JPH0565821B2 - - Google Patents

Info

Publication number
JPH0565821B2
JPH0565821B2 JP59098288A JP9828884A JPH0565821B2 JP H0565821 B2 JPH0565821 B2 JP H0565821B2 JP 59098288 A JP59098288 A JP 59098288A JP 9828884 A JP9828884 A JP 9828884A JP H0565821 B2 JPH0565821 B2 JP H0565821B2
Authority
JP
Japan
Prior art keywords
ultrasonic
receiver
sound source
ultrasonic transceiver
transceiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098288A
Other languages
Japanese (ja)
Other versions
JPS60242365A (en
Inventor
Akiro Sanemori
Takaaki Maekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59098288A priority Critical patent/JPS60242365A/en
Publication of JPS60242365A publication Critical patent/JPS60242365A/en
Publication of JPH0565821B2 publication Critical patent/JPH0565821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8997Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、超音波送受信器を走査し、この超
音波送受信器の指向角による開口を合成する超音
波検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic inspection apparatus that scans an ultrasonic transceiver and synthesizes an aperture based on the directivity angle of the ultrasonic transceiver.

〔従来従来〕[Conventional]

従来この種の超音波検査装置としては、第1図
に示すものがあつた。第1図は従来の超音波検査
装置を示すブロツク構成図である。図において、
1は被検査材、2は超音波送受信器、3は超音波
送受信器2を被検査材1上に走査される走査機
構、4は超音波送受信器2をパルス的に駆動する
ためのパルサ、5は超音波送受信器2で検出した
信号を増幅するためのレシーバ、6は、走査機構
3で決められた超音波送受信器2の位置と、レシ
ーバ5の出力信号とから開口を合成して映像情報
とするための開口合成演算装置、7は開口合成演
算装置6で得られた映像情報を表示するための表
示装置である。
Conventionally, as this type of ultrasonic inspection apparatus, there was one shown in FIG. FIG. 1 is a block diagram showing a conventional ultrasonic inspection apparatus. In the figure,
1 is a material to be inspected; 2 is an ultrasonic transceiver; 3 is a scanning mechanism for scanning the ultrasonic transceiver 2 onto the material to be inspected 1; 4 is a pulser for driving the ultrasonic transceiver 2 in a pulsed manner; 5 is a receiver for amplifying the signal detected by the ultrasonic transceiver 2; 6 is a receiver that synthesizes the aperture from the position of the ultrasonic transceiver 2 determined by the scanning mechanism 3 and the output signal of the receiver 5, and generates an image. The aperture synthesis calculation device 7 is a display device for displaying the video information obtained by the aperture synthesis calculation device 6.

第2図は、第1図の超音波検査装置の動作を説
明するための図、第3図は、第1図の超音波検査
装置に用いられる超音波送受信器の一例を示す図
である。
FIG. 2 is a diagram for explaining the operation of the ultrasonic inspection apparatus of FIG. 1, and FIG. 3 is a diagram showing an example of an ultrasonic transmitter/receiver used in the ultrasonic inspection apparatus of FIG. 1.

次に、上記第1図に示す従来の超音波検査装置
の動作について説明する。被検査材1に音響的に
カツプリングされた超音波送受信器2は、走査機
構3により、第2図に示す様に走査される。超音
波送受信器2の各位置A,B,C,D,Eにおい
て、パルサ4とレシーバ5とにより超音波が送受
信され、被検査材1の内部からのエコー、例えば
点0からのエコーが検出される。上記各位置A〜
Eで得られるエコーは、超音波送受信器2の指向
角でカバーされる角度範囲内から生ずるエコーに
限られる。これら各位置A〜Eでのエコーは、開
口合成演算装置6で記憶、演算が行われ、その結
果が表示装置7に表示される。開口合成演算装置
6の内容は、周知であるので詳細な説明は省略す
るが、その動作原理から、音源は点音源であるこ
とが必要であり、また、超音波送受信器2を走査
した範囲の開口が有効になるのは、上記各位置A
〜Eでの超音波送受信器2がカバーする範囲の共
通な領域(第2図において、斜線で囲まれた領
域)である。したがつて、開口を大きくするため
には、超音波送受信器2には、指向角ができるだ
け広いものを用いる必要がある。このことは、超
音波送受信器2の径をごく小さくすることにより
実現できる。しかし、超音波送受信器2の径を小
さくすると、送信される超音波パワーが小さくな
ると共に、受信電圧も小さくなり、充分なS/N
比を持つた信号が得難い。この解決策のために、
第3図に示す様に、集束型の超音波送受信器2を
用い、その焦点を被検査材1の表面に置き、これ
を点音源とする方式が提案されている。この場
合、超音波送受信器2の焦点距離を短くすれば、
その指向角が広くすることができる。この方式で
は、超音波送受信器2を走査する時に、その焦点
が常に被検査材1の表面に来る様にしなければな
らない。さて、開口を大きくするためには、上記
した様に超音波送受信器2の指向角を広くした方
が良いのであるが、一方、検査対象範囲外、例え
ば第2図に示す点Pにエコーを発生するものであ
る場合には、開口合成演算装置6による開口合成
演算時に、そのエコーの信号も入つて来て、得ら
れる映像のS/N比が劣化する。
Next, the operation of the conventional ultrasonic inspection apparatus shown in FIG. 1 will be described. The ultrasonic transmitter/receiver 2 acoustically coupled to the material to be inspected 1 is scanned by a scanning mechanism 3 as shown in FIG. Ultrasonic waves are transmitted and received by the pulser 4 and the receiver 5 at each position A, B, C, D, and E of the ultrasonic transmitter/receiver 2, and an echo from inside the inspected material 1, for example, an echo from point 0, is detected. be done. Each of the above positions A~
The echoes obtained at E are limited to those generated within the angular range covered by the directivity angle of the ultrasonic transceiver 2. The echoes at each of these positions A to E are stored and calculated by the aperture synthesis calculation device 6, and the results are displayed on the display device 7. Since the contents of the aperture synthesis calculation device 6 are well known, a detailed explanation will be omitted. However, due to its operating principle, the sound source must be a point source, and the sound source must be a point source. The opening becomes effective at each position A above.
This is a common area covered by the ultrasonic transceiver 2 at ~E (the area surrounded by diagonal lines in FIG. 2). Therefore, in order to enlarge the aperture, it is necessary to use an ultrasonic transmitter/receiver 2 with a directivity angle as wide as possible. This can be achieved by making the diameter of the ultrasonic transceiver 2 extremely small. However, if the diameter of the ultrasonic transceiver 2 is made smaller, the transmitted ultrasonic power becomes smaller and the received voltage also becomes smaller, resulting in a sufficient S/N ratio.
It is difficult to obtain a signal with a ratio. For this solution,
As shown in FIG. 3, a method has been proposed in which a focused ultrasonic transmitter/receiver 2 is used, its focal point is placed on the surface of the inspected material 1, and this is used as a point sound source. In this case, if the focal length of the ultrasonic transceiver 2 is shortened,
Its directivity angle can be widened. In this method, when scanning the ultrasonic transmitter/receiver 2, the focus must always be on the surface of the material 1 to be inspected. Now, in order to enlarge the aperture, it is better to widen the directivity angle of the ultrasonic transmitter/receiver 2 as described above, but on the other hand, it is better to widen the directivity angle of the ultrasonic transmitter/receiver 2, but on the other hand, it is better to make the echo outside the inspection target area, for example, point P shown in Fig. 2. If the aperture synthesis calculation device 6 generates an aperture synthesis calculation, the echo signal also enters, and the S/N ratio of the obtained image deteriorates.

従来の超音波検査装置は以上の様に構成されて
いるので、被検査材1に対する検査感度が低かつ
たり、超音波送受信器2の走査機構3が繁雑であ
つたりし、また、検査対象範囲の周辺にある欠陥
や境界などのエコー源によりS/N比が劣化する
などの欠点があつた。
Since the conventional ultrasonic inspection apparatus is configured as described above, the inspection sensitivity for the inspected material 1 is low, the scanning mechanism 3 of the ultrasonic transmitter/receiver 2 is complicated, and the inspection target area is There were drawbacks such as deterioration of the S/N ratio due to echo sources such as defects and boundaries around the area.

〔発明の概要〕[Summary of the invention]

この発明は、上記の様な従来のものの欠点を改
善する目的でなされたもので、超音波送受信器に
振動子アレイを用い、この振動子アレイをコント
ロールすることにより、見掛け上の点音源を作
り、検査対象範囲に応じて超音波の広がり方を制
御する様に構成し、検査感度が高く、また、検査
対象範囲外のエコーを取り込まない、S/N比の
高い超音波検査装置を提供するものである。
This invention was made with the aim of improving the drawbacks of the conventional ones as described above, and by using a transducer array in an ultrasonic transmitter/receiver and controlling this transducer array, an apparent point sound source is created. To provide an ultrasonic inspection device configured to control the spread of ultrasonic waves according to the inspection target range, has high inspection sensitivity, does not take in echoes outside the inspection target range, and has a high S/N ratio. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明す
る。第4図はこの発明の一実施例である超音波検
査装置を示すブロツク構成図、第5図ないし第7
図は、それぞれ第4図の超音波検査装置の動作を
説明するための図である。第4図において、1は
被検査材、2は振動子アレイにより構成される超
音波送受信器、3は超音波送受信器2を被検査材
1上に走査させる走査機構、4は超音波送受信器
2の各振動器子を所定の時刻に駆動するパルサ、
5は超音波送受信器2の各振動子の検出信号を
各々所定の時間だけ遅延させて加算、増幅するレ
シーバ、6は、走査機構3で決められた超音波送
受信器2の位置と、レシーバ5の出力信号とから
開口を合成して映像情報とするための開口合成演
算装置、7は開口合成演算装置6で得られた映像
情報を表示するための表示装置、8は、走査機構
3から出力される超音波送受信器2の位置情報に
より、パルサ4及びレシーバ5の時刻、時間の設
定を行うと共に、開口合成演算装置6へ作り出さ
れる点音源(後述する)の位置情報を送り出すコ
ントローラである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a block diagram showing an ultrasonic inspection apparatus which is an embodiment of the present invention, and FIGS.
Each figure is a diagram for explaining the operation of the ultrasonic testing apparatus shown in FIG. 4. In Fig. 4, 1 is a material to be inspected, 2 is an ultrasonic transceiver constituted by a transducer array, 3 is a scanning mechanism that scans the ultrasonic transceiver 2 over the material to be inspected 1, and 4 is an ultrasonic transceiver. a pulsar that drives each vibrator element of No. 2 at a predetermined time;
5 is a receiver that adds and amplifies the detection signals of each vibrator of the ultrasonic transmitter/receiver 2 by delaying them by a predetermined time, and 6 indicates the position of the ultrasonic transmitter/receiver 2 determined by the scanning mechanism 3 and the receiver 5. 7 is a display device for displaying the video information obtained by the aperture synthesis calculation device 6; 8 is an output from the scanning mechanism 3; This controller sets the time and time of the pulser 4 and receiver 5 based on the position information of the ultrasonic transceiver 2, and also sends the position information of a point sound source (described later) to the aperture synthesis calculation device 6.

次に、上記第4図に示すこの発明の一実施例で
ある超音波検査装置の動作について説明する。ま
ず、超音波送受信器2とパルサ4とにより点音源
を作り出す方法について述べる。第5図に示す様
に、超音波送受信器2は、2n個の振動子211,
……,2i1,……,2n1,212,……,2
n2のアレイにより構成される。今、これらの振
動子の左側に点音源Fがあると仮定すると、点音
源Fから各振動子までの距離liは、次式によつて
与えられる。
Next, the operation of the ultrasonic inspection apparatus shown in FIG. 4, which is an embodiment of the present invention, will be explained. First, a method of creating a point sound source using the ultrasonic transceiver 2 and the pulser 4 will be described. As shown in FIG. 5, the ultrasonic transceiver 2 includes 2n transducers 211,
..., 2i1, ..., 2n1, 212, ..., 2
It is composed of n2 arrays. Now, assuming that there is a point sound source F to the left of these vibrators, the distance li from the point sound source F to each vibrator is given by the following equation.

ここで、fは点音源Fから振動子までの距離、
dは各振動子間の間隔である。
Here, f is the distance from the point sound source F to the vibrator,
d is the interval between each vibrator.

被検査材1中での音速をCとすると、距離liを
超音波が伝播する時間tiは、 である。したがつて、超音波送受信器2に送信指
令を与えてから、時間tiだけ経過した時刻に各振
動子2i1,2i2を駆動すれば、見掛け上の点
音源Fを音源とした様な音場が得られる。この場
合の各振動子全体の指向角は、理論的にはfの値
を小さくすれば広くなる。実際には、各振動子2
11,……2n1,212,……2n2の寸法に
よつて制約され、この寸法を小さくする程fを小
さく、すなわち、各振動子全体の指向角を大きく
することができる。この時の超音波エネルギー
は、各振動子全体で決まるので、各振動子の1つ
1つを小さくしても超音波エネルギーが大幅に減
少するという損失はなくなる。また、第6図に示
す様に、点音源Fを超音波送受信器2の中心軸上
からずれた位置に想定して考えて見る。各振動子
を駆動する時刻を、超音波送受信器2へ送信指令
が与えられてから次の時間tiだけ経過した時刻と
することにより、点音源Fを音源とみなせる音場
が得られる。
If the speed of sound in the inspected material 1 is C, the time t i for the ultrasonic wave to propagate over the distance li is: It is. Therefore, if each transducer 2i1, 2i2 is driven at a time t i after a transmission command is given to the ultrasonic transceiver 2, a sound field with the apparent point sound source F as the sound source can be created. is obtained. In this case, the directivity angle of each vibrator as a whole can theoretically be widened by decreasing the value of f. Actually, each vibrator 2
11, . . . 2n1, 212, . The ultrasonic energy at this time is determined by each transducer as a whole, so even if each transducer is made smaller one by one, there is no loss in the ultrasonic energy that is significantly reduced. Further, as shown in FIG. 6, the point sound source F is assumed to be located at a position offset from the central axis of the ultrasonic transceiver 2. By setting the time at which each vibrator is driven to the time when the next time t i has elapsed since the transmission command was given to the ultrasonic transceiver 2, a sound field in which the point sound source F can be regarded as the sound source can be obtained.

この時、角度θを変えると、超音波の広がる方
向が変化する。
At this time, changing the angle θ changes the direction in which the ultrasonic waves spread.

以上の説明は、各振動子による送信の場合の点
音源Fを作ること、及び指向性のコントロールに
ついて述べたが、受信の場合は、各振動子で検出
した信号を、送信の場合と同様に時間tiだけ各々
遅延させた後、加算、合成することによつて、送
信の場合と同様の指向特性を得ることができる。
上述した説明において、各振動子の駆動時刻をず
らせたり、検出信号を遅延、加算したりする方法
は、従来よりビーム走査形の超音波診断装置で実
用にされているのと同様の方法により実現でき
る。さて、以上の様な方法により、超音波の広が
り方をコントロールできる点音源Fを超音波送受
信器2として用いて走査し、開口合成用データを
得る方法を、第7図にしたがつて説明する。超音
波送受信器2は、走査機構3により各位値A,
B,C,Dへ順次に移される。検査対象範囲をL
とした場合、各位置A〜Dでの超音波の広がり方
を、第7図に示す様にコントロールすれば、すべ
ての各位置A〜Dで検査対象範囲Lをカバーし、
かつこの検査対象範囲L外へ超音波が広がつてい
る程度は、上記第2図に示す従来例の場合と比べ
て非常に小さくなる。例えば、点Pに超音波を反
射するものがあつても、超音波は点Pへは及ばな
いために不要なエコーは発生せずに、このため、
検査対象範囲L内の映像へのノイズを抑えること
ができる。走査機構3により超音波送受信器2の
位置は、開口合成演算装置6と共にコントローラ
8へ送られる。コントローラ8では、あらかじめ
与えられた検査対象範囲Lとの関係を考慮し、
f,θを決定し、パルサ4、レシーバ5へ与え
る。パルサ4、レシーバ5は、前述した様に、
f,θに対応した時間tiの設定を行い、超音波送
受信器2をコントロールする。f,θは、また、
開口合成演算装置6へ与えられる。開口合成演算
装置6では、超音波送受信器2の位置とf,θと
により、第7図に示す様な各点FA,FB,FC,FD
を算出し、この各点FA〜FDを送受信点とみなし
て開口の合成を行う。
The above explanation has been about creating a point sound source F in the case of transmission by each transducer and controlling the directivity, but in the case of reception, the signal detected by each transducer is By delaying each signal by a time t i and then adding and combining them, it is possible to obtain the same directivity characteristics as in the case of transmission.
In the above explanation, the methods of shifting the drive time of each transducer, delaying and adding the detection signals are the same as those used in conventional beam-scanning ultrasound diagnostic equipment. can. Now, with reference to FIG. 7, we will explain how to obtain aperture synthesis data by scanning the point sound source F, which can control the spread of ultrasonic waves, using the ultrasonic transmitter/receiver 2 using the method described above. . The ultrasonic transmitter/receiver 2 receives each position value A,
It is sequentially transferred to B, C, and D. Inspection range L
In this case, if the spread of the ultrasonic waves at each position A to D is controlled as shown in Fig. 7, the inspection range L can be covered at all positions A to D.
Moreover, the extent to which the ultrasonic waves spread outside the inspection target range L is much smaller than in the conventional example shown in FIG. 2 above. For example, even if there is something reflecting ultrasonic waves at point P, the ultrasonic waves do not reach point P, so no unnecessary echoes are generated.
Noise to the image within the inspection target range L can be suppressed. The scanning mechanism 3 sends the position of the ultrasonic transceiver 2 to the controller 8 together with the aperture synthesis calculation device 6 . The controller 8 considers the relationship with the inspection target range L given in advance,
Determine f and θ and give them to the pulser 4 and receiver 5. As mentioned above, the pulser 4 and receiver 5 are
The ultrasonic transceiver 2 is controlled by setting the time t i corresponding to f and θ. f, θ are also
It is given to the aperture synthesis calculation device 6. In the aperture synthesis calculation device 6, each point F A , F B , F C , F D as shown in FIG.
is calculated, and the apertures are synthesized by regarding each of these points F A to F D as transmitting/receiving points.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、超音波検査装置
において、超音波送受信器に振動子アレイを用
い、この振動子アレイをコントロールすることに
より、見掛け上の点音源を作り、検査対象範囲に
応じて超音波の広がり方を制御する様に構成した
ので、検査感度が非常に高く、また、検査対象範
囲外のエコーを取り込まない様にして、S/N比
が高く、画質劣化の少ない超音波検査装置が得ら
れるという優れた効果を奏するものである。
As explained above, the present invention uses a transducer array as an ultrasonic transmitter/receiver in an ultrasonic inspection device, and controls this transducer array to create an apparent point sound source and generate sound sources according to the inspection target area. The structure is configured to control the way the ultrasound spreads, so the inspection sensitivity is extremely high.Also, echoes outside the inspection target area are not taken in, resulting in a high S/N ratio and ultrasonic inspection with little image quality deterioration. This has the excellent effect of providing a device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波検査装置を示すブロツク
構成図、第2図は、第1図の超音波検査装置の動
作を説明するための図、第3図は、第1図の超音
波検査装置に用いられる超音波送受信器の一例を
示す図、第4図はこの発明の一実施例である超音
波検査装置を示すブロツク構成図、第5図ないし
第7図は、それぞれ第4図の超音波検査装置の動
作を説明するための図である。 図において、1……被検査材、2……超音波送
受信器、3……走査機構、4……パルサ、5……
レシーバ、6……開口合成演算装置、7……表示
装置、211,……,2i1,……,2n1,2
12,……,2n2……振動子である。なお、各
図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block configuration diagram showing a conventional ultrasonic testing device, Fig. 2 is a diagram for explaining the operation of the ultrasonic testing device shown in Fig. 1, and Fig. 3 is a block diagram showing the ultrasonic testing device shown in Fig. 1. A diagram showing an example of an ultrasonic transmitter/receiver used in the device, FIG. 4 is a block configuration diagram showing an ultrasonic inspection device which is an embodiment of the present invention, and FIGS. 5 to 7 are respectively similar to those in FIG. It is a figure for explaining operation of an ultrasonic inspection device. In the figure, 1... Material to be inspected, 2... Ultrasonic transceiver, 3... Scanning mechanism, 4... Pulser, 5...
Receiver, 6... Aperture synthesis calculation device, 7... Display device, 211,..., 2i1,..., 2n1, 2
12,...,2n2... vibrator. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波送受信器を走査し、この超音波送受信
器の指向角による開口を合成する超音波検査装置
において、前記超音波送受信器に振動子アレイを
用い、この振動子アレイをコントロールすること
により、見掛け上の点音源を作り、この点音源に
より作られる音場が検査対象範囲内を限定的に覆
う様に、前記音場を前記超音波送受信器の走査に
合わせて制御する様にしたことを特徴とする超音
波検査装置。
1. In an ultrasonic inspection device that scans an ultrasonic transceiver and synthesizes an aperture based on the directivity angle of the ultrasonic transceiver, using a transducer array in the ultrasonic transceiver and controlling this transducer array, An apparent point sound source is created, and the sound field is controlled in accordance with the scanning of the ultrasonic transceiver so that the sound field created by the point sound source covers a limited area within the inspection target area. Features of ultrasonic testing equipment.
JP59098288A 1984-05-16 1984-05-16 Ultrasonic inspecting device Granted JPS60242365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098288A JPS60242365A (en) 1984-05-16 1984-05-16 Ultrasonic inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098288A JPS60242365A (en) 1984-05-16 1984-05-16 Ultrasonic inspecting device

Publications (2)

Publication Number Publication Date
JPS60242365A JPS60242365A (en) 1985-12-02
JPH0565821B2 true JPH0565821B2 (en) 1993-09-20

Family

ID=14215736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098288A Granted JPS60242365A (en) 1984-05-16 1984-05-16 Ultrasonic inspecting device

Country Status (1)

Country Link
JP (1) JPS60242365A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665040B2 (en) 2009-09-10 2015-02-04 学校法人上智学院 Displacement measuring method and apparatus, and ultrasonic diagnostic apparatus
CN106770664B (en) * 2016-11-22 2019-05-07 中国计量大学 A method of edge defect detection is improved based on total focus imaging algorithm
CN111289022B (en) * 2020-02-26 2022-08-09 京东方科技集团股份有限公司 Sensor and driving method and preparation method thereof

Also Published As

Publication number Publication date
JPS60242365A (en) 1985-12-02

Similar Documents

Publication Publication Date Title
JPH067350A (en) Ultrasonic imaging apparatus
JPS5846712B2 (en) Siderutsu King Sonar Souchi
US4508122A (en) Ultrasonic scanning apparatus and techniques
EP0293803B1 (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JPS6215216B2 (en)
JPH021263B2 (en)
JPH0565821B2 (en)
JP2723464B2 (en) Ultrasound diagnostic equipment
JPH06114056A (en) Ultrasonic diagnostic apparatus
JPS6246180B2 (en)
JPH04336051A (en) Ultrasonic diagnosing device
JPS6145791B2 (en)
JPH02228952A (en) Ultrasonic diagnostic apparatus
JP2515804B2 (en) Fan-type scanning ultrasonic flaw detector
JPS6216386B2 (en)
JP3332089B2 (en) Ultrasound imaging device
JPS5977839A (en) Ultrasonic tomographic apparatus
JP4083872B2 (en) Ultrasonic imaging device
JPH0292344A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe
JPH06327670A (en) Ultrasonic diagnosis equipment
JP2001353155A (en) Ultrasonic wave transmission/reception method and device, and ultrasonic photographing equipment
JPH0649287Y2 (en) Ultrasonic diagnostic equipment
JPH0131149B2 (en)
JPS6252572B2 (en)
JPH0651038B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term