JPS59157560A - Electron scanning type ultrasonic flaw detector - Google Patents

Electron scanning type ultrasonic flaw detector

Info

Publication number
JPS59157560A
JPS59157560A JP58031017A JP3101783A JPS59157560A JP S59157560 A JPS59157560 A JP S59157560A JP 58031017 A JP58031017 A JP 58031017A JP 3101783 A JP3101783 A JP 3101783A JP S59157560 A JPS59157560 A JP S59157560A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
mode
waves
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031017A
Other languages
Japanese (ja)
Other versions
JPH049261B2 (en
Inventor
Satoshi Ogura
聰 小倉
Sakae Sugiyama
栄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58031017A priority Critical patent/JPS59157560A/en
Publication of JPS59157560A publication Critical patent/JPS59157560A/en
Publication of JPH049261B2 publication Critical patent/JPH049261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the S/N of a detection signal and flow detection performance by selecting either a longitudinal or a transversal wave larger is sound pressure amplitude and performing flaw detection, and setting accurately a parameter for flow detector control, etc. CONSTITUTION:An input device 1 inputs parameters regarding the acoustic velocity in a body to be detected, the angle of incidence of an ultrasonic wave, etc., to an ultrasonic wave beam control circuit 2. The control circuit 2 receives and processes a signal from an ultrasonic wave switching circuit 12 and the inputs from the input device 1 and sends control signals to a pulse oscillator 3, delay circuit 4, etc. The transmitted ultrasonic wave is reflected by a reflector, received by an array probe 5, and inputted to a signal processing circuit 6. The processing circuit 6 uses the control signal of the ultrasonic beam received from an ultrasonic wave beam control circuit to process the received ultrasonic wave signal and sends the processing result to a display device 7. Consequently, a wave of mode with large sound pressure is utilized all the time, so the S/N of the detection signal is improved to improve the flaw detection performance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子走査型超音波探傷装置に係り、特に測定
系との間の超音波の出入りに際して縦波、横波間のモー
ド変換が発生する鋼材等の探傷に好適な電子走査型超音
波探傷装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electronic scanning ultrasonic flaw detection device, and in particular, mode conversion between longitudinal waves and transverse waves occurs when ultrasonic waves enter and exit from a measurement system. The present invention relates to an electronic scanning ultrasonic flaw detection device suitable for flaw detection of steel materials, etc.

〔従来技術〕[Prior art]

電子走査型超音波探傷装置は、複数の探触子をアレイ状
に配置し、各探触子から放出される超音波の方向及び位
相を電子回路によって制御し、各放出超音波が被検体上
に焦点をもつようにするとともに、その焦点を時間的に
移動させて被検体を走査して探傷を行うもので、その技
術は医療の分野で開発、実用化されている。この医療の
場合に1は、被検体である人体は殆んど水分であるため
、超音波が探触子から発射されて再びそれが返ってくる
までの間、すべて縦波として扱われている。
Electronic scanning ultrasonic flaw detection equipment has multiple probes arranged in an array, and an electronic circuit controls the direction and phase of the ultrasonic waves emitted from each probe. The technique is developed and put into practical use in the medical field by focusing on the subject and scanning the object by moving the focus over time. In the case of this medical treatment, 1. Since the human body, which is the subject to be examined, is mostly water, all ultrasound waves from the time they are emitted from the probe to the time they are returned are treated as longitudinal waves. .

しかしその技術および装置を鋼材等の探傷に応用した場
合には、縦波の超音波が探触子から発射され、それが被
検体に入る時に、スネルの法則に従った屈折角で縦波と
して被検体内へ伝わる成分と、横波にモード変換されて
被検体内へ伝わる成分が生じ、しかも、この縦波と横波
の屈折角は異っている。むろんこの経路は可逆であって
、被検体内で反射された超音波も入射とは逆の経路で探
触子へ縦波として戻る。そして被検体内で縦波として反
射され戻ってきた超音波と、それとは別の場所で被検体
内部で横波として反射され戻ってきた超音波とは、その
音圧が異り、しかも超音波の被検体への入射角に応じて
その音圧比は大きく変化する。このため、常に被検体内
の縦波成分の焦点付近の反対率の、陽の有無による変化
を信号として検出するようにした、医療分野と同様な装
置では、その縦波の成分が大きく減辰した時に信号のS
/N比が大幅に減少してしまうという欠点がある。
However, when this technology and equipment is applied to flaw detection of steel materials, etc., longitudinal waves of ultrasonic waves are emitted from the probe, and when they enter the object, they form longitudinal waves at a refraction angle according to Snell's law. A component that propagates into the subject and a component that is mode-converted into a transverse wave and propagates into the subject are generated, and the refraction angles of the longitudinal wave and transverse wave are different. Of course, this path is reversible, and the ultrasonic waves reflected within the subject also return to the probe as longitudinal waves on the opposite path to the incident path. The ultrasound that is reflected as a longitudinal wave inside the subject and returns as a transverse wave is different from the ultrasound that is reflected as a transverse wave inside the subject at a different location, and the sound pressure is different. The sound pressure ratio changes greatly depending on the angle of incidence on the subject. For this reason, in a device similar to that used in the medical field, which always detects as a signal the change in the reversal rate near the focal point of the longitudinal wave component within the subject depending on the presence or absence of positive light, the longitudinal wave component is greatly reduced. When the signal S
There is a drawback that the /N ratio is significantly reduced.

これに対処するために、鋼材等の被検体への超音波の入
射角に応じて、より強度の大きい方の成分で探傷な行う
ようにするものがある。この場合には、入射角の変化に
応じて利用する成分を切換える必要があり、このため、
各探触子の前述した制御のパラメータを変化させ、かつ
受信信号の処理のパラメータも対応して変化させる。し
かし、この種の従来装置では、入射角に対する被検体中
の縦波及び横波の屈折率及び透過率は、理論的に解析さ
れた固定した特性にもとづいて与えられているため、実
際の状況とは合わずに十分な改善が得られなかった。
In order to cope with this problem, there are methods in which flaw detection is performed using a component with higher intensity depending on the angle of incidence of the ultrasonic wave on the object to be inspected, such as steel material. In this case, it is necessary to switch the components to be used according to the change in the angle of incidence.
The parameters of the aforementioned control of each probe are varied, and the parameters of the processing of the received signal are correspondingly varied. However, in this type of conventional device, the refractive index and transmittance of longitudinal waves and transverse waves in the object with respect to the incident angle are given based on fixed characteristics that have been theoretically analyzed. did not match, and sufficient improvement could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくシ、よ
りS/Nの向上が可能な電子走査型超音波探傷装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electronic scanning ultrasonic flaw detection device that eliminates the drawbacks of the prior art described above and can further improve the S/N ratio.

〔発明の概要〕[Summary of the invention]

本発明は、被検体とそれに接触する媒質との境界面で発
生する超音波のモード変換に着目して、縦波あるいは横
波のうちの音圧振幅の大きな方を選択して探傷を行うと
ともに、その選択や選択したモードに対応した探傷子制
御や信号処理のためのパラメータを、外部から実測値に
もとづいて正確に設定できるようにしたことを特徴とす
るものである。
The present invention focuses on the mode conversion of ultrasonic waves generated at the interface between the object and the medium in contact with it, and performs flaw detection by selecting longitudinal waves or transverse waves, whichever has a larger sound pressure amplitude. The feature is that the parameters for flaw detector control and signal processing corresponding to the selection and the selected mode can be accurately set from the outside based on actual measured values.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例を示すブロック図で、従来の
電子走査型超音波探傷装置に、本発明の特徴とする超音
波の切換回路、12およびその入力装置11から成る超
音波切換装置13を付は加えたものである。同図に於て
、入力装置1は被検体(以下ではこれを鋼材として説明
する)の音速。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which a conventional electronic scanning type ultrasonic flaw detector is equipped with an ultrasonic switching circuit comprising an ultrasonic switching circuit 12 and its input device 11, which is a feature of the present invention. The device 13 is added. In the figure, an input device 1 measures the sound velocity of an object to be examined (hereinafter, this will be explained as a steel material).

超音波の入射角等に関する制御パラメータを超音波ビー
ム制御回路2に入力する。超音波ビーム制御回路2は、
入力回路11を持つ超音波切換回路12からの信号およ
び入力装置1からの入力を受は取り、これらの信号に従
い演算を行い、これに接続されたパルス発振器3、遅延
回路4および信号処理回路6にそれぞれの制御信号を送
る。パルス発振器3は、超音波ビーム制御回路2によっ
て遅延回路4の遅延時間が設定された後、超音波送信用
のパルスを発振する。遅延回路4で遅延を受けたパルス
は、アレイ探触子5に入力され、超音波の送信が行なわ
れる。送信された超音波は反射体で反射され、アレイ探
、触子5で受信され、遅延回路4を通り信号処理回路6
に入力される。信号処理回路6は、超音波ビーム制御回
路2から受けた超音波ビームの制御信号を用いて、受信
した超音波信号の信号処理を行い、表示装置7に処理結
果を送る。表示装置7は、一般のCR,T、プリンタ等
表示用装置であり、信号処理回路6による結果を表示す
るものである。以上が装置全体の説明であるが、この動
作を説明するだめの準備として、次に水と鋼材の境界面
でのモード変換について説明する。
Control parameters related to the incident angle of ultrasonic waves, etc. are input to the ultrasonic beam control circuit 2. The ultrasonic beam control circuit 2 is
It receives a signal from an ultrasonic switching circuit 12 having an input circuit 11 and an input from an input device 1, performs calculations according to these signals, and connects a pulse oscillator 3, a delay circuit 4, and a signal processing circuit 6. send respective control signals to. The pulse oscillator 3 oscillates a pulse for ultrasound transmission after the delay time of the delay circuit 4 is set by the ultrasound beam control circuit 2. The pulses delayed by the delay circuit 4 are input to the array probe 5, and ultrasonic waves are transmitted. The transmitted ultrasonic waves are reflected by a reflector, received by an array probe and a probe 5, and passed through a delay circuit 4 to a signal processing circuit 6.
is input. The signal processing circuit 6 performs signal processing on the received ultrasound signal using the ultrasound beam control signal received from the ultrasound beam control circuit 2, and sends the processing result to the display device 7. The display device 7 is a general display device such as a CR, T, or printer, and is used to display the results of the signal processing circuit 6. The above is a description of the entire device, but as a preparation for explaining its operation, next we will explain the mode conversion at the interface between water and steel.

従来から、電子走査型探傷装置では、第2図に示すよう
にアレイ探触子5と鋼材22との間に、水等の液状の接
触媒質21を入れ、超音波ビーム制御回路2の制御によ
って、超音波ビーム31を偏向及び収束させ、鋼材22
内のビーム走査および焦点23の走査を行っている。こ
の制御は遅延回路4によって、プレイの各探触子からの
超音波の位相を調整することにより行われ、第2図の左
半分の図面のようにアレイ5の真下に収束させたり、同
図右半分のように偏向させて収束させたりして走査が行
われる。ところで、各探触子32から出力された超音波
(縦波、水中では横波は生じない)は、第3図で示すよ
うに、互いに音速の異る水21と鋼材22の境界面で屈
折及びモード変換を生じ、縦波りとともに横波Sが鋼材
22中に生ずる。このうち縦波りは周知のスネルの法則
に従って屈折角θLでもって屈折するが、横波Sの屈折
角θSは縦波のそれより小さい。つまり鋼材22内を異
る方向に進行する。反射があった時に鋼材22から水2
1へと進む場合も可逆な径路を通る。このようにモード
に応じて径路が異るだけでなく、その音圧も異る。第4
図はとの音圧の変化及び各モードに対する入射角と屈折
角の関係を理論的に求めたもので、縦軸には縦波の往復
通過率TL及び横波の往復通過率TI+が示されている
Conventionally, in electronic scanning flaw detection equipment, a liquid couplant 21 such as water is placed between an array probe 5 and a steel material 22, as shown in FIG. , the ultrasonic beam 31 is deflected and focused, and the steel material 22 is
The beam scanning within the center and the scanning of the focal point 23 are performed. This control is performed by adjusting the phase of the ultrasonic waves from each probe in the play using the delay circuit 4, and the ultrasonic waves can be focused directly below the array 5 as shown in the left half of FIG. Scanning is performed by deflecting and converging as shown in the right half. By the way, as shown in FIG. 3, the ultrasonic waves (longitudinal waves, transverse waves do not occur in water) output from each probe 32 are refracted and refracted at the interface between the water 21 and the steel material 22, which have different sound speeds. Mode conversion occurs, and transverse waves S are generated in the steel material 22 along with longitudinal waves. Of these, the longitudinal wave is refracted at a refraction angle θL according to the well-known Snell's law, but the refraction angle θS of the transverse wave S is smaller than that of the longitudinal wave. In other words, they move in different directions within the steel material 22. Water 2 from steel material 22 when there is a reflection
1 also follows a reversible path. In this way, not only the path differs depending on the mode, but also the sound pressure. Fourth
The figure shows the change in sound pressure and the relationship between the angle of incidence and the angle of refraction for each mode, which are theoretically determined.The vertical axis shows the round-trip passage rate TL of longitudinal waves and the round-trip passage rate TI+ of transverse waves. There is.

この往復通過率というのは、接触媒体(水)から被検体
(鋼)へ入る超音波の音圧を100%とした時、鋼材中
で各モードの超音波が全反射され、再び逆の径路で水中
へ戻った時の音圧を%で示したものである。一方第4図
の横軸は縦波及び横波の屈折角θL、θ6がとられてお
り、これに対応する入射角がαL、αSで同時に示され
ている。
This round-trip passage rate means that when the sound pressure of the ultrasonic wave entering the object (steel) from the contact medium (water) is 100%, the ultrasonic wave of each mode is totally reflected in the steel material, and the ultrasonic wave passes through the opposite path again. The sound pressure when returning to the water is expressed as a percentage. On the other hand, the refraction angles θL and θ6 of longitudinal waves and transverse waves are plotted on the horizontal axis of FIG. 4, and the corresponding incident angles are simultaneously indicated as αL and αS.

つまり第4図では、両モード波に対する屈折角θL、θ
Bを同一スケールで表しているので、これに対応する入
射角αL、αSのスケールはモードによって異ったもの
になることを示している。
In other words, in Fig. 4, the refraction angles θL, θ
Since B is expressed on the same scale, the scales of the corresponding incident angles αL and αS differ depending on the mode.

第4図の特性に示されるように、屈折角が約34° を
境として往復通過率T8とTLの大きさが入れかわる。
As shown in the characteristics of FIG. 4, the magnitudes of the round-trip pass rate T8 and TL change when the refraction angle reaches approximately 34°.

このために、従来例で述べたよりに、医療分野の応用と
同様な縦波のみを利用する方法では、走査位置によって
検出信号のS/N劣化が生じる。そこで、第4図のよう
な特性を固定し、往復通過率Ts 、Tbが各々安定し
てより大きい値になるように同図の屈折角θ0を切換角
として設定し、00以上の屈折角では横波S、θ0以下
では縦波りを利用する方法が考えられた。そしてこの切
換に当っては、同一屈折角に対して対応する入射角はモ
ードによって異るから、モード切換前後で屈折角が変化
しないように入射角を変化させて走査位置が滑らかに動
くようにする等の制御も超音波ビーム制御回路2により
行うものである。しかし、この方法の従来装置では、第
4図に示したような特性を固定している。ところが、鋼
材中の音速は、縦波、横波いずれのモードについても温
度や樹質等で変化し、水中の縦波速度も水温により変化
する。そして屈折角もこれらの速度変化に応じて変化す
るから正確な制御ができなかった。このために、第1図
の実施例では、超音波切換装置13を設けてこの欠点を
除去するよう(9) にしたものであり、以下にその動作を説明する。
For this reason, as described in the conventional example, in a method using only longitudinal waves similar to applications in the medical field, S/N deterioration of the detection signal occurs depending on the scanning position. Therefore, the characteristics as shown in Figure 4 are fixed, and the refraction angle θ0 in the figure is set as the switching angle so that the round-trip passage rates Ts and Tb each stably become larger values. For transverse waves S, θ0 or less, a method using longitudinal waves has been considered. When switching, since the corresponding incident angle for the same refraction angle differs depending on the mode, the scanning position should be changed smoothly by changing the incident angle so that the refraction angle does not change before and after the mode switch. Controls such as this are also performed by the ultrasonic beam control circuit 2. However, in the conventional device using this method, the characteristics shown in FIG. 4 are fixed. However, the speed of sound in steel varies depending on temperature, tree quality, etc. in both longitudinal and transverse wave modes, and the velocity of longitudinal waves in water also varies depending on water temperature. Since the refraction angle also changes in accordance with these speed changes, accurate control was not possible. For this reason, in the embodiment shown in FIG. 1, an ultrasonic switching device 13 is provided to eliminate this drawback (9), and its operation will be explained below.

第5図は第1図の実施例の動作フローチャートである。FIG. 5 is an operational flowchart of the embodiment shown in FIG.

まず、この装置ではステップ1ooで入力装置1から、
アレイ探触子の寸法や探触子の個数n等と、走査範囲と
走査のピッチを示すパラメータを制御回路2に設定する
。このうち、走査範囲βは、第6図に示すように屈折角
θが1θ1〈βなる範囲で変化するように制限するパラ
メータであり、この範囲でθが走査ピッチで指定された
大きさでステップ状に変えられるものとする。また、温
度等によって変化するところの水及び鋼材(被検体)の
速度や、第4図に相当するその時の特性から得られる屈
折角θと入射角αの関係、縦波と横波とを使い分ける境
界角00等を、ステップ101で入力装置11から切換
回路12に設定する。続いてステップ102では、制御
回路2により屈折角θの初期値をθ−βに設定する。但
しこの初期設定は、個々の探触子毎に異る値であるから
、各探触子毎に設定しなければならない。このためには
、ステップ100に設定されたβの値(10) が、探触子プレイ5上の予め決められた1つの探触子に
対するものであれば、これを基準として他は入力された
探触子の寸法やそのアレイの長さ等から個々の探触子に
対する走査範囲β1として算″出すればよく、むろん各
屈折角θIも異った値となる。続いてステップ103で
は、その時の各探触子の屈折角θlに対し1θ+Dθ0
か否かを切換回路12で入力された境界角θ0を用いて
判定し、その結果及びその結果に対応してモード切換が
ある時には後の処理に必要な音速等の切換後のモードに
対応したデータを制御回路2へ転送する。ステップ10
4では、ステップ103の判定の結果、1θ11〉β0
を充す探触子に対しては、入射角01に対応する横波S
の入射角α日を第4図の特性から求めてその探触子の入
射角としかつこれに対応する遅延回路4での遅延時間τ
1を決定する。又、もし1θ11〈β0を充す探触子に
対しては、同様に縦波りに対応する入射角αbと、これ
に対応する遅延時間τiを決定する。更にステップ10
4ではステップ106で必要なパラメータをモード切(
11) 換があった時には信号処理回路6へ転送する。ステップ
105では、決定された遅延時間τ1によって定められ
る位相を各探触子からの超音波が有することによって定
められる焦点に向って、超音波が出力され、その鋼材内
部の陽等からの反射波を受信し、その受信信号を信号処
理回路6へ入力する。ステップ106では、この受信信
号と制御回路2からのパラメータとから所要の処理を行
って、その結果を表示装置7へ表示する。これが終ると
ステップ107では制御回路2にて各屈折角θIを走査
ピッチ(負値とする)だけ減少させ、その結果のβ1が
1θ11〈β1か否かをステップ108で判定する。否
ならこれは走査が終了したとして終るが、1θ襲1〈β
量ならステップ103へ戻り、以下のステップをくり返
す。
First, in this device, in step 1oo, from input device 1,
Parameters indicating the dimensions of the array probe, the number n of probes, etc., the scanning range, and the scanning pitch are set in the control circuit 2. Among these, the scanning range β is a parameter that limits the refraction angle θ to change within a range of 1θ1<β, as shown in Fig. 6, and within this range, θ is stepped in steps of the size specified by the scanning pitch. It shall be possible to change the In addition, the velocity of water and steel materials (objects) that change due to temperature, etc., the relationship between the refraction angle θ and the incident angle α obtained from the characteristics at that time corresponding to Figure 4, and the boundary between using longitudinal waves and transverse waves. The angle 00, etc. is set from the input device 11 to the switching circuit 12 in step 101. Subsequently, in step 102, the control circuit 2 sets the initial value of the refraction angle θ to θ−β. However, since this initial setting is a different value for each individual probe, it must be set for each probe. For this purpose, if the value of β (10) set in step 100 is for one predetermined probe on probe play 5, then the others are input using this as a reference. The scanning range β1 for each probe can be calculated from the dimensions of the probe, the length of its array, etc., and of course each refraction angle θI will have a different value.Subsequently, in step 103, the scanning range β1 for each probe is calculated. 1θ+Dθ0 for the refraction angle θl of each probe.
It is determined whether or not the boundary angle θ0 inputted in the switching circuit 12 is used, and when there is a mode switching based on the result and the result, the mode corresponding to the mode after the switching such as the speed of sound required for subsequent processing is determined. Transfer the data to the control circuit 2. Step 10
4, as a result of the determination in step 103, 1θ11>β0
For a probe satisfying , the shear wave S corresponding to the incident angle 01 is
Find the incident angle α of the probe from the characteristics shown in FIG.
Determine 1. If the probe satisfies 1θ11<β0, the incident angle αb corresponding to the longitudinal wave and the corresponding delay time τi are similarly determined. Further step 10
4, in step 106 the necessary parameters are set to mode OFF (
11) When there is an exchange, it is transferred to the signal processing circuit 6. In step 105, the ultrasonic waves from each probe have a phase determined by the determined delay time τ1, and the ultrasonic waves are output toward the focal point determined by the phase determined by the determined delay time τ1. and inputs the received signal to the signal processing circuit 6. In step 106, the received signal and the parameters from the control circuit 2 are subjected to necessary processing, and the results are displayed on the display device 7. When this is completed, in step 107, the control circuit 2 decreases each refraction angle θI by the scanning pitch (taken as a negative value), and in step 108 it is determined whether the resulting β1 satisfies 1θ11<β1. If not, this ends as the scanning has ended, but 1θ attack 1〈β
If it is the amount, return to step 103 and repeat the following steps.

以上の動作により、第7図に示すように、屈折角θlは
ステップ状にβ1から−βIまで変化して走査が行われ
、1θ11≧00に対応して判定ステップ103の結果
Uが出力され、かつこの切換時点に前述したステップ1
03でのデータ転送V(12) が実行される。このように、切換回路12の制御により
、各探触子は、例えば第8図に示すように、常により音
圧の大きいモードの波を利用することが出来るので、傷
等の検出信号のS/N比は改善され、実験によるとこの
改善量は約6dBにもなる。更にこの切換のための第4
図に示しだような特性を表わすデータを、温度や被検体
の材質に応じて容易に入力装置11から設定できるので
、正確なモード切換及び処理が可能となる。
Through the above operations, as shown in FIG. 7, the refraction angle θl changes stepwise from β1 to -βI and scanning is performed, and the result U of determination step 103 is output in response to 1θ11≧00. And at the time of this switching, step 1 described above
Data transfer V(12) at 03 is executed. In this way, under the control of the switching circuit 12, each probe can always use waves in modes with higher sound pressure, as shown in FIG. /N ratio is improved, and according to experiments, this improvement amount is about 6 dB. Furthermore, the fourth
Since data representing the characteristics shown in the figure can be easily set from the input device 11 according to the temperature and the material of the subject, accurate mode switching and processing are possible.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明によれば、従
来の電子走査型超音波探傷装置に簡単な超音波切換装置
を付は加えるだけで、効率的な超音波の送受が可能とな
るため、S/Nが大幅に向上し、精密探傷ができ、探傷
性能向上の効果がある。
As is clear from the above embodiments, according to the present invention, efficient transmission and reception of ultrasonic waves is possible by simply adding a simple ultrasonic switching device to a conventional electronic scanning type ultrasonic flaw detection device. Therefore, the S/N ratio is greatly improved, precision flaw detection is possible, and flaw detection performance is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
超音波ビームの収束、偏向状態の説明図、第3図は超音
波の屈折、モード変換の説明図、第(13) 4図は水と鋼材における超音波の往復通過率の理論値を
示す図、第5図は第1図の実施例の動作70−チャート
、第6図は走査範囲の説明図、第7図は第1図の実施例
の動作タイムチャート、第8図は各探触子の動作状態の
説明図である。 1・・・入力装置、2・・・超音波ビーム制御回路、3
・・・パルス発振器、4・・・遅延回路、5・・・アレ
イ探触子、6・・・信号処理回路、11・・・入力回路
、12・・・超音波切換回路、13・・・超音波切換装
置、21・・・水、22・・・被検体、23・・・焦点
、31・・・超音波ビーム、32・・・探触子、L・・
・縦波、S・・・横波。 代理人 弁理士 秋本正実 (14) 22 箔3図 1 弔tJ−図 箔6図 范q図 Vし二一工→t
Fig. 1 is an overall configuration diagram showing one embodiment of the present invention, Fig. 2 is an explanatory diagram of the convergence and deflection state of the ultrasound beam, Fig. 3 is an explanatory diagram of the refraction of the ultrasound beam and mode conversion, ) Figure 4 is a diagram showing the theoretical value of the reciprocal passage rate of ultrasonic waves in water and steel, Figure 5 is an operation 70 chart of the embodiment of Figure 1, Figure 6 is an explanatory diagram of the scanning range, and Figure 7 1 is an operation time chart of the embodiment shown in FIG. 1, and FIG. 8 is an explanatory diagram of the operation state of each probe. 1... Input device, 2... Ultrasonic beam control circuit, 3
...Pulse oscillator, 4...Delay circuit, 5...Array probe, 6...Signal processing circuit, 11...Input circuit, 12...Ultrasonic switching circuit, 13... Ultrasonic switching device, 21... Water, 22... Subject, 23... Focal point, 31... Ultrasonic beam, 32... Probe, L...
・Longitudinal wave, S...transverse wave. Agent Patent attorney Masami Akimoto (14) 22 Haku 3 Figure 1 Funeral tJ-Figure Haku 6 Figure Fan q Figure V Shi 21 Engineering → t

Claims (1)

【特許請求の範囲】[Claims] 1.7レイ探触子を構成する個々の探触子から出力され
、液状の接触媒体を介して被検体に入射された超音波が
、被検体内で焦点位置に収束し、かつ該焦点位置を時間
とともに被検体内で移動するように各探触子からの出力
超音波の位相を制御する制御手段と、上記被検体に入射
された超音波が被検体内の傷により反射され、上記入射
とは可逆な径路で各探触子に受信された受信信号を処理
するための信号処理手段とを備えた電子走査型超音波探
傷装置に於て、接触媒体中を伝播する1つの縦波モード
の超音波に対応して互いに異った屈折角でもって被検体
中を伝播する縦波あるいは横波のいずれのモードを各探
触子の探傷用の超音波として選択するかの境界を示す境
界角、及び上記各モードに対応して上記制御手段及び信
号処理手段に袈するパラメータを入力するだめの入力手
段と、上記位相制御手段に於て1つの走査位置が各探触
子の屈折角を指定することにより定められた時点毎に、
その屈折角と上記入力された境界角とを比較して上記各
探触子の利用するモードを決定し、そのモード圧対応し
た各探触子の制御を上記制御手段により行わしめる機能
と、上記決定したモードが直前のモードと異った蛎合に
は、上記入力されたパラメータのうち新に選択されたモ
ードに対応したものを上記制御手段及び信号処理手段へ
転送する機能とを有した切換手段とを有せしめたことを
特徴とする電子走査型超音波探傷装置。
1. Ultrasonic waves output from the individual probes constituting the 7-ray probe and incident on the subject via a liquid contact medium converge at a focal point within the subject, and control means for controlling the phase of the output ultrasonic waves from each probe so that the ultrasonic waves are moved within the subject over time; and the ultrasonic waves incident on the subject are reflected by a wound within the subject, In an electronic scanning ultrasonic flaw detection device equipped with a signal processing means for processing the received signal received by each probe through a reversible path, one longitudinal wave mode propagating in the coupling medium is used. Boundary angle that indicates which mode of longitudinal waves or transverse waves that propagate through the object with different refraction angles corresponding to the ultrasonic waves is selected as the ultrasonic wave for flaw detection of each probe. , and input means for inputting parameters to the control means and signal processing means corresponding to each of the above modes, and in the phase control means, one scanning position specifies the refraction angle of each probe. At each point in time determined by
A function of comparing the refraction angle with the input boundary angle to determine a mode to be used by each of the probes, and causing the control means to control each probe in accordance with the mode pressure; If the determined mode is different from the previous mode, there is a switching function that transfers the input parameters corresponding to the newly selected mode to the control means and signal processing means. An electronic scanning type ultrasonic flaw detection device characterized by having means.
JP58031017A 1983-02-28 1983-02-28 Electron scanning type ultrasonic flaw detector Granted JPS59157560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031017A JPS59157560A (en) 1983-02-28 1983-02-28 Electron scanning type ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031017A JPS59157560A (en) 1983-02-28 1983-02-28 Electron scanning type ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS59157560A true JPS59157560A (en) 1984-09-06
JPH049261B2 JPH049261B2 (en) 1992-02-19

Family

ID=12319763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031017A Granted JPS59157560A (en) 1983-02-28 1983-02-28 Electron scanning type ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS59157560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003197A (en) * 2005-06-21 2007-01-11 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material diagnosis method and apparatus
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
KR102037692B1 (en) * 2018-05-28 2019-11-26 한국표준과학연구원 The ultrasonic testing method using phased-array ultrasonic transducers and wedges

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003197A (en) * 2005-06-21 2007-01-11 Choonpa Zairyo Shindan Kenkyusho:Kk Ultrasonic material diagnosis method and apparatus
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
KR102037692B1 (en) * 2018-05-28 2019-11-26 한국표준과학연구원 The ultrasonic testing method using phased-array ultrasonic transducers and wedges

Also Published As

Publication number Publication date
JPH049261B2 (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US4058003A (en) Ultrasonic electronic lens with reduced delay range
Wilcox et al. Lamb and SH wave transducer arrays for the inspection of large areas of thick plates
Wolf et al. Investigation of Lamb waves having a negative group velocity
CN108020598B (en) Variable-wall-thickness curved-surface component self-adaptive phased array focusing scanning method and detection method
US4967873A (en) Acoustic lens apparatus
JPS59157560A (en) Electron scanning type ultrasonic flaw detector
EP0488084B1 (en) Apparatus for measuring the velocity of ultrasonic sound in terms of V(z) characteristics and ultrasonic microscope using that apparatus
US3379051A (en) Multiple beam ultrasonic nondestructive testing device
JP2016156692A (en) Ultrasonic flaw detection system and ultrasonic flaw detection method
JP2003042857A (en) Ultrasonic temperature measuring apparatus
Smolorz et al. Focusing PVDF transducers for acoustic microscopy
Takeuchi et al. Ultrasonic micromanipulation of small particles in liquid using VHF-range leaky wave transducers
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
Kushibiki et al. A useful acoustic measurement system for pulse mode in VHF and UHF ranges
US4615217A (en) Two-probe ultrasonic flaw detection apparatus
Ditri et al. An experimental study of the angular dependence of Lamb wave excitation amplitudes
Thompson et al. Application of diffraction corrections to the absolute measurement of scattering amplitudes
Lockett Lamb and torsional waves and their use in flaw detection in tubes
JPH08193984A (en) Method and device for evaluating anisotropy of base material
JP2001124746A (en) Ultrasonic inspection method
JPH02124458A (en) Acoustic lens
Litniewski et al. Acoustic velocity determination in cytoplasm by V (z) shift
JPH0565821B2 (en)
JPH0526655A (en) Film thickness measuring method and device
JPH05288729A (en) Ultrasonic microscope