JPS59157279A - Vapor deposition device for thin film - Google Patents

Vapor deposition device for thin film

Info

Publication number
JPS59157279A
JPS59157279A JP24258883A JP24258883A JPS59157279A JP S59157279 A JPS59157279 A JP S59157279A JP 24258883 A JP24258883 A JP 24258883A JP 24258883 A JP24258883 A JP 24258883A JP S59157279 A JPS59157279 A JP S59157279A
Authority
JP
Japan
Prior art keywords
thin film
substrate
vapor deposition
counter electrode
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24258883A
Other languages
Japanese (ja)
Other versions
JPH0216380B2 (en
Inventor
Wasaburo Oota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24258883A priority Critical patent/JPS59157279A/en
Publication of JPS59157279A publication Critical patent/JPS59157279A/en
Publication of JPH0216380B2 publication Critical patent/JPH0216380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Abstract

PURPOSE:To enable formation of a film deposited by evaporation having high adhesive strength in the stage of forming the thin film of a metal, alloy or their compd. by vapor deposition on a substrate surface in a vacuum vessel by ionizing the fine particles of vapor deposition material. CONSTITUTION:A counter electrode 12 attached with a substrate 13 on which a thin film of a metal such as Al, Au or the like or the oxide, fluoride or sulfide of the metal or the alloy thereof is to be deposited by evaporation is placed in a vacuum vessel 2. A coil 10, a grid 8, a filament 6 and a vapor deposition source 4 are disposed successively in said vessel. The inside of the vessel 2 is evacuated and the atmosphere mixed with an inert gas such as Ar and an active gas such as O2, NH3, H2S or the like according to the kind of the thin film to be deposited by evaporation, i.e., oxide, nitride, sulfide, etc. is formed therein. The source 4 is electrically heated to evaporate and the vapor thereof collides against the thermion emitted from the filament 6 and releases an outer shell electron which is made positive ion. The rate of ionization is increased by the grid impressed with a positive voltage and the ion is accelerated by the coil 10 of a negative pole and advances toward the counter electrode 12 of a negative pole so as to react with the active gas and to form the oxide, nitride or sulfide, which collides at a high speed against the substrate 13 surface, thereby forming the thin film having high adhesive strength thereon.

Description

【発明の詳細な説明】 この発明は、薄膜蒸着装置に関する。[Detailed description of the invention] The present invention relates to a thin film deposition apparatus.

被蒸着基板上に薄膜を蒸着形成する装置は従来、種々の
ものが知られ、その方式も極めて多岐にわたる。
Various types of apparatuses for forming thin films on a substrate to be vapor-deposited have been known in the past, and their methods are also extremely diverse.

しかし、従来の薄膜蒸着装置にあ−)では、形成さ肛た
薄膜の、被蒸着基板との密着性が弱かったり、あるいは
、耐熱性のない被蒸着基板上への?4り膜形成か困難で
ある等の問題かあった。
However, with conventional thin film deposition equipment, the adhesion of the formed thin film to the substrate to be deposited is weak, or the thin film formed does not adhere to the substrate to be deposited, which does not have heat resistance. There were problems such as difficulty in forming a four-layer film.

本発明の目的は、被蒸着基板に苅し、極めて憇い′&j
着力をもった薄膜を蒸着形成でき、なおかつ、耐熱性の
ないプラスチックス笠をも被蒸着基板として用いうる、
新方式の薄膜蒸着装置の提供にある。
The object of the present invention is to provide a substrate to which a deposition is to be performed, and to
A thin film with adhesive strength can be formed by vapor deposition, and even a plastic shade without heat resistance can be used as a substrate to be vapor-deposited.
The purpose is to provide a new method of thin film deposition equipment.

以下、本発明を説明する。The present invention will be explained below.

本発明による薄膜蒸着装置は、真空槽と、対電極と、ク
リッドと、熱電子発生用のフ、rラメントと、高周波電
磁界発生用の電極とを有する。
The thin film deposition apparatus according to the present invention includes a vacuum chamber, a counter electrode, a lid, a filament for generating thermoelectrons, and an electrode for generating a high frequency electromagnetic field.

真空槽内には、活性カスもしくは不活性カス、あるいは
、これら両者の混合カスか導入さ抗る5、文、j′屯極
は真空1ijl)内に配fIiitされ、被蒸着Jii
;仮を保持し、かつ、1−記彼蒸着基板を蒸発)V;(
ど対白さ仕る。また、蒸発源と対電極とは、同電位にお
かJLろ。
Active scum, inert scum, or a mixture of the two is introduced into the vacuum chamber.
;Temporarily hold and 1-evaporate the vapor deposition substrate)V;(
Who is white? Also, the evaporation source and counter electrode should be at the same potential.

クリソ1へは、蒸発物質を通過させうるものであって、
蒸発源と対電極どの間に配備され、対電極の電位に対し
て正電位におかれる。
Chryso1 is capable of passing evaporated substances,
It is placed between the evaporation source and the counter electrode, and is placed at a positive potential with respect to the potential of the counter electrode.

対電極と蒸発源とは同電位であるから、こ、11に1よ
って、真空槽内に、グリノ(・かl−1被蒸着基1反に
向う電界ど、クリットから蒸着源に向う電界どか逆向き
に形成さ牲る。
Since the counter electrode and the evaporation source are at the same potential, according to 11. Formed in the opposite direction.

熱電子発生用のフィラノン1−・は、真空槽内の、上記
り1j〕1−に関し、蒸着源側に配備され、二のフィラ
メントにより発生すイ)熱電子は、蒸発物質の一部をイ
オン化するのに供される。
Filanon 1- for generating thermionic electrons is placed on the vapor deposition source side in relation to the above 1j] 1- in the vacuum chamber, and the thermionic electrons generated by the second filament ionize a part of the evaporated substance. provided for.

高周波電磁界発生用の電極は、クリソI・ど、判電極と
の間に高周波電磁界を発生するへく、真空槽内または外
に設けられ、上記高周波電磁界は、蒸発物質のイオン化
に用い3+ 、fする。
The electrode for generating a high frequency electromagnetic field is installed inside or outside the vacuum chamber to generate a high frequency electromagnetic field between the electrode and the electrode, and the high frequency electromagnetic field is used to ionize the evaporated substance. 3+, f.

蒸着源からの蒸発物質は、その一部か、フィラメント脂
中+2)の電子により正イオン1こイオンII:、され
る。このように−+ F4+−イオン化さ4また蒸発物
質(±、クリットを通過し1、さらに、イオン化された
カスにより正イオンにイオン化を促進され、」ユ記電v
−の作用により被蒸着基板の方へ加速される。
Some of the evaporated substances from the vapor deposition source are converted into positive ions by +2) electrons in the filament fat. In this way, -+F4+- is ionized 4 and passes through the evaporated substance (±, 1), which is further promoted to ionize into positive ions by the ionized dregs.
- is accelerated toward the substrate to be deposited.

なお、)7rラスン1−からの電子はグ1jノドに吸収
され、るため、被蒸着基板へ達せず、被蒸着基板に2j
する電子衝撃による加熱がない。したかて)で、プラス
チ7クク、の如く、耐熱性のないものでも、被蒸着基板
とすることができる。
Note that the electrons from )7r lasn 1- are absorbed by the node 1j, so they do not reach the substrate to be evaporated, and 2j
There is no heating due to electron impact. Even materials without heat resistance, such as plastics, can be used as the substrate to be deposited.

以下、図示の実施例に即し、で説明する。。The following description will be made based on the illustrated embodiment. .

図において、ベースプレー1へ1とペルジャー2とは、
パラキンク21を介して−・(本イヒされ真空槽を構成
している。ベースプレー1〜1は、支持体兼用の電極3
,5,7,9.IIによ11貫通されてし)るか、こ;
11. IE+支持体兼用電極3等の貫通部はもちろ/
v ’X ’J2状態であり、さらにこれら支持体兼用
電極3.5,7,9,11とベースプレー1・1とは電
気的に絶縁されている。またベースプレー1−1の中央
部に穿設された孔IAは図示されない真空系へ連結され
ている。
In the figure, Baseplay 1 to 1 and Pelger 2 are:
Through the para-kink 21 - (this is done and constitutes a vacuum chamber. The base plates 1 to 1 are connected to the electrode 3 which also serves as a support.
, 5, 7, 9. 11 pierced by II) or this;
11. Penetration parts such as IE + support electrode 3 etc./
v ′ Further, a hole IA formed in the center of the base plate 1-1 is connected to a vacuum system (not shown).

一対の支持体兼用電極3は、その間に、タングステン、
モリブデンなどの金属をコイル状に形成した、抵抗加熱
式の蒸発源4を支持している。
The pair of support electrodes 3 are made of tungsten,
It supports a resistance heating type evaporation source 4 made of a metal such as molybdenum formed into a coil shape.

なお、このような蒸発源に替えて、′電子ヒーム蒸発源
など、従来の真空蒸着法式で用いら、ltでいる蒸発源
を適宜使用することができる。
Note that instead of such an evaporation source, an evaporation source used in a conventional vacuum evaporation method, such as an electron beam evaporation source, can be used as appropriate.

A対の支持体兼用電極5の間には、タングステン等によ
る、熱電子発生用のフィラメント6が支持されている。
A filament 6 made of tungsten or the like for generating thermoelectrons is supported between the A pair of support electrodes 5.

このフィラメント6Q形状は、複数本のフ2fう、メン
トを平行に配列したり、あるいは綱目状にしたりするな
どして、蒸発源から蒸発した蒸発物質の粒子の拡がりを
カバーするように定め1られている。
The shape of the filament 6Q is determined by arranging a plurality of filaments in parallel or in the form of a wire to cover the spread of particles of the evaporated substance evaporated from the evaporation source. ing.

支持体兼用電極7には、グリッド8が支持されている。A grid 8 is supported on the support electrode 7 .

このグリッドは、蒸発物質を通過させうる形状に形状を
定められるのであるか、この例では、綱1」状である。
This grid is shaped to allow the evaporated material to pass through, in this example a 1'' shape.

支持体兼用電極9には、コイル10か支持されている。A coil 10 is supported on the support electrode 9 .

コイル10は、グリッド8に関し、蒸発源4゜フィラノ
ン1へ6と反文・j側にある。コイル10の巻き数は1
以七であって、具体的状況に応じて適宜に定められる。
The coil 10 is located on the side opposite to the evaporation source 4° to the filanone 1 and 6 with respect to the grid 8. The number of turns of coil 10 is 1
The following seven terms and conditions shall be determined as appropriate depending on the specific circumstances.

また必すしもコイル形状でなく円筒状であっても棒(線
)状であってもよい。
Further, it is not necessarily in the shape of a coil, but may be in the shape of a cylinder or a rod (wire).

支持体11には対電極12か支持さ才11、その下位に
は、被蒸着基板13か適宜の方法で保持さ、tする。二
の状態を蒸発源4の側かlミ)見れは、被蒸着基板13
の背後に対電極)2か配備されろこととなる。
A counter electrode 12 is supported on the support 11, and a substrate 13 to be deposited is held below it by an appropriate method. The second state is seen from the side of the evaporation source 4).
A counter electrode (2) must be placed behind the electrode.

さて支持体兼用電極3,5,7,9.IIは導電体であ
って電極としての役割を兼ねており、そ:lt Q)の
、頁空漕外へ突出した端部間は図示の如く種々の電源に
接続されている。
Now, the support electrodes 3, 5, 7, 9. II is a conductor that also serves as an electrode, and the end portions of Q) that protrude outside the page space are connected to various power sources as shown.

ます、1対の支持体兼用電極3は蒸発源用電源14を介
して接続されている。また、)対の支↑1j体兼用@極
5の間にはフィラメント用電源15か接続されている。
First, the pair of support electrodes 3 are connected via an evaporation source power source 14. Further, a filament power source 15 is connected between the pair of supports ↑1j @pole 5.

さらに、支持体兼用電極9には高周波電源17の出力端
子か接続されている。そして、支持体兼用電極7か、直
流電圧電源1Gの正端子に、支持体兼用電極11が、同
電源16の負端子に接続されている。図中の接地は必l
ミ)すしも必要ない。
Further, the output terminal of a high frequency power source 17 is connected to the support electrode 9. The support electrode 7 is connected to the positive terminal of the DC voltage power source 1G, and the support electrode 11 is connected to the negative terminal of the power source 16. Grounding in the diagram is mandatory.
M) There is no need for sushi.

実際には、これメン)電気的接続は、種々のスイッチを
含み、これらスイッチの操作により、蒸着ブ ′ロセス
を実現するのであるか、これl?、スイッチは図中に示
さ」tでいない。
In reality, the electrical connections include various switches, and the operation of these switches realizes the deposition process. , switches are not shown in the figure.

以下、この装置例による薄膜蒸着につき説明する。Hereinafter, thin film deposition using this example of the apparatus will be explained.

被蒸着基板13を図の如くセットして、蒸着物質を蒸発
源・1に保持させる。蒸着物質は勿論、とのような簿膜
を形成するかに応じて定まる。例えばアルミニラ。ムや
金のような金属、あるいは金属の酸化物、弗化物、硫r
ヒ物、あるいは合金等である。
The substrate 13 to be evaporated is set as shown in the figure, and the evaporation material is held in the evaporation source 1. The material to be deposited will of course be determined depending on whether the desired film is to be formed. For example, aluminum. Metals such as aluminum and gold, or metal oxides, fluorides, and sulfur
It is a fireworks or an alloy.

また、真空槽内には、あらかしめ、活性力2、もしくは
不活性カス、あるいは、これ’EI PU合カスか10
−′〜10−″Torrの圧力で導入さJしる。ここて
は、説明の具体性のため、導入カスは、例えはアルコン
等の不活性カスであるとする。
In addition, in the vacuum chamber, there is a mixture of active force 2, inert dregs, or this 'EI PU combined dregs 10.
-' to 10-'' Torr.Here, for the sake of concreteness, it is assumed that the introduced scum is an inert scum, such as an alcone.

さて、この状態において、装置を作動させると、蒸発源
による加熱により、蒸発源4に保持された蒸着物質は蒸
発する。
Now, when the apparatus is operated in this state, the evaporation material held in the evaporation source 4 is evaporated by heating by the evaporation source.

蒸発物質すなわち、蒸発した蒸着物質の粒子は、拡がり
をもって、被蒸着基板13の側へ向って飛行するか、そ
の一部は、フ、rラメン1〜[コより放出された熱電子
との衝突によって外殻′電子かはしき出され、正イオン
にイオン(ヒされる。
The evaporated material, that is, the particles of the evaporated material, spread out and fly toward the deposition target substrate 13, or some of them collide with thermionic electrons emitted from the lamens 1 to 1. The outer shell electrons are pushed out and converted into positive ions.

このように、一部イふン1ヒされた蒸発物質はクリソ1
<8を通過するか、その際、グリッド近傍において1−
下に振動運動する熱電子の衝突により、さらにイオン(
ヒ率か高めlう、れる。
In this way, the partially evaporated substance becomes chryso1
<8, or in that case, 1- in the vicinity of the grid
Collisions of downwardly vibrating thermionic electrons further cause ions (
The hit rate is high.

一方、コイル]0の内部では、導入さ朴たカスが、コイ
ル10によって発生する高周波電磁界による励起でイオ
ン化だれている。
On the other hand, inside the coil 0, the introduced particles are ionized by excitation by the high frequency electromagnetic field generated by the coil 10.

クリット8を通過した蒸発物質中、未だイオンイヒされ
ていない部分は、さらに、−に記イオン化され、たカス
との衝突により、正イオンにイオン化さ肛る。
The portion of the evaporated material that has passed through the crit 8 that has not yet been ionized is further ionized as indicated by -, and is ionized into positive ions by collision with the dregs.

かくして、正イオンにイオン化ごれた蒸発物質は、クリ
ソ・1・8から対電極]2に向う電界の作用により被蒸
着基板13に向って加速され、被蒸着j& tJ213
に高速で衝突付看する。かくシ、て、非常に重石性の良
′い薄膜蒸着がなされる。上記密着性の顕著な向上は、
蒸発物質のイオン化率の向上1.;よるものであるか、
この発明により、イオン1ヒ率が顕著に向上するのであ
る。正確な数値は、現在のところ未だ1()ら扛でいな
いが、数10%のイオン化率が実験的に確認さ、11.
でいる。
In this way, the evaporated substance ionized into positive ions is accelerated toward the deposition target substrate 13 by the action of the electric field from the chryso-1.
A collision occurs at high speed. In this way, a thin film with very good grain resistance is deposited. The above remarkable improvement in adhesion is due to
Improving the ionization rate of evaporated substances 1. ;Is it due to
This invention significantly improves the ion 1 Hi rate. Although the exact numerical value is not yet 1(), an ionization rate of several tens of percent has been experimentally confirmed.11.
I'm here.

また、熱電子は、その大部分かクリソ1へ8に吸収され
る。一部の熱電子はクリソi・8を通過するが、グリッ
ド8と被蒸着基板13との間で、前記電界の作用により
減速されるので、仮に?& !f’r :!+り仮j3
に到達しても、開基vj、+ 3を加熱する(こは到r
1.な1.1゜ 本発明においては、蒸発物質のイオン1ヒ率が極めて高
いため、真空槽内に、活性カスを、単独で、あるいは不
活性カスとともに導入して蒸着を行うことにより、蒸発
物質ど活慴刀スどを1ヒ合ごせ、この化合物により薄膜
を形成す2)場合にも、所望の物性を打する薄膜を容易
に青ることがてきる。
Moreover, most of the thermoelectrons are absorbed by chryso1 and 8. Some of the thermoelectrons pass through Chryso I-8, but they are decelerated by the action of the electric field between the grid 8 and the substrate 13 to be deposited, so what if? &! f'r:! + Rikari j3
Even if it reaches , it heats the open radical vj, +3
1. 1.1゜In the present invention, since the ion flux rate of the evaporated substance is extremely high, the evaporated substance is removed by introducing active scum alone or together with inert scum into the vacuum chamber. Even in the case of forming a thin film with this compound by combining one layer of dokatsukaitosudo (2), it is possible to easily form a thin film with desired physical properties.

f911えば、不活性ガスとしてアルコン、活性カスと
して酸素を導入し、圧力を10−3乃至1O−4Tor
rに調整し、蒸発物質としてアルミニウムを選択すれは
、被蒸着基板上にAl2O,の薄膜を形成することがで
きる。又この場合、蒸発物質としてSlまたはS10を
選べは、S】02の薄膜を1!することかでき、蒸発物
質どして■1)、7.nを選べは、それそ九In O、
ZnOの薄膜が得られる。
For example, in f911, alcon is introduced as an inert gas and oxygen is introduced as an active gas, and the pressure is set to 10-3 to 1O-4 Torr.
By adjusting the temperature to r and selecting aluminum as the evaporation material, a thin film of Al2O can be formed on the substrate to be evaporated. In this case, if you choose Sl or S10 as the evaporation substance, the thin film of S]02 is 1! 1), 7. If you choose n, it's nine In O.
A thin film of ZnO is obtained.

 3 又、品性カスとして、H2S 、蒸発物ヂtとして(、
dを選択す九はCdSの薄膜か得られる。また、活性カ
ン、としてアンモニアを)′ルコンと共しS用い蒸発物
質としてI”i、Taをjパベは、’l’ IN +1
.1Nなどの薄膜に得ることも可能である。。
3 In addition, as quality residue, H2S, as evaporated matter (,
By selecting d, a thin film of CdS can be obtained. In addition, ammonia as an active compound)' with S as an evaporative substance, I''i with Ta as an evaporative substance, 'l' IN +1
.. It is also possible to obtain a thin film such as 1N. .

なお、真空槽内のカスのイオンでヒには、高周波電磁界
のみな1らす、フィラーメン1〜による熱電子も有効に
寄与するので、10−” Tor+・以上の高度の↓゛
(吹下においても蒸発物質のイオン化か可能であり、こ
のため、薄膜の構造を(伸めて、ち密なものとすること
か可能である。さらに、このように高度の真空下での蒸
着を行うことにより、薄膜中へのカス分子の取り込みを
極めて少なくすることかでき、極めて高純度の薄膜を得
ることか可能どなる。すなわち、本発明の薄膜蒸着装置
は、Ic、1.ST宿′を構成する半導体簿膜や、・そ
の電極としての高純度金属薄膜の形成に適している。
In addition, not only the high-frequency electromagnetic field but also the thermionic electrons from the filament 1~ contribute effectively to the heat generated by the ions of the waste in the vacuum chamber. It is possible to ionize the evaporated substance even under a high vacuum, and therefore it is possible to stretch the structure of the thin film and make it more compact. As a result, the incorporation of waste molecules into the thin film can be extremely reduced, making it possible to obtain a thin film of extremely high purity.In other words, the thin film deposition apparatus of the present invention constitutes Ic, 1.ST host'. Suitable for forming semiconductor films and high-purity metal thin films as electrodes.

なお、図において、コイル10の軸は、蒸発物質イオン
加速用電界の方向と平行であるが、もちろん、上記軸と
電界の方向とを、互いに交わるようにしても良い。また
必すしもコイル形状をなす必要はな(、要は上記クリソ
1−8どス・1電極12の間に高周波電磁界を発生させ
うれはよいので、必すしも真空槽内に配備されていなく
どもよい。
In the figure, the axis of the coil 10 is parallel to the direction of the electric field for accelerating evaporated substance ions, but of course the axis and the direction of the electric field may intersect with each other. Also, it is not necessarily necessary to form a coil shape (in short, since it is good to generate a high frequency electromagnetic field between the above-mentioned chrysoline electrodes 1-8 and 1 electrode 12, it is not necessarily necessary to have a coil shape. Don't worry.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の1実施例を示す一部断面正面図である。 1・・・・ヘースプレー1−12・・・・・ヘルツA・
−14・・・蒸発源、6・・・フーrラメント、8・・
クリソ1く、10  ・コイル、12・・・対電極、1
3  ・・被蒸着基t1M、1G・・・・直流電圧電源
、]7・・・・高周波電源。 代理人 1m  ui   を艷(へ
The figure is a partially sectional front view showing one embodiment of the present invention. 1...Haspray 1-12...Hertz A.
-14...Evaporation source, 6...Furament, 8...
Chryso 1, 10 ・Coil, 12...Counter electrode, 1
3... Vapor deposition target t1M, 1G... DC voltage power supply, ]7... High frequency power supply. Agent 1m ui to

Claims (1)

【特許請求の範囲】 活性カスもしくは不活性カス、衣)るいは、こ九ら両者
の混合カスを導入する真空槽と、この真空槽内において
、蒸発物質を蒸発させるための蒸発)原ど、 上記真空槽内に配fliffされ、被蒸着基板を上記蒸
発源に対向するように保持し、かつ、上記蒸発源と同電
位におかれる対電極と、 上記蒸発源と対電極どの間に配備さ九、蒸発物質を通過
させうるグリッドど、 このクリットを、対電極、蒸発源の電位に列し2、iU
′:電(r7とする手段と、 」1記真空槽内において、」1記グリッドに関し、蒸発
源側に配備さ、t′L、蒸発物質の一部をイオン化する
ための、熱電子発生用のフィラメン1へど、上記真空槽
内または真空梗1外に配(#fされ蒸発物質をイオン化
するための高周波電磁界を上記グリッドと対電極との間
に発生させる電極とを有する、薄膜蒸着装置。
[Scope of Claims] A vacuum chamber into which active scum, inert scum, batter, or a mixture of both of these scum is introduced, an evaporation source for evaporating evaporated substances in the vacuum chamber, a counter electrode disposed in the vacuum chamber, holding the substrate to be evaporated so as to face the evaporation source, and placed at the same potential as the evaporation source; and a counter electrode disposed between the evaporation source and the counter electrode. 9. A grid through which the evaporated substance can pass, align this grid with the potential of the counter electrode, the evaporation source, and 2. iU
′: means for generating an electric current (r7), and t′L, a means for generating thermoelectrons for ionizing a part of the evaporated substance; A thin film deposition method having an electrode disposed inside the vacuum chamber or outside the vacuum chamber 1 to the filament 1 of Device.
JP24258883A 1983-12-22 1983-12-22 Vapor deposition device for thin film Granted JPS59157279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24258883A JPS59157279A (en) 1983-12-22 1983-12-22 Vapor deposition device for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24258883A JPS59157279A (en) 1983-12-22 1983-12-22 Vapor deposition device for thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17969783A Division JPS5989763A (en) 1983-09-28 1983-09-28 Vapor deposition device for thin film

Publications (2)

Publication Number Publication Date
JPS59157279A true JPS59157279A (en) 1984-09-06
JPH0216380B2 JPH0216380B2 (en) 1990-04-17

Family

ID=17091286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24258883A Granted JPS59157279A (en) 1983-12-22 1983-12-22 Vapor deposition device for thin film

Country Status (1)

Country Link
JP (1) JPS59157279A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007916A1 (en) * 1986-06-18 1987-12-30 Ricoh Company, Ltd. Thin film forming apparatus
US4974544A (en) * 1986-10-07 1990-12-04 Ricoh Company, Co. Vapor deposition apparatus
US4982696A (en) * 1988-01-08 1991-01-08 Ricoh Company, Ltd. Apparatus for forming thin film
US5114559A (en) * 1989-09-26 1992-05-19 Ricoh Company, Ltd. Thin film deposition system
US5133849A (en) * 1988-12-12 1992-07-28 Ricoh Company, Ltd. Thin film forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007916A1 (en) * 1986-06-18 1987-12-30 Ricoh Company, Ltd. Thin film forming apparatus
GB2204596A (en) * 1986-06-18 1988-11-16 Ricoh Kk Thin film forming apparatus
GB2204596B (en) * 1986-06-18 1991-04-03 Ricoh Kk Thin film forming apparatus
US4974544A (en) * 1986-10-07 1990-12-04 Ricoh Company, Co. Vapor deposition apparatus
US4982696A (en) * 1988-01-08 1991-01-08 Ricoh Company, Ltd. Apparatus for forming thin film
US5133849A (en) * 1988-12-12 1992-07-28 Ricoh Company, Ltd. Thin film forming apparatus
US5114559A (en) * 1989-09-26 1992-05-19 Ricoh Company, Ltd. Thin film deposition system

Also Published As

Publication number Publication date
JPH0216380B2 (en) 1990-04-17

Similar Documents

Publication Publication Date Title
JPS60221566A (en) Thin film forming device
JPH0153351B2 (en)
JPS59157279A (en) Vapor deposition device for thin film
JPH04277500A (en) Source of high speed atomic ray
JP3064214B2 (en) Fast atom beam source
JP3186777B2 (en) Plasma source
JPH0472060A (en) Thin-film forming device
JPH07302575A (en) Ion source for ion implantation
JP2716715B2 (en) Thin film forming equipment
JP2892047B2 (en) Thin film forming equipment
JPH01180971A (en) Thin film forming device
JPH0426758A (en) Thin film forming device
JPS6386866A (en) Thin film forming device
JPH01177366A (en) Thin film forming device
JPS61170564A (en) Method and device for reforming surface layer of work
JPS63455A (en) Vapor deposition device for thin film
JPS6280263A (en) Thin film forming device
JPS63192861A (en) Thin film forming device
JPH0620631A (en) Plasma electron gun
JPH05239631A (en) Plasma forming device
JPH03253564A (en) Sputtering device
JPH0689795A (en) Plasma gun and plasma generation device
JPH01177365A (en) Thin film forming device
JPS63192862A (en) Thin film forming device
JPH09111443A (en) Thin film coating method and device therefor