JP2003042857A - Ultrasonic temperature measuring apparatus - Google Patents

Ultrasonic temperature measuring apparatus

Info

Publication number
JP2003042857A
JP2003042857A JP2001236493A JP2001236493A JP2003042857A JP 2003042857 A JP2003042857 A JP 2003042857A JP 2001236493 A JP2001236493 A JP 2001236493A JP 2001236493 A JP2001236493 A JP 2001236493A JP 2003042857 A JP2003042857 A JP 2003042857A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
measuring device
temperature
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001236493A
Other languages
Japanese (ja)
Inventor
Hiroichi Karasawa
博一 唐沢
Satoshi Nagai
敏 長井
Kenji Ogura
健志 小倉
Michio Sato
道雄 佐藤
Takehiko Suzuki
健彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001236493A priority Critical patent/JP2003042857A/en
Publication of JP2003042857A publication Critical patent/JP2003042857A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic temperature measuring apparatus by which the temperature change of a fluid coming into contact with the inner surface of a structure can be measured nondestructively. SOLUTION: In the measuring apparatus, ultrasonic waves are transmitted to the outer surface of the structure containing the fluid, an ultrasonic echo signal which is reflected by the interface between the thick wall of the structure and the contained fluid is fetched, and the temperature change of the fluid at the interface between the structure and the contained fluid is continuously measured by using a fact that the amplitude of the ultrasonic echo signal is changed on the basis of the temperature characteristic of an acoustic impedance. The temperature change of the fluid coming into contact with the inner surface of the structure can be measured nondestructively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配管や容器等の構
造物に内包された水や溶融金属等の流体の熱成層等の温
度分布、流速分布並びに異なる温度の流体の合流部等に
おけるサーマルストライピングを評価するために、配管
や容器の内面に接する流体の温度変化を配管や容器の外
面から非破壊的に計測する超音波温度計測装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal distribution in a thermal stratification or the like of a fluid such as water or a molten metal contained in a structure such as a pipe or a container, a flow velocity distribution and a confluence portion of fluids having different temperatures. The present invention relates to an ultrasonic temperature measuring device for nondestructively measuring the temperature change of a fluid in contact with the inner surface of a pipe or a container from the outer surface of the pipe or the container in order to evaluate striping.

【0002】[0002]

【従来の技術】従来、配管や容器等の構造物に内包され
た水や溶融金属等の流体温度や温度分布及びその変動を
非破壊的に計測する方法として、配管や容器等の構造物
の表面に接触させたりウエルに内蔵した熱電対によって
計測していた。
2. Description of the Related Art Conventionally, as a method of nondestructively measuring the temperature and temperature distribution of a fluid such as water or molten metal contained in a structure such as a pipe or a container and its fluctuation, The measurement was performed by contacting the surface or using a thermocouple built in the well.

【0003】しかし、このような熱電対による計測は、
一定肉厚の構造物を介して行うため、応答性が悪く数十
秒以下の早い現象を計測することが不可能であった。ま
た、流体の平均温度や分布を計測することも困難であっ
た。
However, the measurement by such a thermocouple is
Since it is performed through a structure with a constant wall thickness, it is not possible to measure a fast response of less than tens of seconds because of poor response. It was also difficult to measure the average temperature and distribution of the fluid.

【0004】[0004]

【発明が解決しようとする課題】一方、原子力プラント
や化学プラント等の高温流体を扱っているプラントで
は、異なる温度の流体の合流部や高温流体の噴出し部等
において、周期的な温度変化による構造物の疲労を監視
し評価するために、構造物に接している流体の界面にお
ける流体温度の温度変化の程度と変動周期を計測するこ
とが必要である。しかし、異なる温度の流体を仕切る止
め弁からのリーク検出や水平配管部内の流体中に発生し
た熱成層の形成や変動を非破壊的に計測することが必要
である。また、熱交換を行う機器等の出口配管部に過渡
的に発生する同心円状の温度分布を非破壊的に計測する
ことも必要である。
On the other hand, in plants such as nuclear power plants and chemical plants that handle high-temperature fluids, there are periodic temperature changes in the confluence of the fluids of different temperatures and the jetting portion of the high-temperature fluid. In order to monitor and evaluate the fatigue of a structure, it is necessary to measure the degree of temperature change and fluctuation period of the fluid temperature at the interface of the fluid in contact with the structure. However, it is necessary to detect non-destructively the leak detection from the stop valve that separates fluids of different temperatures and the formation and fluctuation of thermal stratification generated in the fluid in the horizontal piping. In addition, it is also necessary to measure non-destructively the concentric temperature distribution that transiently occurs in the outlet pipe portion of the device that performs heat exchange.

【0005】本発明は上記情況に鑑みてなされたもの
で、その課題は配管や容器等の構造物に内包された水や
溶融金属等の流体の熱成層等の温度分布や流速分布、並
びに異なる温度の流体が合流する部分に発生するサーマ
ルストライピングを評価するため必要な配管や容器の内
面に接した流体の温度変化を非破壊的に計測できる超音
波温度計測装置を提供することである。
The present invention has been made in view of the above circumstances, and its problems are different in temperature distribution and flow velocity distribution of thermal stratification of fluid such as water and molten metal contained in structures such as pipes and containers, and the like. An object of the present invention is to provide an ultrasonic temperature measuring device capable of nondestructively measuring a temperature change of a fluid in contact with an inner surface of a pipe or a container, which is necessary for evaluating thermal striping generated in a portion where a fluid having a temperature merges.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の超音波温度計測装置は、流体を内包した
構造物の外表面に超音波を送信し、構造物の肉厚部と内
包する流体の界面で反射した超音波エコー信号を取り込
み、前記超音波エコー信号の振幅強度が前記流体の音響
インピーダンスの温度特性に基づき変化することを利用
して、前記構造物と内包流体の界面における流体温度変
化を連続計測することを特徴とする。
In order to solve the above-mentioned problems, an ultrasonic temperature measuring device according to a first aspect of the present invention transmits ultrasonic waves to the outer surface of a structure containing a fluid, and the thick part of the structure. Taking in the ultrasonic echo signal reflected at the interface of the fluid to be contained, and utilizing the fact that the amplitude intensity of the ultrasonic echo signal changes based on the temperature characteristics of the acoustic impedance of the fluid, It is characterized by continuously measuring changes in fluid temperature at the interface.

【0007】請求項2記載の発明は、請求項1記載の超
音波温度計測装置において、超音波エコー信号の振幅強
度の変化を計測するために、取り込んだ超音波エコー信
号のピーク近傍の波形を増幅してその変動を計測するこ
とを特徴とする。
According to a second aspect of the invention, in the ultrasonic temperature measuring device according to the first aspect, in order to measure the change in the amplitude intensity of the ultrasonic echo signal, the waveform near the peak of the captured ultrasonic echo signal is measured. It is characterized by amplifying and measuring the variation.

【0008】請求項3記載の発明は、請求項1記載の超
音波温度計測装置において、超音波エコー信号の振幅強
度の変化を計測するために、取り込んだ超音波エコー信
号からピークレベルを検出し、反射回数に応じた各ピー
クレベルの減衰特性を求めることを特徴とする。
According to a third aspect of the invention, in the ultrasonic temperature measuring device according to the first aspect, the peak level is detected from the taken-in ultrasonic echo signal in order to measure the change in the amplitude intensity of the ultrasonic echo signal. It is characterized in that the attenuation characteristic of each peak level is obtained according to the number of reflections.

【0009】請求項4記載の発明は、請求項1記載の超
音波温度計測装置において、配管内面に接した流体の温
度変化によるインピーダンス変化を検出するために、配
管の板厚による共鳴周波数付近の振動を利用して振動の
減衰分を検出することを特徴とする。請求項1ないし請
求項4によると、構造物内表面に接した内部流体の温度
変化を連続的に計測することができる。
According to a fourth aspect of the invention, in the ultrasonic temperature measuring device according to the first aspect, in order to detect the impedance change due to the temperature change of the fluid in contact with the inner surface of the pipe, the resonance frequency near the resonance frequency depending on the plate thickness of the pipe is detected. It is characterized in that the attenuation of the vibration is detected by utilizing the vibration. According to the first to fourth aspects, the temperature change of the internal fluid in contact with the inner surface of the structure can be continuously measured.

【0010】請求項5記載の発明は、請求項1記載の超
音波温度計測装置において、構造物の肉厚部と内包する
流体の界面を透過し、流体を介して構造物の対向する内
表面で反射された超音波エコーを受信し、受信エコーの
内包流体中の超音波伝播時間から流体内の超音波伝播速
度を求め、流体の平均温度と界面近傍の流体温度を計測
することを特徴とする。
According to a fifth aspect of the present invention, in the ultrasonic temperature measuring device according to the first aspect, the inner surface of the structure, which penetrates the interface between the thick portion of the structure and the fluid contained therein and faces the structure through the fluid. It is characterized by receiving the ultrasonic echo reflected by the ultrasonic echo, determining the ultrasonic propagation velocity in the fluid from the ultrasonic propagation time in the fluid containing the received echo, and measuring the average temperature of the fluid and the fluid temperature near the interface. To do.

【0011】請求項6記載の発明は、請求項1記載の超
音波温度計測装置において、送信用と受信用の超音波ト
ランスデューサをそれぞれ構造物の外表面上の離れた位
置に固定し、送信用の超音波トランスデューサから斜角
入射し、構造物の肉厚部において反射した超音波エコー
を受信用の超音波トランスデューサで受信することによ
り、構造物と内包流体の界面における流体温度変化を計
測することを特徴とする。
According to a sixth aspect of the present invention, in the ultrasonic temperature measuring device according to the first aspect, the transmitting and receiving ultrasonic transducers are fixed at positions separated from each other on the outer surface of the structure, and the ultrasonic wave is transmitted. Measuring the fluid temperature change at the interface between the structure and the contained fluid by receiving the ultrasonic echo reflected by the wall thickness part of the structure from the ultrasonic transducer of Is characterized by.

【0012】請求項7記載の発明は、流体を内包した構
造物の外表面に超音波を送信し、構造物内の流体中に形
成された熱成層界面で反射した超音波エコー信号を取り
込み、熱成層の形成の有無及び熱成層の変動を計測する
ことを特徴とする。請求項5ないし請求項7によると、
熱成層界面の形成と位置及びその変動を計測することが
できる。
According to a seventh aspect of the present invention, ultrasonic waves are transmitted to the outer surface of the structure containing the fluid, and ultrasonic echo signals reflected at the thermal stratification interface formed in the fluid inside the structure are taken in, It is characterized by measuring the presence or absence of thermal stratification and the fluctuation of thermal stratification. According to claims 5 to 7,
The formation and position of the thermal stratification interface and its variation can be measured.

【0013】請求項8記載の発明は、流体を内包した構
造物の外表面に超音波を送信し、流体中を透過して再度
構造物の肉厚部を介して同時に受信した超音波エコー信
号から、流体中の異なる経路における平均温度を計測す
ることを特徴とする。
According to an eighth aspect of the present invention, an ultrasonic echo signal is generated by transmitting ultrasonic waves to the outer surface of a structure containing a fluid, passing through the fluid, and receiving again through the thick portion of the structure at the same time. Therefore, the average temperature in different paths in the fluid is measured.

【0014】請求項9記載の発明は、請求項8記載の超
音波温度計測装置において、少なくとも構造物への超音
波入射角を大きくするか、または、横振動する電圧素子
を用いることにより、流体中の比較的構造物内面に近い
部分の流体の平均温度を計測することを特徴とする。
According to a ninth aspect of the invention, in the ultrasonic temperature measuring device according to the eighth aspect, at least the angle of incidence of the ultrasonic wave on the structure is increased, or a voltage element that laterally vibrates is used to obtain the fluid. It is characterized by measuring the average temperature of the fluid in a portion relatively close to the inner surface of the structure.

【0015】請求項10記載の発明は、請求項8記載の
超音波温度計測装置において、超音波送受信を双方向で
行い、流体中における双方向の超音波伝播時間を計測
し、この両者の遅延時間の差と和を作り、遅延時間の和
の方から平均温度を検出し、遅延時間の差の方から空間
内の媒質の移動速度を検出することを特徴とする。
According to a tenth aspect of the present invention, in the ultrasonic temperature measuring device according to the eighth aspect, ultrasonic wave transmission / reception is performed bidirectionally, the ultrasonic wave propagation time in the fluid is measured in both directions, and the delay of both is performed. It is characterized in that a time difference and a sum are created, the average temperature is detected from the sum of the delay times, and the moving speed of the medium in the space is detected from the difference of the delay times.

【0016】請求項8ないし請求項10によると、構造
物内の中心部から構造物内面近傍までの広い領域に超音
波を透過させることができるので、同心円状の温度分布
の計測精度を向上させることができる。
According to the eighth to tenth aspects, since the ultrasonic waves can be transmitted to a wide area from the center of the structure to the vicinity of the inner surface of the structure, the accuracy of measuring the concentric temperature distribution is improved. be able to.

【0017】請求項11の発明は、請求項8記載の超音
波温度計測装置において、送信用超音波の電圧信号の周
波数を変更することにより、構造物の肉厚部を透過する
超音波の特定の指向角に応じた経路長を半波長の整数倍
に合わせることを特徴とする。請求項11によると、よ
り広範囲にわたり強度の強い超音波ビームを流体内に送
信することができる。
According to an eleventh aspect of the present invention, in the ultrasonic temperature measuring apparatus according to the eighth aspect, the frequency of the voltage signal of the ultrasonic wave for transmission is changed to specify the ultrasonic wave that penetrates the thick portion of the structure. It is characterized in that the path length according to the directivity angle of is adjusted to an integral multiple of a half wavelength. According to the eleventh aspect, it is possible to transmit the ultrasonic beam having a high intensity over a wider range into the fluid.

【0018】ところで、構造物に接している流体の界面
における流体温度の温度変化の程度と変動周期を計測す
る方法として、流体の音響インピーダンスの温度変化を
利用する方法がある。
By the way, as a method of measuring the degree of temperature change and the fluctuation period of the fluid temperature at the interface of the fluid in contact with the structure, there is a method of utilizing the temperature change of the acoustic impedance of the fluid.

【0019】また、熱成層の計測においても、熱成層界
面での音響インピーダンスの差による超音波反射エコー
を計測することにより、熱成層の位置や変動を応答よく
観察する方法がある。
Also in the measurement of thermal stratification, there is a method of observing the position and fluctuation of thermal stratification with good response by measuring ultrasonic reflection echoes due to the difference in acoustic impedance at the thermal stratification interface.

【0020】さらに、配管内や容器内の流体の温度分布
を計測するには、できるだけ多くの異なるパスにおける
平均温度データが必要であるが、平均温度は、流体の音
速と温度の関係がわかれば、配管や容器内の流体中を透
過した超音波の伝播時間から求めることが可能である。
しかしながら、特に円形をした配管や容器と流体界面で
は、屈折の影響により流体内で音が狭まり、配管または
容器の近傍に超音波を透過させるのが難しいため、鋼材
等の固体中の伝播速度が低い横波の超音波を用いる。ま
た、送信超音波の周波数を最も透過効率の良い値に調整
することにより、流体内で広い指向角を有し、良好な超
音波透過特性を実現できる。
Further, in order to measure the temperature distribution of the fluid in the pipe or the container, the average temperature data in as many different paths as possible are required, but the average temperature can be obtained if the relationship between the sonic velocity of the fluid and the temperature is known. It can be obtained from the propagation time of the ultrasonic wave that has penetrated through the fluid in the pipe or container.
However, especially in a circular pipe or container and a fluid interface, the sound is narrowed in the fluid due to the influence of refraction, and it is difficult to transmit ultrasonic waves in the vicinity of the pipe or container. Use low shear wave ultrasound. In addition, by adjusting the frequency of the transmitted ultrasonic wave to a value that has the best transmission efficiency, it is possible to have a wide directivity angle in the fluid and realize good ultrasonic transmission characteristics.

【0021】ところで、構造物に接している流体の界面
における流体温度の温度変化の程度と変動周期を計測す
る方法として、流体の音響インピーダンスの温度変化を
利用することができる。例えば、鋼製の配管に高温水が
流れている場合、温度が上昇すると音速が低下するた
め、流体のインピーダンスが低下する。流体のインピー
ダンスZの変化に比べて鋼材のインピーダンスZ
変化が小さく、以下の式で示される配管内面での反射超
音波エコーの音圧反射率Pは、以下の式で表せるよう
に流体温度に応じて変化する。 P =(Z−Z)/(Z+Z
By the way, as a method of measuring the degree of temperature change and the fluctuation period of the fluid temperature at the interface of the fluid in contact with the structure, the temperature change of the acoustic impedance of the fluid can be used. For example, when high-temperature water is flowing through the steel pipe, the sonic velocity decreases as the temperature rises, so the impedance of the fluid decreases. The change of the impedance Z 2 of the steel material is smaller than the change of the impedance Z 1 of the fluid, and the sound pressure reflectance P R of the reflected ultrasonic echo on the inner surface of the pipe shown by the following equation is expressed by the following equation. Varies with fluid temperature. P R = (Z 2 -Z 1 ) / (Z 2 + Z 1)

【0022】但し、変化が小さいことから、配管の肉厚
部と流体の界面での多重エコーを計測することにより、
音圧反射率Pが反射回数だけ掛け合わさり変化を強調
することができる。下表に、1回、3回、6回、10回
の多重エコーレベルの変化を示す。表中で、6回の多重
エコーでは、40℃の温度変化で3〜5%程度のエコー
レベル変化が計測されることが予想され、十分計測する
ことが可能である。また、各温度における反射回数に対
する反射エコーレベルの減衰特性を回帰曲線で数値化す
ることにより、安定で高精度の計測が可能である。
However, since the change is small, by measuring multiple echoes at the interface between the thick portion of the pipe and the fluid,
The sound pressure reflectance P R can be multiplied by the number of reflections to emphasize the change. The table below shows the changes of the multiple echo level once, three times, six times and ten times. In the table, it is expected that the echo level change of about 3 to 5% will be measured with the temperature change of 40 ° C. in the case of 6 times of multiple echo, and it can be sufficiently measured. Further, by numerically expressing the attenuation characteristic of the reflection echo level with respect to the number of reflections at each temperature with a regression curve, stable and highly accurate measurement is possible.

【0023】[0023]

【表1】 [Table 1]

【0024】また、熱成層の計測においても、上記の流
体の音響インピーダンスの温度変化を利用すると同様に
界面が明瞭で安定していれば、界面での反射が起こる、
例えば、200℃の水の音響インピーダンスは約1.
3、240℃ではこれが約1.2になるため、反射超音
波エコーの音圧反射率Pは、以下に示すように4%で
あり、水平配管部内の流体中に発生した熱成層の位置や
変動を応答良く観察することが可能である。 P=(Z−Z)/(Z+Z) =(1.3−1.2)/(1.3+1.2) = 0.04
Further, also in the measurement of thermal stratification, if the interface is clear and stable, the reflection at the interface occurs similarly by utilizing the temperature change of the acoustic impedance of the fluid.
For example, the acoustic impedance of water at 200 ° C. is about 1.
Since this becomes about 1.2 at 3,240 ° C., the sound pressure reflectance P R of the reflected ultrasonic echo is 4% as shown below, and the position of thermal stratification generated in the fluid in the horizontal pipe section It is possible to observe fluctuations with good response. P R = (Z 2 -Z 1 ) / (Z 2 + Z 1) = (1.3-1.2) / (1.3 + 1.2) = 0.04

【0025】さらに、配管内や容器内の流体に発生した
温度分布を計測するには、できるだけ多くの異なるパス
における平均温度データが必要である。多くのパスにお
ける平均温度データがあれば、従来のCT法(バックプ
ロジェクション)や連立方程式を解くことにより温度分
布を求めることが可能である。データが少ない場合は、
温度分布形状を例えば、熱成層であれば水平方向に層状
としたり、解析結果に基づき同心円とした上で評価する
ことが可能である。
Further, in order to measure the temperature distribution generated in the fluid in the pipe or the container, average temperature data in as many different paths as possible are required. If there are average temperature data in many paths, the temperature distribution can be obtained by solving the conventional CT method (back projection) or simultaneous equations. If you have little data,
For example, in the case of thermal stratification, the temperature distribution shape can be stratified in the horizontal direction, or can be evaluated after concentric circles based on the analysis result.

【0026】ところが、ここで問題となるのが、断面が
円形をした配管や容器における流体界面での屈折の影響
である。配管材料の音速は、炭素鉄だと5900m/s
ec.程度であるが、温水では1000〜1500m/
sec.程度とかなり小さいため、広い指向角で送信し
た超音波は、配管や容器から流体中に入る際に、狭ま
り、配管または容器の中心部方向に屈折してしまう。
However, a problem here is the influence of refraction at the fluid interface in a pipe or container having a circular cross section. The sound velocity of piping material is 5900 m / s for carbon iron.
ec. It is about 1000m-1500m / in hot water
sec. Since it is quite small, ultrasonic waves transmitted at a wide directional angle narrow when entering a fluid from a pipe or a container and are refracted toward the center of the pipe or the container.

【0027】そのため、配管や容器に近い領域に超音波
を透過させるのが難しく、その部分の温度計測ができな
い。そこで、鋼材等の固体中の伝播速度が低い横波の超
音波を用いることにより、流体中に透過する際の屈折率
を低くすることができる。
Therefore, it is difficult to transmit ultrasonic waves to a region near the pipe or container, and the temperature of that portion cannot be measured. Therefore, by using a transverse ultrasonic wave having a low propagation speed in a solid such as steel, the refractive index when passing through a fluid can be lowered.

【0028】また、板材の厚さにおける超音波の透過率
が波長の1/2の整数倍で最大になることから、板材中
の配管や容器の肉厚部を伝播する超音波の送信角度に応
じて、透過経路長が波長の1/2の整数倍になるよう
に、周波数を調整することによって、広い指向特性を有
し、良好な超音波透過特性を実現することができる。
Further, since the transmittance of ultrasonic waves in the thickness of the plate material becomes maximum at an integral multiple of 1/2 of the wavelength, the transmission angle of the ultrasonic waves propagating through the thick portion of the pipe or container in the plate material is Accordingly, by adjusting the frequency so that the transmission path length is an integral multiple of ½ of the wavelength, it is possible to have a wide directional characteristic and realize a good ultrasonic transmission characteristic.

【0029】さらにまた、温度分布を計測しようとする
流体に流れが存在すると、その流体を通過する音波は、
流れの影響を受けて伝播速度が変化してしまう。そのた
め、信号の伝播時間から音速を見積もり流体内部の平均
温度を評価するには、流れの影響を取り除かなければい
けない。
Furthermore, when there is a flow in the fluid whose temperature distribution is to be measured, the sound wave passing through the fluid is
The propagation velocity changes under the influence of the flow. Therefore, in order to estimate the sound velocity from the propagation time of the signal and to evaluate the average temperature inside the fluid, the influence of the flow must be removed.

【0030】そのため、次のような計測を行う。超音波
トランスデューサAから発信した超音波を対向させた超
音波トランスデューサBで受信し、その信号の到達の遅
れ時間を検出する。次に音波が通過する領域の状態が変
化しないと思われる時間内に、超音波トランスデューサ
Bから信号を発信し超音波トランスデューサAで受信を
行い、信号の遅れ到達時間を検出する。この流体内部の
温度によって定まる平均音速をCとする。またその流体
の速度をU、超音波トランスデューサA,B間の距離を
L、超音波トランスデューサAから発信し超音波トラン
スデューサBで受信した信号の到達遅れ時間をT1と
し、逆に超音波トランスデューサBで発信し超音波トラ
ンスデューサAで受信した信号の遅れ時間をT2とす
る。そのとき信号の伝播時間は各々T1=L/(C+
U)とT2=L/(C−U)で表せる。その結果お互い
の発受信で得られた信号の遅れ時間と、超音波トランス
デューサ間距離から得られる速度の和と差を作るとC=
(L/T1+L/T2)/2とU=(L/T1−L/T
2)/2と流体の平均音速Cと、平均流速Uを検出する
ことができる。平均音速からは流体の平均温度を算定で
きる。
Therefore, the following measurement is performed. The ultrasonic wave transmitted from the ultrasonic transducer A is received by the opposed ultrasonic transducer B, and the delay time of arrival of the signal is detected. Next, a signal is transmitted from the ultrasonic transducer B and received by the ultrasonic transducer A within a time period in which the state of the region through which the sound wave passes does not change, and the delay arrival time of the signal is detected. Let C be the average speed of sound determined by the temperature inside the fluid. The velocity of the fluid is U, the distance between the ultrasonic transducers A and B is L, the arrival delay time of the signal transmitted from the ultrasonic transducer A and received by the ultrasonic transducer B is T1, and conversely with the ultrasonic transducer B. The delay time of the signal transmitted and received by the ultrasonic transducer A is T2. At that time, the propagation time of the signal is T1 = L / (C +
U) and T2 = L / (C−U). As a result, if the sum of the delay time of the signals obtained by the transmission and reception of each other and the speed obtained from the distance between the ultrasonic transducers and the difference are made, C =
(L / T1 + L / T2) / 2 and U = (L / T1-L / T
2) / 2, the average sound velocity C of the fluid, and the average flow velocity U can be detected. The average temperature of the fluid can be calculated from the average sound velocity.

【0031】そして、配管の板厚と共鳴する周波数成
分、(勿論高次の共鳴周波数でも良いが)及びその近くの
周波数で配管の外表面から加振し振動を励振する。励振
された振動を受信し送信信号と受信信号の伝達関数を作
り周波数分析する。周波数分析の結果から共鳴周波数の
振動数の半値幅をもとめ、振動の減衰係数を定める。こ
の減衰係数は、配管内部の流体中に伝播してゆく成分
と、配管表面に沿って伝播していく成分からなってお
り、流体温度変化による配管内部流体への伝播成分の変
化が、流体温度変化により変化することを共鳴周波数の
半値幅の変化により検出することにより、配管内面に接
する流体温度を計測することができる。なお、検出精度
を向上するためには、配管表面をなるべく広い範囲で一
様に加振することが望ましいため、配管表面を加振する
超音波トランスデューサは、加振面積が大きいものが好
ましい。
Then, the vibration is excited by vibrating from the outer surface of the pipe at a frequency component that resonates with the thickness of the pipe (of course, a higher resonance frequency may be used) and a frequency near it. The excited vibration is received, the transfer function of the transmission signal and the reception signal is created, and the frequency is analyzed. From the results of frequency analysis, the half-value width of the resonance frequency is determined, and the damping coefficient of the vibration is determined. This damping coefficient consists of a component that propagates in the fluid inside the pipe and a component that propagates along the pipe surface. The fluid temperature in contact with the inner surface of the pipe can be measured by detecting the change due to the change based on the change in the half-value width of the resonance frequency. In order to improve the detection accuracy, it is desirable to uniformly vibrate the surface of the pipe in as wide a range as possible. Therefore, an ultrasonic transducer that vibrates the surface of the pipe preferably has a large vibration area.

【0032】[0032]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は本発明の第1実施形態(請求
項1ないし請求項4対応)の構成図である。図に示すよ
うに本実施形態は、容器の内面に接した流体の温度変化
を計測する超音波温度計測装置である。すなわち、時間
的に温度が変化している内部流体1を内蔵した配管2の
表面に超音波トランスデューサ3が音響カップラント4
を介して押し付け固定されている。計測装置21内に収
納された発信器5からは、パルス波、バースト波、また
は連続波の電気信号が切替器12を介して発信される。
超音波トランスデューサ3から送信された多重超音波エ
コーUは、内部流体1と配管2の界面と配管2の表面と
の間で何回か多重反射しながら減衰することにより発生
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a first embodiment (corresponding to claims 1 to 4) of the present invention. As shown in the figure, the present embodiment is an ultrasonic temperature measuring device for measuring the temperature change of a fluid in contact with the inner surface of a container. That is, the ultrasonic transducer 3 is attached to the surface of the pipe 2 containing the internal fluid 1 whose temperature is changing with time by the acoustic coupling agent 4.
It is pressed and fixed through. An electric signal of a pulse wave, a burst wave, or a continuous wave is transmitted from the transmitter 5 housed in the measuring device 21 via the switch 12.
The multiple ultrasonic echo U transmitted from the ultrasonic transducer 3 is generated by the multiple reflection between the interface of the internal fluid 1 and the pipe 2 and the surface of the pipe 2 while being attenuated.

【0033】この多重超音波信号は、超音波トランスデ
ューサ3で電気信号に変換され、受信器6内の増幅器7
で増幅し、加算器8で設定器9の負のバイアス成分を加
算し、プラスの成分だけを出力側の増幅器7を介して送
信することにより、多重超音波エコーUのピーク近傍の
波形を選択的に増幅することができる。増幅された多重
超音波エコーUのピーク近傍の拡大波形は、その後、A
/D変換器10でデジタル信号に変換され、計算機11
に取り込まれる。計算機11は、取り込んだ波形から多
重超音波エコーUのピークレベルを計算し、それを一定
周期で繰り返すことにより、配管2の内表面に接した内
部流体1の温度変化を連続的に計測することができる。
This multiple ultrasonic signal is converted into an electric signal by the ultrasonic transducer 3 and is amplified by the amplifier 7 in the receiver 6.
, The negative bias component of the setter 9 is added by the adder 8, and only the positive component is transmitted via the amplifier 7 on the output side to select a waveform near the peak of the multiple ultrasonic echo U. Can be amplified. The expanded waveform near the peak of the amplified multiple ultrasonic echo U is then A
The signal is converted into a digital signal by the / D converter 10, and the computer 11
Is taken into. The computer 11 calculates the peak level of the multiple ultrasonic echoes U from the captured waveform and repeats it at a constant cycle to continuously measure the temperature change of the internal fluid 1 in contact with the inner surface of the pipe 2. You can

【0034】図2は、多重超音波エコーUの振幅の温度
特性図である。すなわち、内部流体1の温度の変化によ
り音響インピーダンスが変化することによる多重超音波
エコーUの強度変化を多重反射回数をパラメータで示し
たグラフである。このグラフの横軸は流体温度(℃)、
縦軸は内部流体1が280℃の時を1回目の反射エコー
を基準にした反射エコーレベルを示している。曲線31
は1回の反射の場合、曲線32は3回の反射の場合、曲
線33は6回の反射の場合、そして曲線34は10回の
反射の場合を示している。
FIG. 2 is a temperature characteristic diagram of the amplitude of the multiple ultrasonic echo U. That is, it is a graph showing the change in intensity of the multiple ultrasonic echoes U due to the change in acoustic impedance due to the change in temperature of the internal fluid 1, the number of multiple reflections being a parameter. The horizontal axis of this graph is fluid temperature (℃),
The vertical axis represents the reflection echo level with reference to the first reflection echo when the internal fluid 1 is 280 ° C. Curve 31
Shows the case of one reflection, the curve 32 shows the case of three reflections, the curve 33 shows the case of six reflections, and the curve 34 shows the case of ten reflections.

【0035】なお、図2のグラフは、超音波技術便覧の
データに基づき、内部流体1のインピーダンスZを計
算し、配管2のインピーダンスZを一定であるとし、
多重超音波エコーUの強度を、配管2と内部流体1との
界面での反射超音波エコーの音圧反射率Pが P=(Z−Z)/(Z+Z) であるとして概算したものである。図2に示すように、
多重反射回数が多くなるにつれて配管2内表面に接した
内部流体1の温度及びその時間的な変化を高精度・高速
応答で計測することができる。
In the graph of FIG. 2, the impedance Z 1 of the internal fluid 1 is calculated based on the data of the ultrasonic technical handbook, and the impedance Z 2 of the pipe 2 is constant,
The intensity of the multiple ultrasonic echoes U is determined by the sound pressure reflectance P R of the reflected ultrasonic echoes at the interface between the pipe 2 and the internal fluid 1 being P R = (Z 2 −Z 1 ) / (Z 2 + Z 1 ). It is estimated as if there is. As shown in FIG.
As the number of multiple reflections increases, the temperature of the internal fluid 1 in contact with the inner surface of the pipe 2 and its temporal change can be measured with high accuracy and high speed response.

【0036】また、配管2の板厚と共鳴する周波数成
分、(勿論高次の共鳴周波数でも良いが)及びその近くの
周波数からなる連続波の電気信号を発信器5から超音波
トランスデューサ3に印加し、配管2の外表面から加振
し振動を励振する。励振された振動を前記超音波トラン
スデューサ3で受信し、計算機11に取り込んだ後に、
送信信号と受信信号の伝達関数を作り周波数分析する。
周波数分析の結果から共鳴周波数の振動数の半値幅をも
とめ、振動の減衰係数を定める。この減衰係数の連続計
測結果から、配管内面に接する流体温度変化を連続計測
することができる。
Further, a continuous wave electric signal having a frequency component resonating with the plate thickness of the pipe 2 (although a higher resonance frequency may be used, of course) and a frequency close thereto is applied from the transmitter 5 to the ultrasonic transducer 3. Then, the outer surface of the pipe 2 is vibrated to excite the vibration. After the excited vibration is received by the ultrasonic transducer 3 and taken into the computer 11,
A transfer function of the transmission signal and the reception signal is created and frequency analysis is performed.
From the results of frequency analysis, the half-value width of the resonance frequency is determined, and the damping coefficient of the vibration is determined. From the continuous measurement result of the damping coefficient, it is possible to continuously measure the temperature change of the fluid in contact with the inner surface of the pipe.

【0037】図3は本発明の第2実施形態(請求項5な
いし請求項7対応)の構成図であり、内部流体中に発生
した熱成層界面を計測する方法を説明する図である。同
図(a)に示すように、本実施形態では配管41の表面
に押し付け固定された送信用斜角超音波トランスデュー
サ45から送信された超音波は、配管41を介して内部
流体42中に伝播し、熱成層界面43で一部が反射さ
れ、受信用斜角超音波トランスデューサ46で受信され
る。また、熱成層界面43を透過した超音波は更に伝播
して対向する配管41の内面で反射され、受信用斜角超
音波トランスデューサで受信され、以上の受信信号を図
1に示す計測装置21で受信し、反射一定周期で反射超
音波エコーU1のピークレベルとピーク時間を計測する
ことにより、熱成層界面43の形成と位置及びその変動
を計測することができる。
FIG. 3 is a configuration diagram of a second embodiment (corresponding to claims 5 to 7) of the present invention, and is a diagram for explaining a method for measuring a thermal stratification interface generated in an internal fluid. As shown in FIG. 7A, in this embodiment, the ultrasonic waves transmitted from the transmission oblique-angle ultrasonic transducer 45, which is pressed and fixed to the surface of the pipe 41, propagates through the pipe 41 into the internal fluid 42. Then, a part is reflected at the thermal stratification interface 43 and received by the reception oblique-angle ultrasonic transducer 46. In addition, the ultrasonic waves transmitted through the thermal stratification interface 43 are further propagated and reflected by the inner surface of the opposed pipe 41, and are received by the oblique-angle ultrasonic transducer for reception, and the above received signals are measured by the measuring device 21 shown in FIG. By receiving and measuring the peak level and the peak time of the reflected ultrasonic echo U1 at a constant reflection cycle, the formation and position of the thermal stratification interface 43 and its fluctuation can be measured.

【0038】同図(b)は、第1実施形態の超音波温度
計測装置を応用して熱成層界面43における配管41の
内部流体42の温度変動を計測する例を示したものであ
る。特に、熱成層界面43の位置が不明な場合は、送信
用斜角超音波トランスデューサ45から超音波を配管4
1の表面に対して斜めに送信し、何度か多重反射させて
配管41の径方向に伝播した多重超音波エコーU2を受
信用斜角超音波トランスデューサ46で受信することに
より、計測することができる。
FIG. 6B shows an example of measuring the temperature fluctuation of the internal fluid 42 of the pipe 41 at the thermal stratification interface 43 by applying the ultrasonic temperature measuring device of the first embodiment. In particular, when the position of the thermal stratification interface 43 is unknown, the ultrasonic wave is transmitted from the transmission oblique-angle ultrasonic transducer 45 to the piping 4
1 can be measured obliquely with respect to the surface of No. 1 by receiving multiple ultrasonic echoes U2 that have been multiple-reflected several times and propagated in the radial direction of the pipe 41 by the reception-use oblique-angle ultrasonic transducer 46. it can.

【0039】図4は本発明の第3実施形態(請求項8な
いし請求項10対応)の構成図である。図に示すよう
に、本実施形態は配管61の内部に外側から流体(領域
1)62、流体(領域2)63、流体(領域3)64、
流体(領域4)65からなる同心円状の異なる温度領域
が形成された例を示している。配管61の外表面に、押
し付け固定された送信用超音波トランスデューサ66か
ら送信された超音波は、配管61内を超音波の波長λと
送信用超音波トランスデューサ66の圧電素子径dによ
って決まる指向角θ(θ≒Sin(λ/d))で広がり
を持った縦波の超音波ビームとして伝播し、流体62と
の界面で屈折するため、ビームの広がりが狭くなり、配
管61の対抗位置に押し付け固定された受信信用超音波
トランスデューサ67ないし受信信用超音波トランスデ
ューサ69で受信され、それぞれの伝播経路に応じて計
測した超音波の伝播時間から配管61の伝播時間を差し
引くことにより、平均音速を求めることができる。更
に、この平均音速と内部流体の音速の温度特性から平均
温度を求めることができる。しかしながら、前記の方法
では、縦波超音波の音速が、例えば鉄だと5900m/
sec.であり、高温水の音速が1000〜1500m
/sec.程度であるため、屈折角が大きく、超音波が
十分広がらない。
FIG. 4 is a configuration diagram of a third embodiment (corresponding to claims 8 to 10) of the present invention. As shown in the figure, in the present embodiment, the fluid (region 1) 62, the fluid (region 2) 63, the fluid (region 3) 64,
An example is shown in which different concentric temperature regions formed of the fluid (region 4) 65 are formed. The ultrasonic wave transmitted from the transmitting ultrasonic transducer 66, which is pressed and fixed to the outer surface of the pipe 61, has a directivity angle determined by the wavelength λ of the ultrasonic wave in the pipe 61 and the piezoelectric element diameter d of the transmitting ultrasonic transducer 66. It propagates as a longitudinal ultrasonic beam having a spread of θ (θ ≈ Sin (λ / d)) and is refracted at the interface with the fluid 62, so that the spread of the beam becomes narrower and it is pressed against the opposing position of the pipe 61. Obtaining the average sound velocity by subtracting the propagation time of the pipe 61 from the propagation time of the ultrasonic waves received by the fixed reception trust ultrasonic transducer 67 or the reception trust ultrasonic transducer 69 and measured according to each propagation path. You can Furthermore, the average temperature can be obtained from the temperature characteristics of the average sound velocity and the sound velocity of the internal fluid. However, in the above method, the sound velocity of longitudinal ultrasonic waves is 5900 m /
sec. And the speed of sound of high-temperature water is 1000-1500 m
/ Sec. Since it is about the degree, the refraction angle is large and the ultrasonic wave does not spread sufficiently.

【0040】そのため、配管61の表面に、Yカットの
水晶等圧電素子のように音速が縦波の半分近くの横波を
送信する送信用斜角超音波トランスデューサ71を押し
付け固定することにより、屈折角の変化をより小さくす
ることができ、配管61の内面に対してより浅い角度で
配管61内の流体62〜65中に超音波を送信すること
ができる。
For this reason, a transmission oblique angle ultrasonic transducer 71, which transmits a transverse wave having a sound velocity close to half of a longitudinal wave, such as a piezoelectric element such as a Y-cut crystal, is pressed against and fixed to the surface of the pipe 61. Can be made smaller, and ultrasonic waves can be transmitted into the fluids 62 to 65 in the pipe 61 at a shallower angle with respect to the inner surface of the pipe 61.

【0041】以上の方法を組み合わせることにより、配
管61内の中心部から配管61内面近傍までの広い領域
で超音波を透過させることができ、図4に示した同心円
上の温度分布の計測精度を向上することができる。実際
の計測では、送信用超音波トランスデューサ66と受信
用超音波トランスデューサ67ないし受信用超音波トラ
ンスデューサ69において、超音波の送受信を順方向と
逆方向で連続して行うことで得られた平均音速値の加算
平均を行うことにより、流体62、流体63、流体6
4、流体65中の流れによる影響をキャンセルし、平均
温度の測定精度を向上することができる。また、前記平
均温度値の差分値から、流体62、流体63、流体6
4、流体65中の各々の伝播経路における平均流速を求
めることができる。更に、計測点数を更に増やすことに
より、任意の温度分布も計測することが可能となる。
By combining the above methods, ultrasonic waves can be transmitted in a wide area from the center of the pipe 61 to the vicinity of the inner surface of the pipe 61, and the accuracy of measuring the temperature distribution on the concentric circles shown in FIG. 4 can be improved. Can be improved. In actual measurement, the average ultrasonic velocity value obtained by continuously transmitting and receiving ultrasonic waves in the forward direction and the reverse direction in the transmitting ultrasonic transducer 66 and the receiving ultrasonic transducer 67 or the receiving ultrasonic transducer 69. Fluid 62, fluid 63, fluid 6
4. The influence of the flow in the fluid 65 can be canceled and the measurement accuracy of the average temperature can be improved. Further, the fluid 62, the fluid 63, and the fluid 6 are calculated from the difference values of the average temperature values.
4. The average flow velocity in each propagation path in the fluid 65 can be calculated. Further, by further increasing the number of measurement points, it becomes possible to measure an arbitrary temperature distribution.

【0042】図5は本発明の第4実施形態(請求項11
対応)の構成図である。図に示すように本実施形態で
は、配管61から流体62中へ効率的に超音波を送信す
るために配管61の表面に押し付け固定した送信用超音
波トランスデューサ66内の圧電素子80から送信され
る超音波ビームの垂直入射超音波成分U3の伝播経路長
L1や斜め入射超音波成分U4の伝播経路長L2が超音
波の波長の1/2の整数倍になるように、計測装置21
で発信周波数を制御したバースト信号をリード線81を
介して印加するものである。
FIG. 5 shows a fourth embodiment of the present invention (claim 11).
It is a block diagram of (correspondence). As shown in the figure, in the present embodiment, in order to efficiently transmit the ultrasonic wave from the pipe 61 into the fluid 62, the ultrasonic wave is transmitted from the piezoelectric element 80 in the transmitting ultrasonic transducer 66 that is pressed and fixed to the surface of the pipe 61. The measuring device 21 is arranged so that the propagation path length L1 of the vertically incident ultrasonic wave component U3 and the propagation path length L2 of the obliquely incident ultrasonic wave component U4 of the ultrasonic beam are integer multiples of 1/2 of the ultrasonic wave wavelength.
The burst signal whose transmission frequency is controlled by is applied via the lead wire 81.

【0043】本実施形態は超音波が一定の板状の材料を
透過する場合は、板厚が超音波の波長の1/2の整数倍
になると透過効率が向上するということを利用すること
で、より広範囲にわたり強度の強い超音波ビームを流体
62内に送信することができる。
In the present embodiment, when ultrasonic waves are transmitted through a plate-shaped material having a constant thickness, the transmission efficiency is improved when the plate thickness becomes an integral multiple of 1/2 of the wavelength of the ultrasonic waves. , An ultrasonic beam of high intensity over a wider range can be transmitted into the fluid 62.

【0044】[0044]

【発明の効果】以上説明したように、本発明によると、
構造物に内包された流体の熱成層等の温度分布や流速分
布、並びに異なる温度の流体が合流する部分に発生する
サーマルストライピングを評価するため必要な配管や容
器の内面に接した流体の温度変化を非破壊的に計測でき
る超音波温度計測装置を提供することができる。
As described above, according to the present invention,
Temperature change of the fluid in contact with the inner surface of the pipe or container, which is necessary to evaluate the temperature distribution and flow velocity distribution of the thermal stratification of the fluid contained in the structure, and the thermal striping that occurs at the part where the fluids of different temperatures join. It is possible to provide an ultrasonic temperature measuring device capable of nondestructively measuring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】多重エコー信号の振幅の温度特性図。FIG. 2 is a temperature characteristic diagram of amplitude of multiple echo signals.

【図3】本発明の第2実施形態の構成図。FIG. 3 is a configuration diagram of a second embodiment of the present invention.

【図4】本発明の第3実施形態の構成図。FIG. 4 is a configuration diagram of a third embodiment of the present invention.

【図5】本発明の第4実施形態の構成図。FIG. 5 is a configuration diagram of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…内部流体、2…配管、3…超音波トランスデュー
サ、4…音響カップラント、5…発信器、6…受信器、
7…増幅器、8…加算器、9…設定器、10…A/D変
換器、11…計算機、12…切替器、21…計測装置、
U…多重超音波エコー、31,32,33,34…1
回,3回,6回,10回の反射エコーレベルの温度特
性、41…配管、42…内部流体、43…熱成層界面、
45…送信用斜角超音波トランスデューサ、46…受信
用斜角超音波トランスデューサ、49…温度ゆらぎ領
域、61…配管、62…流体(領域1)、63…流体
(領域2)、64…流体(領域3)、65…流体(領域
4)、66…送信用超音波トランスデューサ、67,6
8,69…受信用超音波トランスデューサ、71…送信
用斜角超音波トランスデューサ、72,73…受信用超
音波トランスデューサ、U1…超音波エコー、U2…多
重超音波エコー、80…圧電素子、81…リード線、L
1,L2…伝播経路長、U3…垂直入射超音波成分、U
4…斜め入射超音波成分。
1 ... Internal fluid, 2 ... Piping, 3 ... Ultrasonic transducer, 4 ... Acoustic coupling agent, 5 ... Transmitter, 6 ... Receiver,
7 ... Amplifier, 8 ... Adder, 9 ... Setting device, 10 ... A / D converter, 11 ... Calculator, 12 ... Switching device, 21 ... Measuring device,
U ... Multiple ultrasonic echoes, 31, 32, 33, 34 ... 1
Temperature characteristics of the reflection echo level of 1, 3, 6 and 10 times, 41 ... Piping, 42 ... Internal fluid, 43 ... Thermal stratification interface,
45 ... Transmission angled ultrasonic transducer, 46 ... Reception angled ultrasonic transducer, 49 ... Temperature fluctuation region, 61 ... Piping, 62 ... Fluid (region 1), 63 ... Fluid (region 2), 64 ... Fluid ( Area 3), 65 ... Fluid (area 4), 66 ... Transmission ultrasonic transducer, 67, 6
8, 69 ... Ultrasonic transducer for reception, 71 ... Oblique ultrasonic transducer for transmission, 72, 73 ... Ultrasonic transducer for reception, U1 ... Ultrasonic echo, U2 ... Multiple ultrasonic echo, 80 ... Piezoelectric element, 81 ... Lead wire, L
1, L2 ... Propagation path length, U3 ... Normal incident ultrasonic wave component, U
4 ... Obliquely incident ultrasonic wave component.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01P 5/00 G01P 5/00 B (72)発明者 小倉 健志 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐藤 道雄 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 鈴木 健彦 神奈川県川崎市幸区小向東芝町1番地 東 芝リサーチコンサルティング株式会社内 Fターム(参考) 2F056 EM00 VS01 VS03 VS04 VS09 2G047 AA01 BA03 BB01 BB02 BC01 BC02 BC19 CA01 EA10 EA11 GA03 GG24 GG28 GG32 GG42Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01P 5/00 G01P 5/00 B (72) Inventor Kenji Ogura 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Inside the Yokohama office (72) Inventor Michio Sato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Corporation Yokohama office (72) Inventor Takehiko Suzuki, Komukai-Toshiba, Saiwai-ku, Kawasaki-shi, Kanagawa Toshiba Research Consulting Co., Ltd. In-house F-term (reference) 2F056 EM00 VS01 VS03 VS04 VS09 2G047 AA01 BA03 BB01 BB02 BC01 BC02 BC19 CA01 EA10 EA11 GA03 GG24 GG28 GG32 GG42

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 流体を内包した構造物の外表面に超音波
を送信し、構造物の肉厚部と内包する流体の界面で反射
した超音波エコー信号を取り込み、前記超音波エコー信
号の振幅強度が前記流体の音響インピーダンスの温度特
性に基づき変化することを利用して、前記構造物と内包
流体の界面における流体温度変化を連続計測することを
特徴とする超音波温度計測装置。
1. An ultrasonic wave is transmitted to the outer surface of a structure containing a fluid, and an ultrasonic echo signal reflected at the interface between the thick portion of the structure and the contained fluid is taken in to obtain the amplitude of the ultrasonic echo signal. An ultrasonic temperature measuring device characterized by continuously measuring a change in fluid temperature at an interface between the structure and the contained fluid by utilizing the fact that the intensity changes based on the temperature characteristic of the acoustic impedance of the fluid.
【請求項2】 請求項1記載の超音波温度計測装置にお
いて、超音波エコー信号の振幅強度の変化を計測するた
めに、取り込んだ超音波エコー信号のピーク近傍の波形
を増幅してその変動を計測することを特徴とする超音波
温度計測装置。
2. The ultrasonic temperature measuring device according to claim 1, wherein in order to measure a change in the amplitude intensity of the ultrasonic echo signal, a waveform in the vicinity of the peak of the taken ultrasonic echo signal is amplified and its fluctuation is measured. An ultrasonic temperature measuring device characterized by measuring.
【請求項3】 請求項1記載の超音波温度計測装置にお
いて、超音波エコー信号の振幅強度の変化を計測するた
めに、取り込んだ超音波エコー信号からピークレベルを
検出し、反射回数に応じた各ピークレベルの減衰特性を
求めることを特徴とする超音波温度計測装置。
3. The ultrasonic temperature measuring device according to claim 1, wherein a peak level is detected from the taken-in ultrasonic echo signal in order to measure a change in the amplitude intensity of the ultrasonic echo signal, and the peak level is detected. An ultrasonic temperature measuring device characterized by obtaining attenuation characteristics at each peak level.
【請求項4】 請求項1記載の超音波温度計測装置にお
いて、配管内面に接した流体の温度変化によるインピー
ダンス変化を検出するために、配管の板厚による共鳴周
波数付近の振動を利用して振動の減衰分を検出すること
を特徴とする超音波温度計測装置。
4. The ultrasonic temperature measuring device according to claim 1, wherein, in order to detect an impedance change due to a temperature change of a fluid in contact with the inner surface of the pipe, vibration near the resonance frequency due to the plate thickness of the pipe is used. An ultrasonic temperature measuring device characterized by detecting the attenuation of
【請求項5】 請求項1記載の超音波温度計測装置にお
いて、構造物の肉厚部と内包する流体の界面を透過し、
流体を介して構造物の対向する内表面で反射された超音
波エコーを受信し、受信エコーの内包流体中の超音波伝
播時間から流体内の超音波伝播速度を求め、流体の平均
温度と界面近傍の流体温度を計測することを特徴とする
超音波温度計測装置。
5. The ultrasonic temperature measuring device according to claim 1, which permeates an interface between a thick portion of a structure and an internal fluid,
The ultrasonic echoes reflected by the inner surfaces of the structure facing each other through the fluid are received, the ultrasonic propagation velocity in the fluid is calculated from the ultrasonic propagation time in the fluid contained in the received echo, and the average temperature of the fluid and the interface An ultrasonic temperature measuring device characterized by measuring a fluid temperature in the vicinity.
【請求項6】 請求項1記載の超音波温度計測装置にお
いて、送信用と受信用の超音波トランスデューサをそれ
ぞれ構造物の外表面上の離れた位置に固定し、送信用の
超音波トランスデューサから斜角入射し、構造物の肉厚
部において反射した超音波エコーを受信用の超音波トラ
ンスデューサで受信することにより、構造物と内包流体
の界面における流体温度変化を計測することを特徴とす
る超音波温度計測装置。
6. The ultrasonic temperature measuring device according to claim 1, wherein the transmitting and receiving ultrasonic transducers are fixed at positions separated from each other on the outer surface of the structure, and are inclined from the transmitting ultrasonic transducer. An ultrasonic wave characterized by measuring the fluid temperature change at the interface between the structure and the inclusion fluid by receiving an ultrasonic echo that is incident at an angle and reflected at the thick part of the structure by an ultrasonic transducer for reception. Temperature measuring device.
【請求項7】 流体を内包した構造物の外表面に超音波
を送信し、構造物内の流体中に形成された熱成層界面で
反射した超音波エコー信号を取り込み、熱成層の形成の
有無及び熱成層の変動を計測することを特徴とする超音
波温度計測装置。
7. The presence / absence of formation of a thermal stratification by transmitting an ultrasonic wave to the outer surface of a structure containing a fluid and capturing an ultrasonic echo signal reflected at a thermal stratification interface formed in the fluid inside the structure. And an ultrasonic temperature measuring device characterized by measuring fluctuations in thermal stratification.
【請求項8】 流体を内包した構造物の外表面に超音波
を送信し、流体中を透過して再度構造物の肉厚部を介し
て同時に受信した超音波エコー信号から、流体中の異な
る経路における平均温度を計測することを特徴とする超
音波温度計測装置。
8. An ultrasonic echo signal transmitted from an ultrasonic wave to the outer surface of a structure containing a fluid, transmitted through the fluid, and simultaneously received again through the thick portion of the structure, the difference in the fluid. An ultrasonic temperature measuring device characterized by measuring an average temperature in a route.
【請求項9】 請求項8記載の超音波温度計測装置にお
いて、少なくとも構造物への超音波入射角を大きくする
か、または、横振動する電圧素子を用いることにより、
流体中の比較的構造物内面に近い部分の流体の平均温度
を計測することを特徴とする超音波温度計測装置。
9. The ultrasonic temperature measuring device according to claim 8, wherein at least the ultrasonic wave incident angle to the structure is increased or a voltage element that laterally vibrates is used.
An ultrasonic temperature measuring device characterized by measuring an average temperature of a fluid in a portion relatively close to the inner surface of a structure in the fluid.
【請求項10】 請求項8記載の超音波温度計測装置に
おいて、超音波送受信を双方向で行い、流体中における
双方向の超音波伝播時間を計測し、この両者の遅延時間
の差と和を作り、遅延時間の和の方から平均温度を検出
し、遅延時間の差の方から空間内の媒質の移動速度を検
出することを特徴とする超音波温度計測装置。
10. The ultrasonic temperature measuring device according to claim 8, wherein ultrasonic wave transmission / reception is bidirectionally performed, bidirectional ultrasonic wave propagation time in a fluid is measured, and a difference and a sum of delay times of the both are measured. An ultrasonic temperature measuring device, which is characterized by detecting an average temperature from a sum of delay times and detecting a moving speed of a medium in a space from a difference of delay times.
【請求項11】 請求項8記載の超音波温度計測装置に
おいて、送信用超音波の電圧信号の周波数を変更するこ
とにより、構造物の肉厚部を透過する超音波の特定の指
向角に応じた経路長を半波長の整数倍に合わせることを
特徴とする超音波温度計測装置。
11. The ultrasonic temperature measuring device according to claim 8, wherein the frequency of the voltage signal of the ultrasonic wave for transmission is changed so as to respond to a specific directivity angle of the ultrasonic wave passing through the thick portion of the structure. An ultrasonic temperature measuring device characterized in that the path length is adjusted to an integral multiple of a half wavelength.
JP2001236493A 2001-08-03 2001-08-03 Ultrasonic temperature measuring apparatus Pending JP2003042857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236493A JP2003042857A (en) 2001-08-03 2001-08-03 Ultrasonic temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236493A JP2003042857A (en) 2001-08-03 2001-08-03 Ultrasonic temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JP2003042857A true JP2003042857A (en) 2003-02-13

Family

ID=19067747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236493A Pending JP2003042857A (en) 2001-08-03 2001-08-03 Ultrasonic temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JP2003042857A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030025A1 (en) * 2004-09-17 2006-03-23 Siemens Aktiengesellschaft Temperature determination of an away-facing surface of an object
WO2006030011A1 (en) 2004-09-17 2006-03-23 Siemens Aktiengesellschaft Measuring device and method for determining temperature and/or pressure and use of said measuring device
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
JP2010025812A (en) * 2008-07-22 2010-02-04 Japan Atomic Energy Agency Hybrid measuring apparatus using electromagnetic ultrasonic probe and inspection method using the same
KR101174249B1 (en) 2012-03-30 2012-08-14 한국해양연구원 device and method of signal transmission between hyperbaric chamber and underwater housing using sound wave in hydrostatic test
CN105486424A (en) * 2014-09-17 2016-04-13 南京理工大学 Ultrasonic non-invasive measurement method for transient temperature field of inner wall of combustion chamber
KR101921077B1 (en) 2016-10-28 2018-11-22 주식회사 포스코 Apparatus and method for measuring temperature
KR101983817B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus for monitoring water level using ultrasonic wave and method for calculating water level considering temperature thereof
DE102021205884A1 (en) 2020-10-02 2022-04-07 Mitsubishi Heavy Industries, Ltd. Temperature measuring device, mechanical system, temperature measuring method and program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117983A (en) * 2004-09-17 2011-06-16 Siemens Ag Measurement device for determining temperature, and operation method of the same
JP2008513865A (en) * 2004-09-17 2008-05-01 シーメンス アクチエンゲゼルシヤフト Measuring device and method for determining temperature and / or pressure and use of measuring device
WO2006030025A1 (en) * 2004-09-17 2006-03-23 Siemens Aktiengesellschaft Temperature determination of an away-facing surface of an object
JP2008513753A (en) * 2004-09-17 2008-05-01 シーメンス アクチエンゲゼルシヤフト How to determine the temperature of the opposite side of the object
JP2011117982A (en) * 2004-09-17 2011-06-16 Siemens Ag Measurement device for determining temperature, and operation method of the same
WO2006030011A1 (en) 2004-09-17 2006-03-23 Siemens Aktiengesellschaft Measuring device and method for determining temperature and/or pressure and use of said measuring device
US7708461B2 (en) 2004-09-17 2010-05-04 Siemens Aktiengesellschaft Temperature determination of an away-facing surface of an object
JP4767959B2 (en) * 2004-09-17 2011-09-07 シーメンス アクチエンゲゼルシヤフト Measuring device for determining temperature and method of operating this measuring device
EP1789767A1 (en) * 2004-09-17 2007-05-30 Siemens Aktiengesellschaft Measuring device and method for determining temperature and/or pressure and use of said measuring device
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
JP2010025812A (en) * 2008-07-22 2010-02-04 Japan Atomic Energy Agency Hybrid measuring apparatus using electromagnetic ultrasonic probe and inspection method using the same
KR101174249B1 (en) 2012-03-30 2012-08-14 한국해양연구원 device and method of signal transmission between hyperbaric chamber and underwater housing using sound wave in hydrostatic test
CN105486424A (en) * 2014-09-17 2016-04-13 南京理工大学 Ultrasonic non-invasive measurement method for transient temperature field of inner wall of combustion chamber
KR101921077B1 (en) 2016-10-28 2018-11-22 주식회사 포스코 Apparatus and method for measuring temperature
KR101983817B1 (en) * 2018-11-02 2019-05-29 주식회사 미래와도전 Apparatus for monitoring water level using ultrasonic wave and method for calculating water level considering temperature thereof
DE102021205884A1 (en) 2020-10-02 2022-04-07 Mitsubishi Heavy Industries, Ltd. Temperature measuring device, mechanical system, temperature measuring method and program
US11953384B2 (en) 2020-10-02 2024-04-09 Mitsubishi Heavy Industries, Ltd. Temperature measuring device, mechanical system, temperature measuring method, and program

Similar Documents

Publication Publication Date Title
Castaings et al. The generation, propagation, and detection of Lamb waves in plates using air‐coupled ultrasonic transducers
US7966882B2 (en) Self-calibrating method for measuring the density and velocity of sound from two reflections of ultrasound at a solid-liquid interface
US5886250A (en) Pitch-catch only ultrasonic fluid densitometer
Carlson et al. Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems
CA2258439C (en) Ultrasonic lamb wave technique for measurement of pipe wall thickness at pipe supports
US5686661A (en) In-situ, real time viscosity measurement of molten materials with laser induced ultrasonics
Ginzel et al. Determining approximate acoustic properties of materials
JP2003042857A (en) Ultrasonic temperature measuring apparatus
RU2580907C1 (en) Ultrasonic waveguide level meter for liquid
Santhanam et al. Reflection and transmission of fundamental Lamb wave modes obliquely incident on a crack in a plate
Crecraft Ultrasonic instrumentation: principles, methods and applications
JPH0210261A (en) Measurement of intercrystalline corrosion
Spratt et al. Torsional ultrasonic waveguide sensor
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
Ono et al. Aluminum buffer rods for ultrasonic monitoring at elevated temperatures
Sgalla et al. A device for measuring the velocity of ultrasonic waves: An application to stress analysis
Ihara et al. Materials evaluation using long clad buffer rods
Mak et al. Ultrasonic measurement of longitudinal and shear velocities of materials at elevated temperatures
Tsukada et al. Flowrate Measurement on Metal Pipes by Air-coupled Ultrasound
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
JP2010223608A (en) Method for inspecting corrosion-proof coating
Ditri et al. An experimental study of the angular dependence of Lamb wave excitation amplitudes
RU2188412C2 (en) Ultrasonic device for detecting stressed state of process-channel wall metal in fast reactors
Kauppinen et al. Characterization of ceramic coatings with large-aperture low-frequency transducers
Farhat et al. Study of the phase transition of a medium using reverberated signals

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Effective date: 20070301

Free format text: JAPANESE INTERMEDIATE CODE: A7422