JPS59161878A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS59161878A
JPS59161878A JP3534583A JP3534583A JPS59161878A JP S59161878 A JPS59161878 A JP S59161878A JP 3534583 A JP3534583 A JP 3534583A JP 3534583 A JP3534583 A JP 3534583A JP S59161878 A JPS59161878 A JP S59161878A
Authority
JP
Japan
Prior art keywords
film
melting point
implanted
layer
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3534583A
Other languages
Japanese (ja)
Inventor
Tadatoshi Nozaki
野崎 忠敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3534583A priority Critical patent/JPS59161878A/en
Publication of JPS59161878A publication Critical patent/JPS59161878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To contrive to stabilize a Schottky junction by a method wherein a gate electrode wiring of the double layer structure of Si and high melting point metal is formed, which is thereafter annealed, thus changing the Si film into a high melting point silicide film. CONSTITUTION:A region serving later as an operating layer is formed on a compound semiconductor substrate 51, an Si film 53 is adhered thereon, and further an Mo film is formed. Afterwards, a gate electrode 54 is formed by etching only the Mo film with a patterned resist as a mask. Next, with the electrode 54 and the resist pattern 53 as a mask, Si ions are implanted to the substrate 51 through the film 53, thus forming a high concentration impurity implanted region 56. Then, after depositing an Si oxide film 57 over the entire surface, the implanted impurity is activated by annealing, and at the the same time the Si film under the electrode 54 is changed into the silicide layer 58. This manufacture makes a high melting point metallic silicide film existent in contact with the surface of the region 52, and accordingly the Schottky junction characteristic remains stable even after annealing.

Description

【発明の詳細な説明】 本発明は化合物半導体電界効果トランジスタを含む化合
物半導体装置の#!遣方法に関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a compound semiconductor device including a compound semiconductor field effect transistor. Contains information on how to send money.

化合物半導体、例えば砒化ガリウムはシリコンに比べ、
5〜6倍の電子移動度を有する事から、シリコンを用い
る場合に比べ、より烏運動作が可能なトランジスタ及び
集積回路の裂這が可n目である。K1シガリウムを用い
た場合、同結晶上に安定な絶縁層の形成が内峻でめる挙
から、もつはらシミシトキー接会を利用した、ショット
キーゲート電昇幼果トランジスタ(以下mw s F 
kJT と称する)が試fIl:慣討されている。
Compound semiconductors, such as gallium arsenide, are
Since it has an electron mobility that is 5 to 6 times higher, it is possible for transistors and integrated circuits to be cracked, which are capable of more efficient operation than when silicon is used. When using K1 cigallium, it is possible to form a stable insulating layer on the same crystal, so it is possible to form a Schottky gate electrophoresis infant transistor (hereinafter mw s F
(referred to as kJT) is currently being tested.

第1図は、1vlJ4sFnTの俣式断面図で69、 
lは半杷tR性基板、2は動作層、3はショットキーゲ
ート蒐憾、4はソースもしくはドレイン11!、極であ
シ、周知の様にドレイン、ソース間に流れる′電流が、
ゲート電極に印加される電圧にょシ変調される。現実の
トランジスタにおいては、5に示す様な表面空乏ノ―が
存在する結果、ソース・ゲート間及びゲート・ドレイン
間の寄生シリーズ抵抗が増大しトランジスタの電気的特
性の劣化、例えば相互コンダクタンスの低下等が生ずる
。従って、現状では、このシリーズ抵抗(以ドf(+s
と称する)の低減化が可能なトランジスタの構造、もし
くは製造方法が検討されている。第2図は、ゲート電極
に対しソース・ドレイン電極を近接して形成する#lC
より、Rsの低減化をねらったFETの俣式11TO!
i図でるる。1〜4は吊1図と同様の部位でめる。進富
短′屯憾間構造と叶はれており、ゲート電極材料をレジ
スト全マスクにしてエツチング歪形した恢、さらに倣少
なオーバエラチングラ厖こし、そのままソース・ドレイ
ン電極金属材料を蒸層しリフトオフするφによ)該レジ
スト端でソース・ドVイン′kL極端が火まる争を利用
して、ゲート電極とソース・ドレイン電極との間隔”を
短かくした事t−轡徴としCいる。この雑域他間傅造を
用いる事によシ、Rsの低減化がoJ舵となシFETの
特性向上が達成され得る。しかしながら、ゲート電極オ
ーバエッチ量の制御が難かしい事、オーバエッチItに
限度があり現状ではゲート電極とソース・ドレイン電極
との間隔が0.4ミクロン程度となり、第1図の促米例
に比べ几Sの低減化はあるものの、今後素子の倣細化を
考えた一曾満足のゆ(nsの低減化が得られない事、等
からこの短′域極間構造は決して満足すべきFMTlf
g造ではない。
Figure 1 is a mata-style cross-sectional view of 1vlJ4sFnT69,
1 is a half loquat tR substrate, 2 is an active layer, 3 is a Schottky gate, and 4 is a source or drain 11! As is well known, the current flowing between the drain and source is
The voltage applied to the gate electrode is modulated. In actual transistors, as a result of the presence of surface depletion nodes as shown in 5, the parasitic series resistance between the source and gate and between the gate and drain increases, resulting in deterioration of the electrical characteristics of the transistor, such as a decrease in mutual conductance, etc. occurs. Therefore, at present, this series resistance (hereinafter f(+s
Transistor structures or manufacturing methods that can reduce the Figure 2 shows #lC in which the source and drain electrodes are formed close to the gate electrode.
The Matata type 11TO FET aims to reduce Rs!
I figure is out. 1 to 4 are installed in the same parts as in Figure 1. The structure is realized as a short-circuit structure, and the gate electrode material is used as a whole resist mask to form a distorted shape by etching, and the over-erating layer is removed, and the source/drain electrode metal material is vapor-layered as it is. The distance between the gate electrode and the source/drain electrode was shortened by taking advantage of the conflict between the source and V in'kL extremes at the edge of the resist due to lift-off (φ). By using this noise area reduction, it is possible to reduce Rs and improve the characteristics of the FET.However, it is difficult to control the amount of overetching of the gate electrode, and There is a limit to etch It, and currently the distance between the gate electrode and the source/drain electrode is about 0.4 microns, and although the S value is reduced compared to the example shown in Figure 1, it is possible to reduce the pattern thickness of elements in the future. This short-range pole-to-pole structure is not satisfactory for FMTlf due to the fact that ns reduction cannot be obtained, etc.
It's not a G-built one.

凡Sの低減化のためには、ソース・ドレイン領域となる
狐域にのみ選択的に動作層と同一の導1mを示す不純?
!+を尚一度に圧入し、法源域の7−ト抵抗値を低減す
る事が幼果的でおる。このソース°ドレイン慎域に烏譲
匿イオン注入を失態して羨遺された士’ E ’f’に
関しては、使米より2穂漬が知られている。第3図は耐
熱性紮弔するゲート材料を用い、ゲート電極贅形後練ゲ
ート′#を惚をマスクrc尚磯夏に不純物を注入し、製
造されたPETの模式断面図を示したものである。1〜
4は第1図におけるものと同様の部位である。6は高濃
度に不純物が注入された惧域である。耐熱性ゲート材料
としては、高m度に注入された不純物の電気的活性化の
ための高温アニールに耐え、かつアニール後も安定なシ
ョットキー接合特性を示す事が要求される。またこの耐
熱性ゲート材料が集積回路における内部配線として用い
られる事から耐熱性ゲート材料の抵抗値に関しては高温
アニール後も小さい事、高濃度不純物注入に対するゲー
ト電極材のマスク効果が充分である事が要求される。
In order to reduce S, it is necessary to selectively add impurities that exhibit the same conductivity as the active layer only in the regions that will become the source and drain regions.
! It is a good idea to press-fit + at once and reduce the 7-t resistance value in the source area. As for the engineer 'E'f', who was envied by his failure to implant ions into the source/drain area, it is known that there are 2 hozuke's from the envoys. Figure 3 shows a schematic cross-sectional view of PET manufactured by using a heat-resistant gate material and injecting impurities into a mask RC Shoiso to mask the gate electrode. be. 1~
4 is a part similar to that in FIG. 6 is a region in which impurities are implanted at a high concentration. A heat-resistant gate material is required to withstand high-temperature annealing for electrically activating impurities implanted at a high temperature and to exhibit stable Schottky junction characteristics even after annealing. In addition, since this heat-resistant gate material is used as internal wiring in integrated circuits, the resistance value of the heat-resistant gate material is small even after high-temperature annealing, and the masking effect of the gate electrode material against high-concentration impurity implantation is sufficient. required.

以上のうち、ゲート電極材料の抵抗値とマスク性に関し
ては、ゲート材料の膜厚を厚くする程抵抗1直は減少し
、マスク性も向上するが、厚くする事によりゲート電極
配線段差が増大し、上層配線形成時に段ぎれ等の問題が
生ずる。以上からゲート電極材料と、しては、ショット
キー接合の安定性が全である事が望ましい。現状では耐
熱性ゲート材料としてはタングステン(ロ)、チタンタ
ングステン(TiW)、タングステンシリサイドが試み
られている。このうちWに関しては、実際に形成される
膜が柱状結晶構造を有している事から、アモルファス構
造の場合、注入イオンの阻止が完全と考えられる膜厚及
び注入条件を用いた場合でも、注入イオンの阻止が不完
全である事が確かめられており、実用的にI/′i膜厚
を厚くする必要があるが、この場合前述した設差の問題
が生ずる。−万TiW、タングステンシリサイドの場合
、+!6績度法度注入不純物気的活性化のため造富央流
される850℃のアニールにおいては、抵抗値の低減化
は不光分でめ9、比抵抗値150〜300μΩL:M程
度を示す。
Among the above, regarding the resistance value and maskability of the gate electrode material, the thicker the gate material, the less the resistance 1 cycle and the better the maskability, but increasing the thickness increases the gate electrode wiring step. , problems such as step breaks occur when forming upper layer wiring. From the above, it is desirable that the gate electrode material has the highest stability of Schottky junction. At present, tungsten (b), titanium tungsten (TiW), and tungsten silicide are being tried as heat-resistant gate materials. Regarding W, since the film that is actually formed has a columnar crystal structure, in the case of an amorphous structure, even when using a film thickness and implantation conditions that are considered to completely block implanted ions, it is difficult to implant. It has been confirmed that ion blocking is incomplete, and it is practically necessary to increase the thickness of the I/'i film, but in this case, the above-mentioned problem of the spacing occurs. -10,000 TiW, tungsten silicide +! In annealing at 850 DEG C. in which the impurities are forced to flow for vapor activation, the resistance value is reduced by a small amount of light, and the specific resistance value is about 150 to 300 μΩL:M.

め9、高速製作を要求されるGaAs来積回路を実現す
る上で大きな問題点でbる。
9. This is a major problem in realizing GaAs integrated circuits that require high-speed manufacturing.

第3図の例ではソース・ドレインノーに尚一度不純物層
を形成するため、ゲート材料が高温アニールに耐え得る
材料である事が兼求されるが、M4図はゲート材料とし
て耐熱性材料を用いる必要がなく、かつソース・ドレイ
ン層にTvtJ一度不純吻ノー(a)は高濃度不純物が
注入された直後のFET製造途中の模式的な素子断面図
である。11は半絶縁性基板、12は動作層、13は絶
縁膜、14はレジスト、15は絶縁膜でめシ、14のレ
ジストは、15の絶ljk膜に灼し若干オーバエツチン
グが厖こされている。16は15の絶縁膜をマスクに鍋
誕度に不純物注入された饋域である。第4図(b)は第
・・4図(a)の後、ゲート′屯惚が形成された直俊の
俣式旧な素子即■囲図でめり、以下の工程を経て達せら
れる◇第4図ta)のm造が得られた後、14のレジス
トで榎われない鎖酸に13の絶縁膜と真なる杷鰍族17
を形成し、14のレジスト、15の絶縁膜七味去し、尚
温アニールによ、916の注入不祠物膚の電気的活性化
を行なわしめ、17の絶縁膜をマスクに、13の絶縁膜
をエツチングしGaAs辰面を延出せしめ、ゲート材料
の被層及び整形によシゲート電極18を形成する(第4
図(b))。以下ソース・ドレイン領域上の所定の個所
の絶縁膜13.17を除去し咳個所にオーミック電極1
9を形成する事によ、9FETの製造が完了する(第4
図(C))。ここに述べたPETにおいては、ゲート電
惚形成前に、ソース・ドレイン烏磯度不純物ノーが形成
されている事から、ゲート材として耐熱性材料を用いる
必要はないという利点を有する。
In the example in Figure 3, since an impurity layer is formed once again at the source/drain node, the gate material must be made of a material that can withstand high-temperature annealing, but in the M4 diagram, a heat-resistant material is used as the gate material. (a) is a schematic cross-sectional view of a device in the middle of manufacturing an FET immediately after a high concentration impurity is implanted into the source/drain layer. 11 is a semi-insulating substrate, 12 is an active layer, 13 is an insulating film, 14 is a resist, 15 is an insulating film, and the resist 14 is burnt to the absolute film 15, with some overetching. There is. 16 is a region into which impurities are implanted using the insulating film 15 as a mask. Figure 4(b) shows...After Figure 4(a), the old Naotoshi Mata-style element with the gate's opening is formed. After the structure shown in Figure 4 (ta) is obtained, the insulating film of 13 and the true loquat group 17 are added to the chain acid that is not removed by the resist of 14.
The resist No. 14 and the insulating film No. 15 are removed, and the implanted impurity material No. 916 is electrically activated by thermal annealing. Using the insulating film No. 17 as a mask, the insulation film No. 13 is formed. is etched to extend the GaAs radial surface, and a gate electrode 18 is formed by covering with gate material and shaping.
Figure (b)). After that, the insulating film 13, 17 at a predetermined location on the source/drain region is removed, and an ohmic electrode 1 is placed on the cough location.
By forming 9FET, the manufacturing of 9FET is completed (4th
Figure (C)). The PET described here has the advantage that it is not necessary to use a heat-resistant material as the gate material because the source/drain impurity layer is formed before the gate electrode is formed.

しかしながら第3図に示したFhTの製造と比較して!
!!遺工程が複雑でおると同時に工程数が長いという欠
点を有している。さらにゲート材料板層前の肥#族13
のエツチング工程において、絶線1fi13のサイドエ
ツチングを迎えるためドライエツチングを行なう心安が
るるが、ドライエツチングに起因して導入される(ja
 A s表面の損−に関する問題が円圧する一iJ能性
がめる。
However, compared to the production of FhT shown in Figure 3!
! ! It has the disadvantage that the post-processes are complicated and the number of steps is long. In addition, the gate material plate layer 13
In the etching process, it is safe to perform dry etching because side etching of disconnected lines 1fi13 occurs, but it is not necessary to perform dry etching due to dry etching.
Problems related to loss of the As surface are considered to have the potential to be compressed.

尚性能GaAs J’ m Tの裏道を劣えた揚台、B
Sの低減化、ショットキ接合特性のデボ化が必要とされ
、さらにゲート材料の抵抗(Kg)の低減化及び製造工
程の単純化、短縮化による製造プロセスの16頼度向上
が必要とされる。しかしながら現状ではこれ等すべてを
満足する製造方法は見出だされてはいない。
In addition, the performance of GaAs J' m T is inferior to the back road, B
It is necessary to reduce S and make the Schottky junction characteristic more dimple, and it is also necessary to improve the reliability of the manufacturing process by reducing the resistance (Kg) of the gate material and simplifying and shortening the manufacturing process. However, at present, no manufacturing method has been found that satisfies all of these requirements.

不発明の目的は従来の欠点を解決せしめた化合物半導体
装置の製造方法t−提供することにある。
An object of the invention is to provide a method for manufacturing a compound semiconductor device that overcomes the drawbacks of the prior art.

本発明によれば、化合物半導体基板表面に形成された動
作層に接して7リコン膜全形成し、咳シリコン膜上に高
融点金JI4膜を形成した後、パターン化したレジス)
kマスクに尚融点金属膜のみをエツチング整形しゲート
電極配線となした後、該−ルによV^融融点金属上下シ
リコン族を尚鵬点省属シリサイドJ曽に叢侠する工程と
5r、冨む串七脣倣とした化合智牛導坏装置の絞這万汰
が侍られる0本発明の方法においては、ゲー)If、惚
をマスクに1iJf1層と同一4域型を示す不純切を高
−区に注入する墨からソース・ドレイン置載の抵仇霞世
減化がμ■舵であると同時に11’ E T g造プロ
セスの単純化、短縮化が可屈でおる。また本発明の方法
では、化合切半導体動作層と接して高融点金属シリサイ
ド展が存在する事からシ目ットキー特性がデボであると
同時に、シリティド編上の#ii融点蓋属膜が低抵抗で
める事を反映してゲート電極配線が低抵抗となる長所を
有している。また本発明の方法では基板表面上のシリコ
ン膜を通して動作層と同−4蒐型を示す不純物を注入す
る事から、注入雰囲気ガスからの汚架に対しシリコン族
が汚染防止膜として餉くという長所も有している。本発
明の方法では、尚融点金属膜ドにシリコン膜が存在した
状態で、動作層と同−導電域を示す不純物を注入する場
合と、アニールによりm鵬点並属腺丁のシリコン族を高
融点金属シリサイド展に変侠した後、動作層と同−導4
型をがす不純物を注入する場合かめるが、いずれの場合
もシリコンB!Aもしくは高融点並属シリティド膜が猷
鴨でめる事、シリコン族もしくは^融点金属ンリサイド
映と尚融点金属膜との界面が存在する事に起因して、注
入イオンの阻止が不完全となり妃めるゲート嵯慎下限編
厚が、尚融点金属課単l―の礪曾に比べ小さいという利
点上Mしている。
According to the present invention, after forming the entire 7 silicon film in contact with the active layer formed on the surface of the compound semiconductor substrate and forming the high melting point gold JI4 film on the silicon film, patterned resist)
5r, after etching and shaping only the melting point metal film on the k mask to form gate electrode wiring, the process of arranging the upper and lower silicon groups of the melting point metal on the silicide layer, 5r; In the method of the present invention, an impurity cut showing the same 4-region type as the 1iJf1 layer is used as a mask for game) If and love. From the ink injected into the high-temperature zone, the reduction of the resistance of the source/drain installation is beneficial, as well as the simplification and shortening of the 11'ET g manufacturing process. In addition, in the method of the present invention, since the high melting point metal silicide layer is present in contact with the compound-cut semiconductor operating layer, the sheet metal characteristic is deformed, and at the same time, the #ii melting point lid metal film on the silicide layer has low resistance. It has the advantage that the gate electrode wiring has low resistance, reflecting the fact that it is thin. Furthermore, since the method of the present invention injects an impurity having the same type as the active layer through the silicon film on the surface of the substrate, the silicon group has the advantage that it acts as a contamination prevention film against contamination from the implanted atmosphere gas. It also has In the method of the present invention, impurities exhibiting the same conductivity region as the active layer are implanted while a silicon film is present in the melting point metal film, and the silicon group of the metal film is enhanced by annealing. After changing to the melting point metal silicide, the active layer and the same conductor 4
When implanting an impurity that removes the mold, it will bite, but in either case silicon B! The blocking of implanted ions is incomplete due to the fact that A or a high melting point parallel silicide film is formed, and the presence of an interface between a silicon group or melting point metal silicide film and a melting point metal film. M is used because of the advantage that the lower limit thickness of the gate is smaller than that of the melting point metal layer.

本発明の製造方法による、GaAsA4ESFhTを例
としたトラ7ジスタ裂造の一芙厖例を第5崗を用いて説
明する。Crドープ半絶縁性G :a A s基板51
を用意し、レジストをマスクとしてSiイオンを70 
keV、 2x l 012at< 2(D条件テll
入L、後に動作ノーとなる領域52を形成した。レジス
ト除去後%電子ビーム蒸層法によりシリコン族53を2
00A被着し、さらにM o (gを400OA形成し
、さらにゲート電極となるべき部分にレジストパターン
を形成した後、該レジストパターンをマスクに該レジス
トに億われない領域のMo膜をeel 4+U2  ガ
ス全開いたドライエツチング法により*云し1〜1θゲ
ート鴫@54t−形成した(第5図(a))。久にレジ
ン)k全曲に塗布し、仮の工程で実施するSgJfF−
鷹と同−導体型を示す不純吻注入狽城以外の鎖酸上のシ
リコン層上にのみレジスト55が残置する様パターン化
した。このレジストパターン及びゲート屯愼ヲマスクに
Siイオンを200ieV  4X1013ff/V”
の条件でシリコンg’に通して基板へ注入し尚鑓度不純
物注入禎域56を形成した(第5図(b))。し/シス
ト除去後全曲にシリコン酸化膜57をCVD法によシ堆
積し、菫素ガス甲850℃のアニールにより注入不純物
の屯気的箔性化を行なわしめると同時にivL o膜下
に存在するシリコン膜全シリサイド層58にKmせしめ
、引き続きソース・ドレイン電極全形成すべき自演のシ
リコン酸化膜及びシリコン膜をパターン化されたレジス
トをマスクに除去し、GaAs  表面を露出せしめた
。Au−Ge及びNi膜を蒸涜し、す7トオ7法によシ
該個所にのみA、u−Ge及びNimを残置せしめ、オ
ーミツ久屯極59とし、水素ガス申例えば450℃、1
分の熱処理を実施する事によ)、h゛b Tの製造を光
子した(弔5図(C))。
An example of a multi-layer structure made of GaAsA4ESFhT according to the manufacturing method of the present invention will be explained using the fifth layer. Cr-doped semi-insulating G:a As substrate 51
was prepared, and 70% of Si ions were applied using the resist as a mask.
keV, 2x l 012at < 2 (D condition tell
A region 52 was formed in which the operation becomes "L" and the operation becomes "No" later. After removing the resist, 2% silicon group 53 was deposited by electron beam evaporation method.
After depositing 00A and further forming 400OA of Mo (g) and forming a resist pattern on the part that should become the gate electrode, using the resist pattern as a mask, the Mo film in the area not covered by the resist was coated with eel 4+U2 gas. A 1-1θ gate @ 54t was formed using a fully open dry etching method (Fig. 5 (a)).
The resist 55 was patterned so as to remain only on the silicon layer on the chain acid except for the impurity implantation region, which exhibits the same conductivity type as the hawk. Si ions were applied to this resist pattern and gate mask at 200 ieV 4X1013ff/V.
The impurity was implanted into the substrate through silicon g' under the following conditions to form a region 56 for impurity implantation (FIG. 5(b)). After removing the cyst/cyst, a silicon oxide film 57 is deposited on all the tracks by CVD method, and the implanted impurities are made into a foil by annealing at 850°C with phosphor gas. The entire silicon film silicide layer 58 was made to have a thickness of Km, and then the silicon oxide film and the silicon film on which the entire source/drain electrodes were to be formed were removed using a patterned resist as a mask to expose the GaAs surface. The Au-Ge and Ni films were evaporated, and A, u-Ge and Ni were left only in the locations using the 7-to-7 method, forming an Omitsu Kutun pole 59, and hydrogen gas was heated, for example, at 450°C for 1
hbT was photonized (Fig. 5 (C)).

ゲート量、ゲート幅が七れぞ31−5.10μm合Mす
るトランジスタの相互コンダクタンスは、7平均的にl
 70 m s/amの一一値を示した。
The mutual conductance of a transistor whose gate amount and gate width are both 31-5.10 μm is, on average, l.
It showed a value of 70 m s/am.

以上の実施例では、MO層膜下シリコン膜が存在する状
態で、動作層と同一4電型を示す不純物を置換度に注入
した例を示したが、以下述べる様に、動作層と同一導電
型を示す不純−#を楯余度に注入する工程に先立ち、6
00℃、20分のアニール工程を夷流し、Mo膜丁のシ
リコン膜をシリサイド層に変換する工程を追加してトラ
ンジスタを製造した。この600℃、20分の追加アニ
ール工程以外は前述の製造工程及び’l!!造粂件と同
一に設定した。この様にして製造された、ゲート長、ゲ
ート幅がそれぞれ1.5.10μmを有するトランジス
タの詔互コンダクタンスは平均的に170m57111
1の高い値を示した。以上の試料に加え、シリコ/11
g20OAの上にMo膜1iooo、20oO1600
0Aの膜厚で形成して製造されたF n ’rと、シリ
コymo形i k 4f!! LVI Od’t l 
O00,2000,4000,6000A  の膜厚で
形成しケート1憾としたに’ l ’l”i製造し、そ
れぞれの試料に対しゲート長20μIn、ゲート幅20
0μmのトランジスタ30個のしきZ111屯比の十勾
狐及びはらつさく標準偏走で示す)を測定した。下衣が
その願呆でめるが、MO膜年増のj#台、層厚の減少に
伴ないvTの絶対値が者るしく増大し、刀λつVTのは
らつきも増大するが、シリコ/$20OAの上にMo膜
を形成し高温アニールにより、シリコン膜をシリサイド
層に変換したトランジスタにおいては、上層Mod厚が
zoooiとうすくなった場合においても、VTの絶対
値及びそれのばらつきは増大しない。これはs6一度S
i注入における注入イオンの阻止が、NLo換単ノーの
場合、4000λ の膜厚においても不先生となるが、
シリサイド族とM。
In the above example, an example was shown in which an impurity having the same 4-electrode type as the active layer was implanted at a substitution degree in the presence of the silicon film under the MO layer. Prior to the step of injecting a large amount of impurity -# indicating the mold, 6
A transistor was manufactured by skipping the annealing process at 00°C for 20 minutes and adding a process to convert the silicon film of the Mo film into a silicide layer. Except for this additional annealing step at 600°C for 20 minutes, the manufacturing process described above and 'l! ! The settings are the same as those for the original version. The transconductance of the transistor manufactured in this way having a gate length and a gate width of 1.5 and 10 μm, respectively, is 170 m57111 on average.
It showed a high value of 1. In addition to the above samples, Silico/11
Mo film 1iooo, 20oO1600 on top of g20OA
F n 'r manufactured with a film thickness of 0A and silico ymo type i k 4f! ! LVI Od't l
The gate length was 20μIn and the gate width was 20μIn for each sample.
The threshold Z111 ratio of 30 transistors of 0 .mu.m was measured. The lower garment is disappointed, but as the MO film increases over the years, the absolute value of VT increases significantly as the layer thickness decreases, and the fluctuation of VT also increases. In a transistor in which a Mo film is formed on silicon/$20OA and the silicon film is converted to a silicide layer by high-temperature annealing, the absolute value of VT and its variation are small even when the upper layer Mod thickness becomes extremely thin. Does not increase. This is s6 once S
In the case of NLo conversion, blocking of implanted ions during i-implantation is poor even at a film thickness of 4000λ, but
Silicide tribe and M.

膜の2ノfII傅這の場合、iVo換厚膜厚00λ の
場合においても注入イオンの阻止が先生である挙に起因
すると考えられる。
This is thought to be due to the fact that in the case of a film with a thickness of 2 fII, even in the case of an iVo conversion thickness of 00λ, the blocking of implanted ions is effective.

以上の実施例においては、シリコン族が、ソース・ドレ
インオーミック電極金属及びゲート電極以外のG a 
A s表面に残置する例について示したが、所望であれ
ば、高濃度不純物イオン圧入後もしくは関温アニール後
、例えばレジストをマスクに除去する事も可能である。
In the above embodiments, the silicon group is Ga other than the source/drain ohmic electrode metal and the gate electrode.
Although an example has been shown where it is left on the As surface, if desired, it is also possible to remove it using, for example, a resist as a mask, after injecting high-concentration impurity ions or after temperature annealing.

この場合ゲート電極を囲っである程度の幅でシリコン膜
を残す事が望ましい。以上の実施例においては、高融点
金属としてModを用いた場合について述べたが、W%
Ti1Ta等の尚融点金1I4t′用いた場合において
も、全く同様な効果が得られる。
In this case, it is desirable to leave a silicon film with a certain width surrounding the gate electrode. In the above examples, the case where Mod was used as the high melting point metal was described, but W%
Exactly the same effect can be obtained even when a metal with a melting point of 1I4t' such as Ti1Ta is used.

また以上の実施例においては、もりばらUaAsの場曾
について示したが、半絶縁性InJ’上に成員したlX
10oi の電子一度をMするLnPエピタキシャル虐
及び千杷縁性Ink’上に成員した7−3 IXIOn  の電子−atft有する’ ” Q、5
3.”0.47As鳩を用惠し本発明の方法を用したと
ころ、850℃20分の、1ib11Aアニールにおい
ても安定なショットキー特性をMする手が蓚脳された。
In addition, in the above embodiment, the field of UaAs was shown as a scattering, but the IX formed on the semi-insulating InJ'
It has 7-3 IXION electron-atft members on LnP epitaxial mass and Chibi-related Ink' which generate 10 oi electrons at once.''Q, 5
3. ``When we used the method of the present invention on 0.47As pigeons, we were able to obtain stable Schottky characteristics even during 1ib11A annealing at 850°C for 20 minutes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は従来よシ周知のG a A 
5FET俣式iff面図を示したものでめシ、lは半杷
叙性基也、2は動作層、3はゲー)!憾、4はソース・
ドレイン電極、5は表面空乏層である。 第4図(a)、(b)、(C)は従来の方法によるFE
Tfi造とり 方法を説明するたCの図で主要工程を追って順に示した
Fk、T断面図である。図において11は半絶縁性基板
、12は動作層、13は絶縁膜、14はレジスト、15
は絶縁膜、16は誦一度不純すイオン注入領域、17は
絶M膜、18はゲート電極、19はソース・ドレイン電
極である。第5図(a)、(b)、(C)は本発明の方
法を用いてトランジスタを裏道した場会を説明するため
の図でトランジスタの模式断面図を主要裂遺エアーの唄
を追って示したものである。51は半絶縁性基板、52
は製作層、53はシリコン族、54は尚#IA点釡属膜
、55はレジスト族、56は尚磯度不純物圧入穎域、5
7は絶縁膜、58は扁融点金属シリサイド展、59はソ
ース・ドレイン′亀慣でめる。 第 1 図 第 2 図 第 3 図 第 4 図
Figures 1, 2, and 3 are conventionally well-known G a A
This shows the IF surface diagram of the 5FET Matata style, l is hanpojojo, 2 is the operating layer, and 3 is game)! Unfortunately, 4 is the sauce.
The drain electrode 5 is a surface depletion layer. Figures 4 (a), (b), and (C) show FE by the conventional method.
FIGS. 3A and 3B are cross-sectional views of Fk and T shown in sequence following the main steps in the diagram C for explaining the Tfi manufacturing method. In the figure, 11 is a semi-insulating substrate, 12 is an active layer, 13 is an insulating film, 14 is a resist, and 15 is a semi-insulating substrate.
1 is an insulating film, 16 is an ion-implanted region to be impurized once, 17 is an absolute M film, 18 is a gate electrode, and 19 is a source/drain electrode. FIGS. 5(a), (b), and (C) are diagrams for explaining how a transistor is backtracked using the method of the present invention, and show a schematic cross-sectional view of a transistor following the song of the main broken air. It is something that 51 is a semi-insulating substrate, 52
53 is a fabrication layer, 53 is a silicon group, 54 is a #IA point metal film, 55 is a resist group, 56 is an impurity injection region, 5
7 is an insulating film, 58 is a low melting point metal silicide film, and 59 is a source/drain film. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 化合切牛尋俸基似衣圓に形成さ詐た動作層に供してシリ
コ/腺を形成し、咳シリコン展上Ksbm点並W4腺を
形成した彼、パターン化したレジスト金マスクに誦噛点
金属展のみをエツチング歪形しゲート1惚配線となしf
c後、鈑島峨点金属族をマスクに動作層と同−尋′屯型
を示す不純物を基椴内所望惧域に−m[に注入する工程
と、アニールにより縄融点金属膜下のシリコンIIXを
尚融点金属7リサイド膜に変換する工程とを含む事を特
徴とした化合物半導体装置の装造方法。
The compound was formed on a similar working layer to form a silicon/gland, and a Ksbm dot W4 gland was formed on the cough silicone, and a patterned resist was applied to the gold mask to form a dot metal. Only the exhibition is etched and distorted and the gate 1 love wiring and no f
After c, a step of implanting an impurity having the same shape as that of the active layer into the desired region in the substrate using the Ekishima melting point metal group as a mask, and annealing to remove the silicon under the melting point metal film. 1. A method for manufacturing a compound semiconductor device, comprising the step of converting IIX into a melting point metal 7 reside film.
JP3534583A 1983-03-04 1983-03-04 Manufacture of compound semiconductor device Pending JPS59161878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3534583A JPS59161878A (en) 1983-03-04 1983-03-04 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3534583A JPS59161878A (en) 1983-03-04 1983-03-04 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS59161878A true JPS59161878A (en) 1984-09-12

Family

ID=12439268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3534583A Pending JPS59161878A (en) 1983-03-04 1983-03-04 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS59161878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295823A (en) * 1985-10-22 1987-05-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor integrated circuit
JPH05347317A (en) * 1990-12-26 1993-12-27 Korea Electron Telecommun Manufacture of magnetically-aligned gaas field effect transistor using double-layered heat-resistant gate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295823A (en) * 1985-10-22 1987-05-02 Sumitomo Electric Ind Ltd Manufacture of semiconductor integrated circuit
JPH05347317A (en) * 1990-12-26 1993-12-27 Korea Electron Telecommun Manufacture of magnetically-aligned gaas field effect transistor using double-layered heat-resistant gate

Similar Documents

Publication Publication Date Title
KR970004457B1 (en) Semiconductor device and fabrication method
CN105428228A (en) Quantum well mosfet channels having uni-axial strain caused by metal source/drains, and conformal regrowth source/drains
JPH0260063B2 (en)
US4837178A (en) Method for producing a semiconductor integrated circuit having an improved isolation structure
JPH06177159A (en) Field-effect transistor and manufacture thereof
US5877047A (en) Lateral gate, vertical drift region transistor
JPS5932173A (en) Manufacture of field effect transistor
JPS59161878A (en) Manufacture of compound semiconductor device
JP2629995B2 (en) Thin film transistor
US5539248A (en) Semiconductor device with improved insulating/passivating layer of indium gallium fluoride (InGaF)
JPH0329326A (en) Junction field-effect transistor
KR910006751B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH0831846A (en) Manufacture of high breakdown voltage fet
JP3018885B2 (en) Method for manufacturing semiconductor device
JPH0523497B2 (en)
JPS6332273B2 (en)
JPH0349242A (en) Field effect transistor and its manufacture
JPS61163662A (en) Manufacture of field-effect transistor
JPS6249671A (en) Gallium-arsenide fe transistor and making thereof
KR950001167B1 (en) Compound semiconductor device and manufacturing method thereof
CN117133803A (en) GaN HEMT device with gate structure of SBD diode and manufacturing method thereof
JPS6240782A (en) Manufacture of semiconductor device
JPS59194476A (en) Manufacture of semiconductor device
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof