carbide. This is because the adhesive strength with the alloy is extremely high, and the chemical affinity with the aluminum nitride or aluminum oxynitride of the second coating layer is also better than the chemical affinity between the cemented carbide and aluminum nitride or aluminum oxynitride. .

またその厚みを1〜10仏としたのはこの第2被覆層へ
の結合層としての効果が1仏以下では現れず1仏以上よ
り効果が現れる。然し10山以上では高速切削時の刃先
の熱を基体に放散するのを妨げたり、熱膨脹差により内
部応力が増大するために却ってはがれ易くなるためで好
ましくは3〜7山が望ましい。次に第2被覆層として窒
化アルミニウムおよび/または酸窒化アルミニウムを選
んだのは、その化学的親和性が第1被覆層の炭化チタン
、窒化チタンまたは炭窒化チタンと第3被覆層の酸化ア
ルミニウムまたは酸窒化アルミニウムの双方に高く、両
被覆層と良好な接着強度を保つことができるためである
The reason why the thickness is set to 1 to 10 mm is that the effect as a bonding layer to the second coating layer does not appear when the thickness is less than 1 layer, but the effect becomes more apparent when the thickness is 1 layer or more. However, if the number of ridges is 10 or more, the heat from the cutting edge during high-speed cutting may be hindered from being dissipated to the base, and the internal stress may increase due to the difference in thermal expansion, making it more likely to peel off, so 3 to 7 ridges is preferable. Next, aluminum nitride and/or aluminum oxynitride were selected as the second coating layer because their chemical compatibility with titanium carbide, titanium nitride, or titanium carbonitride in the first coating layer and aluminum oxide or aluminum in the third coating layer This is because it has high adhesion strength to both aluminum oxynitride and both coating layers.

即ち第3被覆層の酸化アルミニウムは前記超硬合金或い
はチタンの炭化物や窒化物の原子結合様式とは余りlこ
も異なり第1被覆層の炭化チタン、窒化チタンまたは炭
窒化チタンとの化学的親和性が乏しいが、窒化アルミニ
ウムや酸窒化アルミニウムはその原子結合様式がチタン
の炭化物や窒化物と同様で化学的親和性が高く容易に緊
密な接着性を得ることが出来る。また、一方第3被覆層
である酸化アルミニウムとはアルミニウムイオンを介し
て結合することができるために結合性がよくそれ自身の
強靭な性質と相まって、極めて強鰯な接着層を得ること
ができるのである。またその熱伝導率ははアルミナより
かなり高いため刃先の熱を有効に他部へ分散することが
でき刃先温度を下げる働きがある。そしてその厚さを0
.5〜10〃としたのは0.5仏以下では上記の如き第
3被覆層を第1被覆層に結合する効果が十分には現れず
、またlow以上では熱膨脹差のために層間内部応力を
大きくして却って剥離の原因となるもので好ましくは3
〜5仏が望ましい。次に最外層である第3被覆層に酸化
アルミニウムを選んだのは、これがセラミック工具の主
成分として高速切削用工具に用いられることからも判る
ように硬度、耐熱性、耐摩耗性が常温は勿論、高温に於
いても極めて高いために高速切削に於ける耐摩耗性が極
めて大きいためである。
That is, the aluminum oxide of the third coating layer has a chemical affinity with the titanium carbide, titanium nitride, or titanium carbonitride of the first coating layer, which is quite different from the atomic bonding style of the carbide or nitride of the cemented carbide or titanium. However, aluminum nitride and aluminum oxynitride have a similar atomic bonding pattern to that of titanium carbide and nitride, and have a high chemical affinity, making it possible to easily obtain tight adhesion. On the other hand, aluminum oxide, which is the third coating layer, has good bonding properties because it can be bonded via aluminum ions, and in combination with its own strong properties, it is possible to obtain an extremely strong adhesive layer. be. In addition, its thermal conductivity is considerably higher than that of alumina, so it can effectively disperse the heat from the cutting edge to other parts, lowering the temperature of the cutting edge. And its thickness is 0
.. 5 to 10. Below 0.5 French, the effect of bonding the third coating layer to the first coating layer as described above will not be sufficiently achieved, and above low, the internal stress between the layers will increase due to the difference in thermal expansion. If the size is too large, it may actually cause peeling, so preferably
~5 Buddhas are desirable. Next, we chose aluminum oxide for the third coating layer, which is the outermost layer.As can be seen from the fact that aluminum oxide is used in high-speed cutting tools as the main component of ceramic tools, it has excellent hardness, heat resistance, and wear resistance at room temperature. Of course, this is because the wear resistance during high-speed cutting is extremely high even at high temperatures.

またこの厚みは0.5以下では耐摩耗性向上の効果が乏
しくまた5〃以上では熱膨脹差から来る層間内部応力の
ために剥離や異常摩耗を起すためで好ましくは1〜3仏
が望ましい。第1〜第3被覆層の3層の厚み合計を2〜
15Aとしたのは、2仏以下では耐摩耗性を向上する効
果が乏しく15山以上では基体と被覆層間の熱膨脹係数
の違いから起る層間内部応力のために剥離したり、異常
摩耗を起し、好ましくは7〜12仏が望ましい。
If the thickness is less than 0.5, the effect of improving wear resistance is poor, and if it is more than 5, peeling or abnormal wear may occur due to interlayer internal stress resulting from the difference in thermal expansion, so a thickness of 1 to 3 is preferable. The total thickness of the first to third coating layers is 2 to
The reason why 15A is set is that if it is less than 2 degrees, the effect of improving wear resistance is poor, and if it is more than 15 degrees, it may cause peeling or abnormal wear due to interlayer internal stress caused by the difference in coefficient of thermal expansion between the base and coating layer. , preferably 7 to 12 Buddhas.

これら硬質被覆材料の被覆を施すには、例えば炭化チタ
ンの被覆ならば1000〜1100ooに加熱した超硬
合金基体の表面に塩化チタン、水素、炭化水素の混合ガ
スを導く方法、即ち公知の化学蒸着法(以下略してCV
D法と記す)により得られる。その場合超硬合金基体の
表面では下式の反応が起り基体の上に炭化チタンの薄層
を積出する。TICL4十(日2)十CH4→TIC+
4HCI+(凡)他の窒化チタン、炭窒化チタン、窒化
アルミニウム、酸窒化アルミニウムまたは酸化アルミニ
ウムの被覆を施すには、それぞれ下式の反応に従つ。
For coating with these hard coating materials, for example, in the case of coating titanium carbide, a method is used in which a mixed gas of titanium chloride, hydrogen, and hydrocarbons is introduced onto the surface of a cemented carbide substrate heated to 1000 to 1100 oo, that is, known chemical vapor deposition. law (hereinafter abbreviated as CV)
(referred to as method D). In that case, the following reaction occurs on the surface of the cemented carbide substrate, depositing a thin layer of titanium carbide on the substrate. TICL4 10 (Sun 2) 10 CH4 → TIC+
To coat other titanium nitrides, titanium carbonitrides, aluminum nitrides, aluminum oxynitrides, or aluminum oxides, follow the reactions of the following formulas.

TIC14十2日2十1/洲2一TIN+4HCI狐C
l3十細2十N2一狐N+側I狐CI3十×02十灘十
N2 →2AI〇N十句HCI十2 C〇 2NC13十3C02十3日2十CO →AI2〇3十旬日CI+4 C〇 詳細は以下に記載する実施例により一層明瞭に理解され
る。
TIC14 12th 21st/Su 21 TIN+4HCI Fox C
l3 10 thin 20 N2 1 fox N + side I fox CI 30 × 02 10 Nada 1 N2 → 2 AI 〇 N 10 phrases HCI 12 C 〇 2 NC 13 3 C0 2 13 days 20 CO → AI 2 0 3 10 days CI + 4 C 〇 The details will be more clearly understood from the examples described below.

実施例 1 本発明の一実施例を第1図によって説明すると、ステン
レス製反応容器1の中に趣硬合金基体(JISM20S
NP432)2を装填し、約1100℃に加熱した後、
ガスボンベ3a,3bより導いた日2およびCH2の混
合ガスと蒸発装置4により蒸発させたTIC14の混合
ガスを反応容器中に1時間流入した。
Example 1 An example of the present invention will be described with reference to FIG.
After loading NP432)2 and heating to about 1100°C,
A mixed gas of CH2 and CH2 led from the gas cylinders 3a and 3b and a mixed gas of TIC14 evaporated by the evaporator 4 were flowed into the reaction vessel for 1 hour.

この時の容器内圧力は30Tonで混合ガスの前記3成
分混合割合は比87%、CH45%、TIC148%で
ある。これにより超硬合金基体の表面に約3Yの厚さを
もった窒化チタンの内層を折出させることができた。そ
の後前記混合ガスの流入を停止し次に同じ容器中で前記
被覆を施した超硬合金基体の温度を1050qoとし、
ガスボンベを取りかえ日245%、N245%と蒸発装
置にて蒸発したMCI3のガス10%の混合ガスを反応
容器に3.期時間流入し5仏の厚さの窒化アルミニウム
の薄層を折出させた。次に前記混合ガスの流入を停止し
ボンベを取りかえ、日259%、C030%、C023
%、山CI38%の混合ガスを2時間流入した。この時
の温度、圧力は110000、30Tonでこの結果、
厚み1.5仏のAI203の被覆を施すことができた。
以上でこのチップは第1被覆層にTIC3↓、第2被覆
層にAIN5仏、第3被覆層にAI2031.5〃の硬
質被覆層を形成しX線回折およびY線マイクロアナライ
ザーの線分析により確認した。尚第2被覆層、第*3被
覆層の間にはAIONの中間層が存在した。この工具を
M.1とする。その一部切欠き斜視図を第2図に示す。
2は超硬合金基体、2aは第1被覆層、2bは第2被覆
層、2cは第3被覆層である。
At this time, the pressure inside the container was 30 tons, and the mixing ratio of the three components of the mixed gas was 87% ratio, 45% CH, and 148% TIC. As a result, an inner layer of titanium nitride having a thickness of approximately 3Y could be deposited on the surface of the cemented carbide substrate. After that, the flow of the mixed gas is stopped, and then the temperature of the coated cemented carbide substrate is set to 1050 qo in the same container,
3. Replace the gas cylinder and add a mixed gas of 245% N2, 45% N2, and 10% MCI3 gas evaporated in the evaporator to the reaction vessel. A thin layer of aluminum nitride with a thickness of 5 mm was deposited over a period of time. Next, the inflow of the mixed gas was stopped and the cylinder was replaced.
%, and a mixed gas with a mountain CI of 38% was introduced for 2 hours. The temperature and pressure at this time were 110,000 and 30 tons, and as a result,
It was possible to apply a coating of AI203 with a thickness of 1.5 mm.
With the above, this chip has a hard coating layer of TIC3↓ on the first coating layer, AIN5 on the second coating layer, and AI2031.5 on the third coating layer, and is confirmed by X-ray diffraction and line analysis with a Y-ray microanalyzer. did. Note that there was an intermediate layer of AION between the second coating layer and the *3rd coating layer. This tool is M. Set to 1. A partially cutaway perspective view is shown in FIG.
2 is a cemented carbide base, 2a is a first coating layer, 2b is a second coating layer, and 2c is a third coating layer.

次にNo.1に用いたと同じ超硬合金基体に第1表に示
すような硬質材料の被覆を施し舵.2〜仇.5とした。
こ)で窒化チタンの被覆には舷.1と同じ装置と原理に
よりTIC145%、比80%、N215%の混合ガス
を用い、圧力30Tomで1時間、110000の温度
に保った。このようにして得られた本発明による工具を
従来の被覆層をもたない同形同材質の超硬合金工具蛇.
6および厚さ5仏の窒化チタンの被覆と厚さ1.5仏の
酸化アルミニウム被覆を上記方法で施した超硬合金工具
船.7と従来より用いられてきたセラミック工具船.8
と共に下記の条件で比較切削テストを行ない、逃げ面の
最大摩耗またはカケ、チッピングによる損傷が0.3肋
になる迄の時間で表わした工具寿命を比較した結果を第
1表に示す。第1表 切削条件 被削材 JISFC−20 鋳鉄棒(120側め×4
0仇肋夕)切削速度 30肌/分 切込み 2側 送 り 0.35側ノrev 第1表の如く、従来の被覆層を施さないNo.6は摩耗
が烈しく、僅か3分で寿命がなくなり、従来の方法によ
る第1被覆層に窒化チタンと第2被覆層に酸化アルミニ
ウムの被覆を施した地.7は摩耗が少なく、21分で0
.3側の摩耗を示したが少々異常摩耗もあり未だ満足で
きるものではなく、またセラミック工具No.8は僅か
2分でチッピングを起すことにより逃げ面の損傷が0.
3側となって寿命がなくなった。
Next, No. The rudder was made by coating the same cemented carbide base as used in No. 1 with a hard material as shown in Table 1. 2~enemy. I gave it a 5.
In this case, the titanium nitride coating is applied to the ship's side. Using the same equipment and principle as in 1, a mixed gas of 145% TIC, 80% ratio, and 15% N2 was used, and the temperature was maintained at 110,000 °C for 1 hour at a pressure of 30 Tom. The thus obtained tool according to the present invention was used as a conventional cemented carbide tool of the same shape and material without a coating layer.
6 and a cemented carbide tool boat coated with a titanium nitride coating with a thickness of 5 mm and an aluminum oxide coating with a thickness of 1.5 mm using the above method. 7 and the conventionally used ceramic tool boat. 8
A comparative cutting test was also conducted under the following conditions, and Table 1 shows the results of comparing the tool life expressed as the time until the maximum flank wear, chipping, or chipping damage reached 0.3 ribs. Table 1 Cutting conditions Work material JISFC-20 Cast iron rod (120 side × 4
Cutting speed: 30 cuts/min Depth of cut: 2 side feed: 0.35 side rev As shown in Table 1, No. 1 without conventional coating layer. No. 6 was subject to severe wear, and its lifespan expired in just 3 minutes.The first coating layer was coated with titanium nitride and the second coating layer was coated with aluminum oxide using the conventional method. 7 has less wear and 0 in 21 minutes
.. Although it showed some wear on the 3 side, it was still not satisfactory as there was some abnormal wear. No. 8 caused chipping in just 2 minutes, resulting in 0.0% flank damage.
It became the third side and the lifespan was exhausted.

これに比し本発明による炭化チタン、窒化チタンまたは
炭窒化チタンの1種よりなる第1被覆層とその外側に窒
化アルミニウムおよび/または酸化アルミニウムの1種
または2種よりなる第2被覆層と更にその外側に酸化ア
ルミニウムよりなる第3被覆層を設けた地.1〜5は摩
耗が少なく欠けも異常摩耗もなく、従来品の2倍以上の
切削寿命を示し、本発明が切削加工上、極めて有利に利
用できる切削工具を提供することがでできるものである
ことが確認された。なお、本実施例ではCVD法による
被覆法のみを示したが、本発明はCVD法に拘束される
ことなく、PVDと呼ばれる物理蒸着法またはスパッタ
リング等によっても被覆するすることができる。
In contrast, the present invention further includes a first coating layer made of one type of titanium carbide, titanium nitride, or titanium carbonitride, and a second coating layer made of one or two types of aluminum nitride and/or aluminum oxide on the outside thereof. A third coating layer made of aluminum oxide is provided on the outside. 1 to 5 indicate that the present invention can provide a cutting tool that has little wear, no chipping, and no abnormal wear, and has a cutting life that is more than twice that of conventional products, and that can be used extremely advantageously in cutting processing. This was confirmed. In this embodiment, only the coating method using the CVD method is shown, but the present invention is not limited to the CVD method, and the coating can also be performed using a physical vapor deposition method called PVD, sputtering, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に使用したCVD装置の概略図
、第2図は本発明工具の−都切欠斜視図である。 1・・・ステンレス製CVD反応容器、2・・・超硬合
金基体、3a,3b,3c・・・蒸着に用いるガスボン
ベ、4…蒸着物質の蒸着装層、5・・・反応容器1の加
熱炉、6・・・真空ポンプ。 第1図 第2図
FIG. 1 is a schematic diagram of a CVD apparatus used in an embodiment of the present invention, and FIG. 2 is a cutaway perspective view of a tool of the present invention. DESCRIPTION OF SYMBOLS 1... Stainless steel CVD reaction vessel, 2... Cemented carbide substrate, 3a, 3b, 3c... Gas cylinder used for vapor deposition, 4... Vapor deposition layer of vapor deposition substance, 5... Heating of reaction vessel 1 Furnace, 6...vacuum pump. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 超硬合金よりなる基体の表面に硬質材料の被覆を施
した高速切削工具において基体上に1〜10μの厚みを
もつ炭化チタン、窒化チタンまたは炭窒化チタンの1種
よりなる第1被覆層を設け、その外側に0.5〜10μ
の厚みをもつ窒化アルミニウムおよび/または酸窒化ア
ルミニウムの1種または2種よりなる第2被覆層を設け
、更にその外側に0.5〜5μの厚みをもつ酸化アルミ
ニウムよりなる第3被覆層を設け前記3被覆層の厚みの
合計が2〜15μであることを特徴とした高速切削用工
具。 2 前記超硬合金よりなる基体の表面に設けた第1被覆
層が炭化チタンである特許請求の範囲第1項記載の高速
切削用工具。 3 前記超硬合金よりなる基体の表面に設けた第1被覆
層が窒化チタンまたは炭窒化チタンである特許請求の範
囲第1項記載の高速切削用工具。
[Scope of Claims] 1. A high-speed cutting tool in which the surface of a base made of cemented carbide is coated with a hard material, made of one of titanium carbide, titanium nitride, or titanium carbonitride having a thickness of 1 to 10 μm on the base. A first coating layer of 0.5 to 10μ is provided on the outside.
A second coating layer made of one or two of aluminum nitride and/or aluminum oxynitride is provided with a thickness of A high-speed cutting tool characterized in that the total thickness of the three coating layers is 2 to 15μ. 2. The high-speed cutting tool according to claim 1, wherein the first coating layer provided on the surface of the base made of cemented carbide is titanium carbide. 3. The high-speed cutting tool according to claim 1, wherein the first coating layer provided on the surface of the base made of cemented carbide is titanium nitride or titanium carbonitride.
JP10202977A 1977-08-25 1977-08-25 High-speed cutting tool coated with a hard layer Expired JPS6033603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10202977A JPS6033603B2 (en) 1977-08-25 1977-08-25 High-speed cutting tool coated with a hard layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10202977A JPS6033603B2 (en) 1977-08-25 1977-08-25 High-speed cutting tool coated with a hard layer

Publications (2)

Publication Number Publication Date
JPS5435484A JPS5435484A (en) 1979-03-15
JPS6033603B2 true JPS6033603B2 (en) 1985-08-03

Family

ID=14316319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10202977A Expired JPS6033603B2 (en) 1977-08-25 1977-08-25 High-speed cutting tool coated with a hard layer

Country Status (1)

Country Link
JP (1) JPS6033603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137798B2 (en) 2019-02-25 2021-10-05 Samsung Electronics Co., Ltd. Electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153756A (en) * 1978-05-25 1979-12-04 Toshiba Tungaloy Co Ltd Hard surfaceecoated products
JPS55127270U (en) * 1979-03-02 1980-09-09
DE3309860A1 (en) * 1983-02-08 1984-08-09 Fa. Gottlieb Gühring, 7470 Albstadt DRILLING TOOL
JP6242751B2 (en) * 2014-06-04 2017-12-06 株式会社神戸製鋼所 Manufacturing method of machining tool and machining tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137798B2 (en) 2019-02-25 2021-10-05 Samsung Electronics Co., Ltd. Electronic device

Also Published As

Publication number Publication date
JPS5435484A (en) 1979-03-15

Similar Documents

Publication Publication Date Title
US4357382A (en) Coated cemented carbide bodies
USRE32111E (en) Coated cemented carbide bodies
US4686156A (en) Coated cemented carbide cutting tool
JP2663968B2 (en) Cutting tools
Rebenne et al. Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance
CA2566173C (en) Al2o3 ceramic tools with diffusion bonding enhanced layer
US4019873A (en) Coated hard metal body
US5654035A (en) Method of coating a body with an α-alumina coating
JP4312989B2 (en) α Alumina coated cutting tool
JP2717790B2 (en) Abrasion resistant article having an oxide coating and method of depositing an oxide coating
CN101652500B (en) multilayer CVD coating
JP2007528941A (en) Coated body and method for coating substrate
EP0015451A1 (en) Boride coated cemented carbide
JP3658949B2 (en) Coated cemented carbide
JPS6142789B2 (en)
CA2501085C (en) Composite material
CN105142831A (en) Surface-coated cutting tool and process for producing same
JPH11124672A (en) Coated cemented carbide
JPS63192869A (en) Composite coating
JPS6033603B2 (en) High-speed cutting tool coated with a hard layer
JPS6119367B2 (en)
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPS586969A (en) Surface clad sintered hard alloy member for cutting tool
JP3117978B2 (en) Wear-resistant article and manufacturing method
EP0083842A1 (en) Surface-coated hard metal body and method of producing the same