JP2723464B2 - Ultrasound diagnostic equipment - Google Patents

Ultrasound diagnostic equipment

Info

Publication number
JP2723464B2
JP2723464B2 JP6032331A JP3233194A JP2723464B2 JP 2723464 B2 JP2723464 B2 JP 2723464B2 JP 6032331 A JP6032331 A JP 6032331A JP 3233194 A JP3233194 A JP 3233194A JP 2723464 B2 JP2723464 B2 JP 2723464B2
Authority
JP
Japan
Prior art keywords
ultrasonic
width direction
sensitivity
array
acoustic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6032331A
Other languages
Japanese (ja)
Other versions
JPH07236642A (en
Inventor
昌紀 広瀬
剛 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP6032331A priority Critical patent/JP2723464B2/en
Publication of JPH07236642A publication Critical patent/JPH07236642A/en
Application granted granted Critical
Publication of JP2723464B2 publication Critical patent/JP2723464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波診断装置の診断
画像の画質を向上させる技術に関し、特に超音波ビーム
の送受波の感度を向上させることにより、診断画像の画
質の向上を実現する超音波診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the image quality of a diagnostic image of an ultrasonic diagnostic apparatus, and more particularly to improving the image quality of a diagnostic image by improving the sensitivity of transmission and reception of an ultrasonic beam. The present invention relates to an ultrasonic diagnostic apparatus.

【0002】[0002]

【従来の技術】超音波診断装置による診断画像は、超音
波振動子から超音波ビームを被検体に送波し、この送波
による被検体からのエコー信号を前記超音波振動子によ
り受波し、この受波信号を信号処理することにより得ら
れる。この診断画像をより鮮明とし、画質をより向上さ
せ、より多くの正確な情報を生体から得たいとする要望
は強い。この診断画像の画質を向上させる方法として、
前記送波、受波の感度を向上させる、又は前記信号処理
の感度を向上させる等の各種方法が検討されている。
2. Description of the Related Art A diagnostic image obtained by an ultrasonic diagnostic apparatus transmits an ultrasonic beam from an ultrasonic transducer to a subject, and receives an echo signal from the subject by the transmission by the ultrasonic transducer. , By performing signal processing on the received signal. There is a strong demand to make this diagnostic image clearer, improve the image quality, and obtain more accurate information from the living body. As a method of improving the image quality of this diagnostic image,
Various methods have been studied, such as improving the sensitivity of the transmission and reception, or the sensitivity of the signal processing.

【0003】前記送波の感度を向上させる方法として、
凸型音響レンズにより、超音波ビームを集束させ、送波
の強度を向上させる方法が考えられる。この凸型音響レ
ンズにより集束された焦点近傍では、送波の強度が向上
するものの、焦点近傍以外では、送波の強度が低下し、
焦点近傍以外の感度が低下する。このように、凸型音響
レンズは、焦点が一点であるため、診断領域全体の診断
画像を感度良く得ることは、不可能である。
As a method for improving the sensitivity of the transmission,
A method of converging the ultrasonic beam with the convex acoustic lens and improving the intensity of the transmitted wave can be considered. In the vicinity of the focal point focused by the convex acoustic lens, the intensity of the transmitted wave increases, but in the vicinity other than the vicinity of the focal point, the intensity of the transmitted wave decreases,
The sensitivity other than near the focal point decreases. As described above, since the convex acoustic lens has a single focal point, it is impossible to obtain a diagnostic image of the entire diagnostic area with high sensitivity.

【0004】一方、幅方向に所定長を有する超音波振動
子を配列方向に複数配設する振動子アレイにおいて、配
列方向の電子フォーカス法により多点焦点を行う方法が
実用化されている。この電子フォーカス法は、超音波振
動子の送波及び受波を配列方向に、多段でフォーカスさ
せ、送波及び受波の強度を向上させることにより、診断
画像の画質を向上させている。
On the other hand, in a transducer array in which a plurality of ultrasonic transducers having a predetermined length in the width direction are arranged in the arrangement direction, a method of performing multi-point focusing by an electronic focusing method in the arrangement direction has been put to practical use. In the electronic focusing method, the transmission and reception of the ultrasonic transducers are focused in multiple directions in the arrangement direction, and the intensity of the transmission and reception is improved, thereby improving the image quality of the diagnostic image.

【0005】前記電子フォーカスを配列方向だけでな
く、幅方向にも行うことにより、送受波の感度を向上さ
せようとする提案がある。この提案では、超音波振動子
を細かく切断し、切断された超音波振動子をマトリック
ス状に配列する。このマトリックス状に配列される超音
波振動子は、送波強度を十分に保ち、かつ位置分解能を
向上させるため、十分小さくする必要がある。この十分
小さく、かつ送波強度を十分とする超音波振動子の実現
は困難のため、実現されていない。
There is a proposal to improve the sensitivity of transmitting and receiving waves by performing the electronic focusing not only in the arrangement direction but also in the width direction. In this proposal, the ultrasonic vibrator is finely cut, and the cut ultrasonic vibrators are arranged in a matrix. The ultrasonic transducers arranged in a matrix need to be sufficiently small in order to maintain sufficient transmission intensity and improve positional resolution. Since it is difficult to realize an ultrasonic vibrator that is sufficiently small and has sufficient transmission strength, it has not been realized.

【0006】これに対し、深さ方向に連続して感度を得
る「石井、佐々木:“開口合成超音波探傷法に関する基
礎検討”、非破壊検査、Vol.35、No.4、P3
26、(1985)」等による開口合成法の提案があ
る。この開口合成法は超音波ビームを集束させず、逆に
超音波ビームを深さ方向に連続的に拡散させ、開口範囲
において、前記振動子アレイの各超音波振動子で送受波
を順次行い、被検体からのエコー信号の受波を整相加算
することにより、感度を向上させる方法である。この開
口合成法では、前記振動子アレイの配列方向の長さであ
る開口をできるだけ広くし、この開口の全領域におい
て、各超音波振動子からの送受波を行う必要があり、各
超音波振動子の超音波ビームの開口角をできるだけ広く
する必要がある。この開口合成法により配列方向に連続
して感度を得ることを実現しているが、電子フォーカス
法以上の感度を得るには至っていない。
On the other hand, "Ishii, Sasaki:" Basic Study on Synthetic Aperture Ultrasonic Testing ", which obtains sensitivity continuously in the depth direction, Nondestructive inspection, Vol.35, No.4, P3
26, (1985) "and the like. This aperture synthesis method does not converge the ultrasonic beam, conversely, continuously diffuses the ultrasonic beam in the depth direction, in the aperture range, sequentially performs transmission and reception by each ultrasonic transducer of the transducer array, This is a method of improving the sensitivity by phasing and adding the reception of the echo signal from the subject. In this aperture synthesizing method, it is necessary to make the aperture, which is the length of the transducer array in the arrangement direction, as wide as possible, and to transmit and receive waves from each ultrasonic transducer over the entire area of this aperture. It is necessary to make the aperture angle of the ultrasonic beam of the child as wide as possible. Although the sensitivity is continuously obtained in the arrangement direction by the aperture synthesis method, the sensitivity has not been obtained as high as that obtained by the electronic focus method.

【0007】[0007]

【発明が解決しようとする課題】上記のように、超音波
ビームの配列方向を集束させる電子フォーカス法を用い
た超音波診断装置が実用化され、診断画像が得られてい
る。しかし、診断画像をより鮮明とし、画質をより向上
させ、より多くの正確な情報を生体から得たいとする強
い要望がある。このため、診断画像の感度を向上させる
方法として、配列方向及び幅方向に電子フォーカスする
方法の提案があるが、超音波振動子を十分小さく、かつ
送波強度を十分とすることは困難のため、実現されてい
ない。また、開口合成法により配列方向に連続して感度
を得ることを実現しているが、電子フォーカス法以上の
感度を得るには至っていない。
As described above, an ultrasonic diagnostic apparatus using an electronic focusing method for focusing the arrangement direction of ultrasonic beams has been put to practical use, and a diagnostic image has been obtained. However, there is a strong demand to make diagnostic images clearer, improve image quality, and obtain more accurate information from living bodies. For this reason, as a method of improving the sensitivity of a diagnostic image, there has been proposed a method of performing electronic focusing in the arrangement direction and the width direction. However, it is difficult to make the ultrasonic vibrator sufficiently small and transmit wave intensity sufficiently. , Not realized. In addition, although the sensitivity is continuously obtained in the array direction by the aperture synthesis method, it has not been possible to obtain a sensitivity higher than that of the electronic focus method.

【0008】本発明は、上記のような問題点を解決する
ためになされたもので、超音波ビームの送受波の感度を
向上させ、診断画像の画質を向上させる超音波診断装置
の実現を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to realize an ultrasonic diagnostic apparatus which improves the sensitivity of transmitting and receiving ultrasonic beams and improves the quality of diagnostic images. And

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、第1方向に配設された複数の超音波振動
子で構成され、超音波の送受波を行う1次元の振動子ア
レイと、前記振動子アレイにて送受波される超音波を前
記第1方向に直交する第2方向に拡散する拡散音響レン
ズと、前記第2方向に前記振動子アレイを機械的に走査
する機械走査手段と、前記第1方向について超音波の電
子走査及び電子フォーカスを行う電子フォーカス手段
と、前記振動子アレイの各機械走査位置で取得される複
数の受波信号を前記第2方向について整相加算する開口
合成手段と、を備える。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the present invention, a plurality of ultrasonic vibrations arranged in a first direction are provided.
A one-dimensional vibrator that is composed of transducers and transmits and receives ultrasonic waves.
Ray and ultrasonic waves transmitted and received by the transducer array
A diffused acoustic lens that diffuses in a second direction orthogonal to the first direction
And mechanically scans the transducer array in the second direction.
Mechanical scanning means for performing the ultrasonic scanning in the first direction.
Electronic focusing means for performing child scanning and electronic focusing
And a pattern acquired at each mechanical scanning position of the vibrator array.
Aperture for phasing and adding a number of received signals in the second direction
Combining means .

【0010】[0010]

【作用】本発明によれば、第1方向(配列方向)につい
て電子フォーカスが行われ、第2方向(超音波振動子の
幅方向)について開口合成による整相加算が行われ、す
なわち複合型のフォーカスが行われる。開口合成に当た
っては各機械走査位置で取得された受波信号が利用され
る。このため、超音波は第2方向に拡散される。
According to the present invention, in the first direction (arrangement direction),
Electronic focus is performed in the second direction (the ultrasonic vibrator
In the width direction), phasing addition by aperture synthesis is performed.
That is, a composite focus is performed. Aperture synthesis
In this case, the received signal acquired at each mechanical scanning position is used.
You. Therefore, the ultrasonic waves are diffused in the second direction.

【0011】[0011]

【実施例】本実施例は、振動子アレイの揺動方向につい
て、開口合成法を適用するに際して、超音波拡散用の音
響レンズを用いて、送波される超音波をあえて拡散させ
ることを特徴とする。また、拡散用音響レンズとして曲
率の大きい凸レンズを用い、開口合成の利点を得られに
くい振動子近傍においては音響パワーを向上させ、一
方、振動子遠方については出来る限り多くの揺動位置か
らの送波を利用して開口合成を効率的に行なうことを特
徴とする。
This embodiment is characterized in that transmitted ultrasonic waves are intentionally diffused using an acoustic lens for ultrasonic diffusion when the aperture synthesis method is applied to the oscillation direction of the transducer array. And In addition, a convex lens having a large curvature is used as the diffusion acoustic lens, and the acoustic power is improved in the vicinity of the vibrator where it is difficult to obtain the advantage of aperture synthesis. It is characterized in that aperture synthesis is performed efficiently using waves.

【0012】以下、図を用いて本発明の実施例を説明す
る。図1に振動子アレイを幅方向に機械的に揺動させつ
つ、送受波を行う原理図を示す。図1(a)は、振動子
アレイを幅方向の軌道W上を点A、B、Cと順に機械的
に揺動させつつ、超音波ビームを振動子アレイから被検
体に送波し、この送波による被検体からの反射波を受波
する場合を示す。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a principle diagram of transmitting and receiving waves while mechanically swinging the transducer array in the width direction. FIG. 1A shows an example in which an ultrasonic beam is transmitted from a transducer array to a subject while mechanically swinging a transducer array on a trajectory W in a width direction in the order of points A, B, and C. This shows a case where a reflected wave from a subject due to transmission is received.

【0013】この点A、B、Cから被検体Pまでの距離
AP、BP、CPをLA 、LB 、LC とし、音速をcと
すれば、送受波による超音波ビームの各点A、B、Cか
ら被検体までの往復時間tA 、tB 、tC は、各々tA
=2LA /c、tB =2LB/c、tC =2LC /cで
あり、各々の点A、B、Cでは反射ビームの送信から受
信までの時間が異なる。この各点での送受波の時間差を
含む受波信号を図1(b)に示す。この超音波ビームの
送受波に要する時間と超音波振動子の位置とは、図1
(b)に示されるように1対1に対応し、前記時間差に
よる位相の同期をとり整相加算することにより、軌道W
の揺動範囲を開口として実現する。
If the distances AP, BP, and CP from the points A, B, and C to the subject P are L A , L B , and L C , and the sound velocity is c, each point A of the ultrasonic beam due to the transmitted and received waves is obtained. , B, C to the subject, the round trip times t A , t B , t C are respectively t A
= 2L A / c, t B = 2L B / c, and t C = 2L C / c, and the points A, B, and C have different times from transmission to reception of the reflected beam. FIG. 1B shows a received signal including a time difference between transmitted and received waves at each point. The time required for transmitting and receiving the ultrasonic beam and the position of the ultrasonic transducer are shown in FIG.
As shown in (b), the trajectory W
Is realized as an opening.

【0014】図2に上記を実現するためのブロック図を
示す。図2において、送信回路部22により、振動子ア
レイ駆動部21を制御し、振動子アレイの送波を配列方
向に電子走査し、焦点距離方向に多段フォーカスする電
子フォーカス手段により被検体に超音波ビームを送波す
る。この被検体からの反射波であるエコー信号を前記振
動子アレイにより受波し、この受波を配列方向の焦点合
成処理部23により各電子走査位置と多段フォーカス位
置とを組み合わせ合成処理した各焦点位置のデータをA
/D変換部24において、デジタル信号に変換後、エコ
ーデータメモリ部25に格納する。
FIG. 2 is a block diagram for realizing the above. In FIG. 2, a transmitting circuit unit 22 controls a vibrator array driving unit 21 to electronically scan the transmitted wave of the vibrator array in an array direction and to apply ultrasonic waves to an object by electronic focusing means for performing multi-stage focusing in a focal length direction. Transmit the beam. Echo signals, which are reflected waves from the subject, are received by the vibrator array, and the received waves are combined by the focus combining processing unit 23 in the array direction by combining each electronic scanning position and the multi-stage focus position. A for position data
After being converted into a digital signal by the / D converter 24, the digital signal is stored in the echo data memory 25.

【0015】また、図1(b)で示したように、前記振
動子アレイの幅方向の各揺動位置と送受波の遅れ時間と
は1対1に対応し、この対応を関係づけるデータ、及び
式を揺動制御データメモリ部28に予め格納させてお
く。
Further, as shown in FIG. 1B, each oscillation position in the width direction of the vibrator array and the delay time of the transmitted / received wave correspond to one-to-one, and data for associating this correspondence, And the equation are stored in the swing control data memory unit 28 in advance.

【0016】また、前記振動子アレイ駆動部21により
前記振動子アレイの幅方向の全揺動位置の各揺動位置毎
に、順次前記エコーデータメモリ部25の所定アドレス
への格納を行う。その後、幅方向の整相加算部26によ
り、エコーデータメモリ部25のデータと揺動制御デー
タメモリ部28とを対応させ揺動位置毎の送受波の遅れ
時間による位相差を同期させることにより、前記送受波
の遅れ時間をキャンセルさせ、全揺動位置において電子
フォーカス手段により送波し、被検体からの受波データ
を整相加算する。以上により、揺動範囲を開口とする、
電子フォーカス手段によるデータが得られるため、開口
が超音波振動子の幅長から揺動領域まで広がり受波感度
が向上する。この幅方向の整相加算部26の出力結果を
D/A変換部29において、アナログ信号に変換後、C
RT表示部20に画像表示する。
The transducer array driving section 21 sequentially stores the echo data in a predetermined address of the echo data memory section 25 for each swing position of all the swing positions in the width direction of the transducer array. After that, the data in the echo data memory unit 25 and the oscillation control data memory unit 28 are made to correspond to each other by the width direction phasing addition unit 26 so that the phase difference due to the delay time of the transmission / reception wave for each oscillation position is synchronized. The delay time of the transmission / reception wave is canceled, the wave is transmitted by the electronic focusing means at all the oscillating positions, and the reception data from the subject is phased and added. As described above, the swing range is set to the opening,
Since data is obtained by the electronic focusing means, the aperture is widened from the width of the ultrasonic transducer to the swing area, and the receiving sensitivity is improved. After the output result of the width direction phasing addition unit 26 is converted into an analog signal by the D / A conversion unit 29,
An image is displayed on the RT display unit 20.

【0017】前記振動子アレイ駆動部21の構成を図3
に示す。振動子アレイ駆動部21は、幅方向31にエン
コーダ35を設けたモータ34により、機械的に振動子
アレイ30を揺動させるアレイ揺動手段と、前記振動子
アレイ30からの送波を配列方向32に電子走査させつ
つ、焦点距離方向33に多段フォーカスさせる電子フォ
ーカス手段と、前記振動子アレイ30を前記幅方向31
に揺動させつつ、前記電子フォーカス手段により送波を
被検体に放射する送波手段と、前記振動子アレイ30の
揺動位置毎に被検体からの反射波を受波する手段を備え
る。この複数の受波は、図2の幅方向の整相加算部26
により位相を同期させた後、整相加算を行う。
FIG. 3 shows the structure of the vibrator array drive section 21.
Shown in The vibrator array drive unit 21 includes an array oscillating unit that mechanically oscillates the vibrator array 30 by a motor 34 provided with an encoder 35 in the width direction 31, and transmits a wave from the vibrator array 30 in the arrangement direction. An electronic focusing means for performing multi-stage focusing in the focal length direction 33 while electronically scanning the transducer array 32;
A transmitting means for radiating a wave to the subject by the electronic focusing means while oscillating, and a means for receiving a reflected wave from the subject for each swing position of the vibrator array 30. The plurality of received waves are supplied to the phasing addition section 26 in the width direction of FIG.
After the phases are synchronized with each other, phasing addition is performed.

【0018】また、前記幅方向に凸型音響レンズを用い
た場合、送波の焦点近傍の強度を向上させ、焦点近傍の
診断画像の感度を向上させられるが、焦点近傍以外の感
度を劣化させることを、従来例で説明した。しかし、超
音波ビームを集束させる領域は、超音波振動子から焦点
までの間であり、焦点から遠距離の位置では超音波ビー
ムが拡散される。ここで、もし焦点距離を診断領域の最
短深さ方向の距離に比べ十分短い凸型音響レンズを用い
るならば、診断領域において、焦点距離方向においても
一点焦点とはならない。このように、診断領域の最短深
さ方向の距離に比べ十分短い焦点距離の凸型音響レンズ
を幅方向に対して用い、超音波ビームを焦点から遠距離
の位置で幅方向に対して拡散させることにより、受波感
度を向上させる方法が考えられる。
When the convex acoustic lens is used in the width direction, the intensity of the transmitted wave near the focal point can be improved and the sensitivity of the diagnostic image near the focal point can be improved, but the sensitivity other than near the focal point is deteriorated. This has been described in the conventional example. However, the region where the ultrasonic beam is focused is between the ultrasonic transducer and the focal point, and the ultrasonic beam is diffused at a position far from the focal point. Here, if a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic area is used, the focal point in the diagnostic area will not be one point even in the focal length direction. As described above, the convex acoustic lens having a focal length sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used in the width direction, and the ultrasonic beam is diffused in the width direction at a position far from the focal point. Thus, a method of improving the wave receiving sensitivity can be considered.

【0019】この焦点距離を、診断領域の最短深さ方向
の距離に比べ十分短くした凸型音響レンズを幅方向に用
いた場合の受波感度のシュミレーション結果を図4、5
に示す。また、焦点距離を従来と同等とした凸型音響レ
ンズを幅方向に用いた場合の受波感度のシュミレーショ
ン結果を図6、7に示す。
FIGS. 4 and 5 show simulation results of the receiving sensitivity when a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic area is used in the width direction.
Shown in FIGS. 6 and 7 show simulation results of the wave receiving sensitivity when a convex acoustic lens having a focal length equivalent to that of the related art is used in the width direction.

【0020】この図4〜7によるシュミレーションの条
件は、超音波ビームの送波周波数を3.5MHz、超音
波振動子の幅長を10mm、配列方向の長さを無限長、
配列方向の配設数を1個、幅方向の揺動半径を80mm
とし、被検体を水面とした時の深さ方向に対する幅方向
の受波感度である。ここで、X[mm]は幅方向の距
離、Y[mm]は被検体の深さ方向の距離、Z[任意単
位]は受波感度を示し、X、Yの単位長をそれぞれ、
0.3、5mmとする。
The simulation conditions shown in FIGS. 4 to 7 are as follows: the transmitting frequency of the ultrasonic beam is 3.5 MHz, the width of the ultrasonic transducer is 10 mm, the length in the arrangement direction is infinite,
The number of arrangement in the arrangement direction is one, and the swing radius in the width direction is 80 mm.
And the receiving sensitivity in the width direction with respect to the depth direction when the subject is the water surface. Here, X [mm] is the distance in the width direction, Y [mm] is the distance in the depth direction of the subject, Z [arbitrary unit] indicates the receiving sensitivity, and the unit length of X and Y is,
0.3 and 5 mm.

【0021】図4、5は、凸型音響レンズの幅方向の焦
点距離を20mmとし、図6、7は、凸型音響レンズの
幅方向の焦点距離を80mmとし、さらに図4、6は幅
方向の揺動を行わない場合、図5、7は幅方向の揺動を
行った場合のシュミレーション結果である。
FIGS. 4 and 5 show that the focal length of the convex acoustic lens in the width direction is 20 mm, FIGS. 6 and 7 show that the focal length of the convex acoustic lens in the width direction is 80 mm, and FIGS. FIGS. 5 and 7 show the simulation results in the case where the swing in the width direction is not performed.

【0022】初めに、幅方向に揺動を行わない場合のシ
ュミレーション結果を検討する。焦点距離が80mmで
ある図6は、深さ方向に対しては、ほぼ全域で受波があ
る程度絞られているが、焦点近傍以外の領域では、感度
が下がり、かつ振動子近傍での音場が乱れている。一
方、焦点距離が20mmである図4では、振動子近傍の
感度は上がり、それ以外では感度が低下しているもの
の、音場が一様に広がり、音場の乱れを生じていない。
First, a simulation result in the case where the swinging is not performed in the width direction will be examined. In FIG. 6 in which the focal length is 80 mm, in the depth direction, the received wave is narrowed down to some extent in almost the entire region, but in a region other than the vicinity of the focal point, the sensitivity is reduced, and the sound field near the vibrator is reduced. Is disturbed. On the other hand, in FIG. 4 in which the focal length is 20 mm, the sensitivity near the vibrator is increased, and the sensitivity is reduced in other areas, but the sound field is uniformly spread and the sound field is not disturbed.

【0023】次に、幅方向の揺動を行う場合のシュミレ
ーション結果を検討する。焦点距離が80mmである図
7は、前記揺動を行わない場合の図6に比べ、深さ方向
のほぼ全域で感度が向上しているものの、図6におい
て、振動子近傍で乱れていた音場は、幅方向の揺動によ
り、受波が幅方向に重なり合い、幅方向の中央部で、一
段と音場の乱れが拡大されている。一方、焦点距離が2
0mmである図5では、前記揺動を行わない場合の図4
において、音場の乱れは生じていないものの、振動子近
傍以外では感度が低下していた、これが図5では、音場
の乱れを生じさせないままで、被検体の深さ方向のほぼ
全域で感度を上昇させている。
Next, a simulation result when swinging in the width direction is examined. In FIG. 7 in which the focal length is 80 mm, although the sensitivity is improved in almost the entire region in the depth direction as compared with FIG. 6 in the case where the swing is not performed, in FIG. In the field, the received waves overlap in the width direction due to the swing in the width direction, and the disturbance of the sound field is further increased at the center in the width direction. On the other hand, if the focal length is 2
In FIG. 5, which is 0 mm, FIG.
In FIG. 5, although the disturbance of the sound field did not occur, the sensitivity was reduced except in the vicinity of the vibrator. This is shown in FIG. Is rising.

【0024】以上のように、焦点距離が診断領域の最短
深さ方向の距離に比べ十分短い凸型音響レンズを用い、
診断領域において超音波ビームを幅方向に対し拡散さ
せ、かつ幅方向に機械的に揺動させ、受波を開口合成す
ることにより、深さ方向に連続的に受波感度を向上させ
ることが示された。
As described above, a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used.
It is shown that the ultrasonic beam is diffused in the width direction and mechanically oscillated in the width direction in the diagnostic area, and the reception sensitivity is continuously improved in the depth direction by aperture synthesis of the reception wave. Was done.

【0025】なお、上記において、幅方向の揺動とし
て、円弧状を揺動する場合を示したが、幅方向に直線上
に揺動させても同様の効果がある。また、幅方向に送波
を拡散させる方法として、焦点距離を診断領域の最短深
さ方向の距離に比べ十分短い凸型音響レンズを用いる場
合を示したが、凹型音響レンズにより超音波ビームを幅
方向に対し拡散させても同様の効果がある。すなわち、
超音波拡散用の音響レンズを用いればよい。
In the above description, the swing in the width direction has been described as swinging in an arc shape. However, the same effect can be obtained by swinging in a straight line in the width direction. Also, as a method of diffusing the transmission in the width direction, a case where a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is shown. The same effect can be obtained by diffusing in the direction. That is,
An acoustic lens for ultrasonic diffusion may be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
診断画像の画質を向上させることができる。
As described above, according to the present invention ,
The image quality of the diagnostic image can be improved .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る振動子アレイを幅方向
に揺動させつつ、送受波を行う原理図である。
FIG. 1 is a principle diagram of transmitting and receiving waves while swinging a transducer array according to an embodiment of the present invention in a width direction.

【図2】本発明の一実施例に係る振動子アレイを幅方向
に揺動させつつ、送受波を行うブロック構成図である。
FIG. 2 is a block diagram illustrating a configuration in which a transducer array according to an embodiment of the present invention transmits and receives waves while swinging in a width direction.

【図3】本発明の一実施例に係る振動子アレイ駆動部の
構成図である。
FIG. 3 is a configuration diagram of a transducer array driving unit according to one embodiment of the present invention.

【図4】焦点距離20mm、揺動なしの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。
FIG. 4 is a diagram illustrating a simulation result of a sensitivity distribution of a received wave of the ultrasonic transducer when the focal length is 20 mm and there is no oscillation.

【図5】本発明の一実施例に係る、焦点距離20mm、
揺動ありの場合の超音波振動子の受波の感度分布のシュ
ミレーション結果を示す図である。
FIG. 5 shows a focal length of 20 mm according to one embodiment of the present invention.
FIG. 9 is a diagram illustrating a simulation result of a sensitivity distribution of a received wave of the ultrasonic transducer in a case where there is oscillation.

【図6】焦点距離80mm、揺動なしの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。
FIG. 6 is a diagram illustrating a simulation result of a sensitivity distribution of a received wave of the ultrasonic transducer when the focal length is 80 mm and there is no oscillation.

【図7】焦点距離80mm、揺動ありの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。
FIG. 7 is a diagram illustrating a simulation result of a sensitivity distribution of a received wave of the ultrasonic transducer when the focal length is 80 mm and there is oscillation.

【符号の説明】[Explanation of symbols]

21 振動子アレイ駆動部 23 配列方向の焦点合成処理部 25 エコーデータメモリ部 26 幅方向の整相加算部 27 揺動制御部 28 揺動制御データメモリ部 30 振動子アレイ 31 配列方向 32 幅方向 33 焦点距離方向 34 モータ 35 エンコーダ Reference Signs List 21 transducer array driving section 23 focus synthesis processing section in arrangement direction 25 echo data memory section 26 phasing addition section in width direction 27 swing control section 28 swing control data memory section 30 transducer array 31 arrangement direction 32 width direction 33 Focal length direction 34 Motor 35 Encoder

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1方向に配設された複数の超音波振動
子で構成され、超音波の送受波を行う1次元の振動子ア
レイと、 前記振動子アレイにて送受波される超音波を前記第1方
向に直交する第2方向に拡散する拡散音響レンズと、 前記第2方向に前記振動子アレイを機械的に走査する機
械走査手段と、 前記第1方向について超音波の電子走査及び電子フォー
カスを行う電子フォーカス手段と、 前記振動子アレイの各機械走査位置で取得される複数の
受波信号を前記第2方向について整相加算する開口合成
手段と、 を備えることを特徴とする超音波診断装置。
1. A plurality of ultrasonic vibrations arranged in a first direction
A one-dimensional vibrator that is composed of transducers and transmits and receives ultrasonic waves.
Ray and ultrasonic waves transmitted and received by the transducer array are transmitted to the first direction.
A diffused acoustic lens that diffuses in a second direction orthogonal to the direction, and a machine that mechanically scans the transducer array in the second direction
Mechanical scanning means, electronic scanning and electronic scanning of ultrasonic waves in the first direction.
Electronic focusing means for performing scum, and a plurality of electronic focusing means obtained at each mechanical scanning position of the vibrator array
Aperture synthesis for phasing and adding received signals in the second direction
Ultrasonic diagnostic apparatus characterized by comprising: a means.
【請求項2】(2) 請求項1記載の装置において、The device of claim 1, 前記拡散音響レンズは、前記アレイ振動子の近傍に焦点The diffuse acoustic lens focuses near the array transducer
距離をもった凸型の音響レンズであることを特徴とするIt is a convex acoustic lens with a distance
超音波診断装置。Ultrasound diagnostic equipment.
JP6032331A 1994-03-02 1994-03-02 Ultrasound diagnostic equipment Expired - Fee Related JP2723464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032331A JP2723464B2 (en) 1994-03-02 1994-03-02 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032331A JP2723464B2 (en) 1994-03-02 1994-03-02 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH07236642A JPH07236642A (en) 1995-09-12
JP2723464B2 true JP2723464B2 (en) 1998-03-09

Family

ID=12355968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032331A Expired - Fee Related JP2723464B2 (en) 1994-03-02 1994-03-02 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP2723464B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094963B2 (en) * 2007-05-15 2012-12-12 シーメンス アクチエンゲゼルシヤフト Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave
JP2009028366A (en) * 2007-07-27 2009-02-12 Toshiba Corp Ultrasonic diagnostic apparatus
JP5393256B2 (en) 2009-05-25 2014-01-22 キヤノン株式会社 Ultrasonic device
JP5653125B2 (en) * 2010-08-19 2015-01-14 キヤノン株式会社 Subject information acquisition device
JP2012061141A (en) * 2010-09-16 2012-03-29 Canon Inc Apparatus and method for acquiring subject information
JP5709958B2 (en) * 2013-10-15 2015-04-30 キヤノン株式会社 apparatus
JP2016104279A (en) * 2016-02-29 2016-06-09 キヤノン株式会社 Subject information acquisition apparatus and subject information acquisition method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183148A (en) * 1982-04-19 1983-10-26 株式会社東芝 Ultrasonic diagnostic apparatus
JPS6431047A (en) * 1987-07-28 1989-02-01 Fuji Electric Co Ltd Composite ultrasonic probe of ultrasonic diagnostic apparatus
JPH0443957A (en) * 1990-06-11 1992-02-13 Hitachi Ltd Ultrasonic image pickup system
JP3329485B2 (en) * 1992-06-15 2002-09-30 株式会社東芝 Ultrasound diagnostic equipment

Also Published As

Publication number Publication date
JPH07236642A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US6790182B2 (en) Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium
US6923066B2 (en) Ultrasonic transmitting and receiving apparatus
JPH09313487A (en) Method and device for ultrasonic three-dimensional photographing
KR100274653B1 (en) Method of ultrasonic 3-dimension imaging using cross array
JP2723464B2 (en) Ultrasound diagnostic equipment
JPH10179579A (en) Utrasonograph
JPH02147052A (en) Electronic scanning type ultrasonic diagnosing device
JP2000325343A (en) Ultrasonic diagnostic apparatus and wave transmitter/ receiver
JPH0862196A (en) Ultrasonic diagnostic apparatus
JP2000333947A (en) Ultrasonograph
JP2784788B2 (en) Ultrasound diagnostic equipment
JPH06339479A (en) Ultrasonic diagnostic device
JPS5937940A (en) Ultrasonic diagnostic apparatus
JP4154043B2 (en) Ultrasonic imaging device
JPS60242365A (en) Ultrasonic inspecting device
JPH02228952A (en) Ultrasonic diagnostic apparatus
JPS59115027A (en) Ultrasonic diagnostic apparatus
JP2569024B2 (en) Ultrasound diagnostic equipment
JPH0292344A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe
JPH07148167A (en) Ultrasonic diagnostic apparatus
JPH114824A (en) Method for forming image by projecting minimum value and ultrasonic image pick-up device
JP2515804B2 (en) Fan-type scanning ultrasonic flaw detector
JPH07120244A (en) Visualizing method in supersonic photographing device
JPH06237931A (en) Imaging method in ultrasonic image pickup device
JP3236672B2 (en) Ultrasound diagnostic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees