JPH0216380B2 - - Google Patents
Info
- Publication number
- JPH0216380B2 JPH0216380B2 JP24258883A JP24258883A JPH0216380B2 JP H0216380 B2 JPH0216380 B2 JP H0216380B2 JP 24258883 A JP24258883 A JP 24258883A JP 24258883 A JP24258883 A JP 24258883A JP H0216380 B2 JPH0216380 B2 JP H0216380B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporated
- evaporation source
- counter electrode
- vacuum chamber
- grid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001704 evaporation Methods 0.000 claims description 31
- 230000008020 evaporation Effects 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 17
- 230000005672 electromagnetic field Effects 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000000427 thin-film deposition Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 この発明は、薄膜蒸着装置に関する。[Detailed description of the invention] The present invention relates to a thin film deposition apparatus.
被蒸着基板上に薄膜を蒸着形成する装置は従
来、種々のものが知られ、その方式も極めて多岐
にわたる。 Various types of apparatuses for forming thin films on a substrate to be vapor-deposited have been known in the past, and their methods are also extremely diverse.
しかし、従来の薄膜蒸着装置にあつては、形成
された薄膜の、被蒸着基板との密着性が弱かつた
り、あるいは、耐熱性のない被蒸着基板上への薄
膜形成が困難である等の問題があつた。 However, with conventional thin film deposition equipment, the adhesion of the formed thin film to the substrate to be deposited is weak, or it is difficult to form a thin film on a substrate to be deposited that is not heat resistant. There was a problem.
本発明の目的は、被蒸着基板に対し、極めて強
い密着力をもつた薄膜を蒸着形成でき、なおか
つ、耐熱性のないプラスチツクス等をも被蒸着基
板として用いうる、新方式の薄膜蒸着装置の提供
にある。 The object of the present invention is to provide a new type of thin film deposition apparatus that can deposit a thin film with extremely strong adhesion to a substrate to be deposited, and can also use materials such as non-heat resistant plastics as the substrate to be deposited. It's on offer.
以下、本発明を説明する。 The present invention will be explained below.
本発明による薄膜蒸着装置は、真空槽と、対電
極と、グリツドと、熱電子発生用のフイラメント
と、高周波電磁界発生用の電極とを有する。 The thin film deposition apparatus according to the present invention includes a vacuum chamber, a counter electrode, a grid, a filament for generating thermionic electrons, and an electrode for generating a high frequency electromagnetic field.
真空槽内には、活性ガスもしくは不活性ガス、
あるいは、これら両者の混合ガスが導入される。 Inside the vacuum chamber, active gas or inert gas,
Alternatively, a mixture of both gases is introduced.
対電極は真空槽内に配備され、被蒸着基板を保
持し、かつ、上記被蒸着基板を蒸発源と対向させ
る。また、蒸発源と対電極とは、同電位におかれ
る。 A counter electrode is placed in the vacuum chamber, holds the substrate to be evaporated, and makes the substrate to be evaporated face the evaporation source. Further, the evaporation source and the counter electrode are placed at the same potential.
グリツドは、蒸発物質を通過させうるものであ
つて、蒸発源と対電極との間に配備され、対電極
の電位に対して正電位におかれる。 The grid is capable of passing the evaporated substance and is disposed between the evaporation source and the counter electrode and is at a positive potential with respect to the potential of the counter electrode.
対電極と蒸発源とは同電位であるから、これに
よつて、真空槽内に、グリツドから被蒸着基板に
向う電界と、グリツドから蒸発源に向う電界とが
逆向きに形成される。 Since the counter electrode and the evaporation source are at the same potential, an electric field from the grid toward the substrate to be evaporated and an electric field from the grid toward the evaporation source are formed in opposite directions in the vacuum chamber.
熱電子発生用のフイラメントは、真空槽内の、
上記グリツドに関し、蒸発源側に配備され、この
フイラメントにより発生する熱電子は、蒸発物質
の一部をイオン化するのに供される。 The filament for thermionic generation is placed in a vacuum chamber.
Regarding the grid, the filament is placed on the side of the evaporation source, and the thermoelectrons generated by the filament serve to ionize a portion of the evaporated substance.
高周波電磁界発生用の電極は、グリツドと、対
電極との間に高周波電磁界を発生するべく、真空
槽内または外に設けられ、上記高周波電磁界は、
蒸発物質のイオン化に用いられる。 An electrode for generating a high frequency electromagnetic field is provided inside or outside the vacuum chamber to generate a high frequency electromagnetic field between the grid and the counter electrode, and the high frequency electromagnetic field is
Used to ionize evaporated substances.
蒸着源からの蒸発物質は、その一部が、フイラ
メントからの電子により正イオンにイオン化され
る。このように一部イオン化された蒸発物質は、
グリツドを通過し、さらに、イオン化されたガス
により正イオンにイオン化を促進され、上記電界
の作用により被蒸着基板の方へ加速される。 A portion of the evaporated material from the deposition source is ionized into positive ions by electrons from the filament. The partially ionized evaporated substance is
After passing through the grid, the ionized gas promotes ionization into positive ions, which are accelerated toward the substrate to be deposited by the action of the electric field.
なお、フイラメントからの電子はグリツドに吸
収されるため、被蒸着基板へ達せず、被蒸着基板
に対する電子衝撃による加熱がない。したがつ
て、プラスチツクスの如く、耐熱性のないもので
も、被蒸着基板とすることができる。 Note that since the electrons from the filament are absorbed by the grid, they do not reach the substrate to be evaporated, and there is no heating of the substrate to be evaporated due to electron impact. Therefore, even materials without heat resistance, such as plastics, can be used as the substrate to be deposited.
以下、図示の実施例に即して説明する。 The following will explain the embodiments shown in the drawings.
図において、ベースプレート1とベルジヤー2
とは、パツキング21を介して一体化され真空槽
を構成している。ベースプレート1は、支持体兼
用の電極3,5,7,9,11により貫通されて
いるが、これら支持体兼用電極3等の貫通部はも
ちろん気密状態であり、さらにこれら支持体兼用
電極3,5,7,9,11とベースプレート1と
は電気的に絶縁されている。またベースプレート
1の中央部に穿設された孔1Aは図示されない真
空系へ連結されている。 In the figure, base plate 1 and bell gear 2
are integrated with each other via packing 21 to form a vacuum chamber. The base plate 1 is penetrated by electrodes 3, 5, 7, 9, and 11 that also serve as supports, but the penetrating portions of these electrodes 3, which also serve as supports, are of course in an airtight state, and furthermore, these electrodes 3, which also serve as supports, 5, 7, 9, 11 and the base plate 1 are electrically insulated. Further, a hole 1A formed in the center of the base plate 1 is connected to a vacuum system (not shown).
一対の支持体兼用電極3は、その間に、タング
ステン、モリブデンなどの金属をコイル状に形成
した、抵抗加熱式の蒸発源4を支持している。 A pair of support electrodes 3 support a resistance heating type evaporation source 4 made of metal such as tungsten or molybdenum in a coil shape.
なお、このような蒸発源に替えて、電子ビーム
蒸発源など、従来の真空蒸着法式で用いられてい
る蒸発源を適宜使用することができる。 Note that instead of such an evaporation source, an evaporation source used in a conventional vacuum evaporation method, such as an electron beam evaporation source, can be used as appropriate.
1対の支持体兼用電極5の間には、タングステ
ン等による、熱電子発生用のフイラメント6が支
持されている。このフイラメント6の形状は、複
数本のフイラメントを平行に配列したり、あるい
は網目状にしたりするなどして、蒸発源から蒸発
した蒸発物質の粒子の拡がりをカバーするように
定められている。 A filament 6 made of tungsten or the like for generating thermoelectrons is supported between the pair of support electrodes 5. The shape of the filament 6 is determined by arranging a plurality of filaments in parallel or forming a mesh so as to cover the spread of particles of the evaporated substance evaporated from the evaporation source.
支持体兼用電極7には、グリツド8が支持され
ている。このグリツドは、蒸発物質を通過させう
る形状に形状を定められるのであるが、この例で
は、綱目状である。 A grid 8 is supported on the support electrode 7 . The grid is shaped to allow the evaporated material to pass through it, and in this example is a grid.
支持体兼用電極9には、コイル10が支持され
ている。コイル10は、グリツド8に関し、蒸発
源4、フイラメント6と反対側にある。コイル1
0の巻き数は1以上であつて、具体的状況に応じ
て適宜に定められる。また必ずしもコイル形状で
なく円筒状であつても棒(線)状であつてもよ
い。 A coil 10 is supported on the support electrode 9 . The coil 10 is on the opposite side of the grid 8 from the evaporation source 4 and from the filament 6. coil 1
The number of turns of 0 is 1 or more and is determined as appropriate depending on the specific situation. Further, the shape is not necessarily a coil shape, but may be a cylindrical shape or a rod (wire) shape.
支持体11には対電極12が支持され、その下
位には、被蒸着基板13が適宜の方法で保持され
る。この状態を蒸発源4の側から見れば、被蒸着
基板13の背後に対電極12が配備されることと
なる。 A counter electrode 12 is supported on the support 11, and a deposition target substrate 13 is held below it by an appropriate method. If this state is viewed from the side of the evaporation source 4, the counter electrode 12 is placed behind the substrate 13 to be evaporated.
さて支持体兼用電極3,5,7,9,11は導
電体であつて電極としての役割を兼ねており、そ
れらの、真空槽外へ突出した端部間は図示の如く
種々の電源に接続されている。 Now, the support electrodes 3, 5, 7, 9, and 11 are conductors and also serve as electrodes, and their ends protruding outside the vacuum chamber are connected to various power sources as shown in the figure. has been done.
まず、1対の支持体兼用電極3は蒸発源用電源
14を介して接続されている。また、1対の支持
体兼用電極5の間にはフイラメント用電源15が
接続されている。さらに、支持体兼用電極9には
高周波電源17の出力端子が接続されている。そ
して、支持体兼用電極7が、直流電圧電源16の
正端子に、支持体兼用電極11が、同電源16の
負端子に接続されている。図中の接地は必らずし
も必要ない。 First, a pair of support electrodes 3 are connected via an evaporation source power source 14 . Further, a filament power source 15 is connected between the pair of support electrodes 5. Furthermore, the output terminal of a high frequency power source 17 is connected to the support electrode 9. The support electrode 7 is connected to the positive terminal of the DC voltage power source 16, and the support electrode 11 is connected to the negative terminal of the power source 16. The grounding shown in the diagram is not necessarily required.
実際には、これら電気的接続は、種々のスイツ
チを含み、これらスイツチの操作により、蒸着プ
ロセスを実現するのであるが、これらスイツチは
図中に示されていない。 In reality, these electrical connections include various switches, the operation of which implements the deposition process, but these switches are not shown in the figure.
以下、この装置例による薄膜蒸着につき説明す
る。 Hereinafter, thin film deposition using this example of the apparatus will be explained.
被蒸着基板13を図の如くセツトして、蒸着物
質を蒸発源4に保持させる。蒸着物質は勿論、ど
のような薄膜を形成するかに応じて定まる。例え
ばアルミニウムや金のような金属、あるいは金属
の酸化物、弗化物、硫化物、あるいは合金等であ
る。 The substrate 13 to be evaporated is set as shown in the figure, and the evaporation material is held in the evaporation source 4. The material to be deposited will of course be determined depending on what kind of thin film is to be formed. For example, it is a metal such as aluminum or gold, or a metal oxide, fluoride, sulfide, or alloy.
また、真空槽内には、あらかじめ、活性ガスも
しくは不活性ガス、あるいは、これら混合ガスが
10-2〜10-4Torrの圧力で導入される。ここでは、
説明の具体性のため、導入ガスは、例えばアルゴ
ン等の不活性ガスであるとする。 In addition, the vacuum chamber is filled with active gas, inert gas, or a mixture of these gases in advance.
It is introduced at a pressure of 10 -2 to 10 -4 Torr. here,
For the sake of concreteness of explanation, it is assumed that the introduced gas is an inert gas such as argon, for example.
さて、この状態において、装置を作動させる
と、蒸発源による加熱により、蒸発源4に保持さ
れた蒸着物質は蒸発する。 Now, when the apparatus is operated in this state, the evaporation material held in the evaporation source 4 is evaporated by heating by the evaporation source.
蒸発物質すなわち、蒸発した蒸着物質の粒子
は、拡がりをもつて、被蒸着基板13の側へ向つ
て飛行するが、その一部は、フイラメント6より
放出された熱電子との衝突によつて外殻電子がは
じき出され、正イオンにイオン化される。 The evaporated material, that is, the particles of the evaporated deposition material spread out and fly toward the deposition target substrate 13, but some of them are ejected by collision with thermionic electrons emitted from the filament 6. Shell electrons are ejected and ionized into positive ions.
このように、一部イオン化された蒸発物質はグ
リツド8を通過するが、その際、グリツド近傍に
おいて上下に振動運動する熱電子の衝突により、
さらにイオン化率が高められる。 In this way, the partially ionized evaporated substance passes through the grid 8, but at this time, due to the collision of thermionic electrons vibrating up and down near the grid,
Furthermore, the ionization rate is increased.
一方、コイル10の内部では、導入されたガス
が、コイル10によつて発生する高周波電磁界に
よる励起でイオン化されている。 On the other hand, inside the coil 10, the introduced gas is ionized by excitation by the high frequency electromagnetic field generated by the coil 10.
グリツド8を通過した蒸発物質中、未だイオン
化されていない部分は、さらに、上記イオン化さ
れたガスとの衝突により、正イオンにイオン化さ
れる。 The portion of the evaporated material that has passed through the grid 8 that has not yet been ionized is further ionized into positive ions by collision with the ionized gas.
かくして、正イオンにイオン化された蒸発物質
は、グリツド8から対電極12に向う電界の作用
により被蒸着基板13に向つて加速され、被蒸着
基板13に高速で衝突付着する。かくして、非常
に密着性の良い薄膜蒸着がなされる。上記密着性
の顕著な向上は、蒸発物質のイオン化率の向上に
よるものであるが、この発明により、イオン化率
が顕著に向上するのである。正確な数値は、現在
ところ未だ得られていないが、数10%のイオン化
率が実験的に確認されている。 Thus, the evaporated substance ionized into positive ions is accelerated toward the deposition target substrate 13 by the action of the electric field from the grid 8 toward the counter electrode 12, and collides with and adheres to the deposition target substrate 13 at high speed. In this way, a thin film with very good adhesion is deposited. The remarkable improvement in adhesion is due to the improvement in the ionization rate of the evaporated substance, and the present invention significantly improves the ionization rate. Although exact figures have not yet been obtained, an ionization rate of several tens of percent has been experimentally confirmed.
また、熱電子は、その大部分がグリツド8に吸
収される。一部の熱電子はグリツド8を通過する
が、グリツド8と被蒸着基板13との間で、前記
電界の作用により減速されるので、仮に被蒸着基
板13に到達しても、同基板13を加熱するには
到らない。 Furthermore, most of the thermoelectrons are absorbed by the grid 8. Although some of the thermoelectrons pass through the grid 8, they are decelerated by the action of the electric field between the grid 8 and the substrate 13 to be evaporated, so even if they reach the substrate 13 to be evaporated, they Not enough to heat it up.
本発明においては、蒸発物質のイオン化率が極
めて高いため、真空槽内に、活性ガスを、単独
で、あるいは不活性ガスとともに導入して蒸着を
行うことにより、蒸発物質と活性ガスとを化合さ
せ、この化合物により薄膜を形成する場合にも、
所望の物性を有する薄膜を容易に得ることができ
る。 In the present invention, since the ionization rate of the evaporated substance is extremely high, the evaporated substance and the active gas are combined by introducing the active gas alone or together with an inert gas into the vacuum chamber for evaporation. , when forming a thin film with this compound,
A thin film having desired physical properties can be easily obtained.
例えば、不活性ガスとしてアルゴン、活性ガス
として酸素を導入し、圧力を10-3乃至10-4Torr
に調整し、蒸発物質としてアルミニウムを選択す
れば、被蒸着基板上にAl2O3の薄膜を形成するこ
とができる。又この場合、蒸発物質としてSiまた
はSiOを選べば、SiO2の薄膜を得ることができ、
蒸発物質としてIn、Znを選べば、それぞれ
In2O3、ZnOの薄膜が得られる。 For example, introduce argon as an inert gas and oxygen as an active gas, and increase the pressure to 10 -3 to 10 -4 Torr.
By adjusting the temperature and selecting aluminum as the evaporation substance, a thin film of Al 2 O 3 can be formed on the substrate to be evaporated. In this case, if Si or SiO is selected as the evaporation material, a thin film of SiO 2 can be obtained.
If In and Zn are selected as evaporative substances, each
Thin films of In 2 O 3 and ZnO are obtained.
又、活性ガスとして、H2S、蒸発物質として
Cdを選択すればCdSの薄膜が得られる。また、
活性ガスとしてアンモニアをアルゴンと共に用い
蒸発物質としてTi、Taを選べば、TiN、TaNな
どの薄膜を得ることも可能である。 Also, as an active gas, H 2 S, as an evaporative substance
If Cd is selected, a thin film of CdS can be obtained. Also,
If ammonia is used together with argon as the active gas and Ti or Ta is selected as the evaporation substance, it is also possible to obtain thin films of TiN, TaN, etc.
なお、真空槽内のガスのイオン化には、高周波
電磁界のみならず、フイラメントによる熱電子も
有効に寄与するので、10-4Torr以上の高度の真
空下においても蒸発物質のイオン化が可能であ
り、このため、薄膜の構造を極めて、ち密なもの
とすることが可能である。さらに、このように高
度の真空下での蒸着を行うことにより、薄膜中へ
のガス分子の取り込みを極めて少なくすることが
でき、極めて高純度の薄膜を得ることが可能とな
る。すなわち、本発明の薄膜蒸着装置は、IC、
LSI等を構成する半導体薄膜や、その電極として
の高純度金属薄膜の形成に適している。 In addition, not only the high-frequency electromagnetic field but also thermionic electrons generated by the filament effectively contribute to the ionization of the gas in the vacuum chamber, so it is possible to ionize the evaporated substance even under a high vacuum of 10 -4 Torr or higher. Therefore, it is possible to make the structure of the thin film extremely compact. Furthermore, by performing the vapor deposition under a high degree of vacuum in this manner, the incorporation of gas molecules into the thin film can be extremely reduced, making it possible to obtain a thin film with extremely high purity. That is, the thin film deposition apparatus of the present invention includes IC,
It is suitable for forming semiconductor thin films constituting LSI etc. and high purity metal thin films as electrodes.
なお、図において、コイル10の軸は、蒸発物
質イオン加速用電界の方向と平行であるが、もち
ろん、上記軸と電界の方向とを、互いに交わるよ
うにしても良い。また必ずしもイオン形状をなす
必要はなく、要は上記グリツド8と対電極12の
間に高周波電磁界を発生させうればよいので、必
ずしも真空槽内に配備されていなくともよい。 In the figure, the axis of the coil 10 is parallel to the direction of the electric field for accelerating evaporated substance ions, but of course the axis and the direction of the electric field may intersect with each other. Further, it does not necessarily have to be in the form of an ion, as long as it can generate a high frequency electromagnetic field between the grid 8 and the counter electrode 12, and therefore does not necessarily have to be placed in a vacuum chamber.
図は、本発明の1実施例を示す一部断面正面図
である。
1……ベースプレート、2……ベルジヤー、4
……蒸発源、6……フイラメント、8……グリツ
ド、10……コイル、12……対電極、13……
被蒸着基板、16……直流電圧電源、17……高
周波電源。
The figure is a partially sectional front view showing one embodiment of the present invention. 1...Base plate, 2...Belgear, 4
...Evaporation source, 6...Filament, 8...Grid, 10...Coil, 12...Counter electrode, 13...
Deposition target substrate, 16...DC voltage power supply, 17...High frequency power supply.
Claims (1)
れら両者の混合ガスを導入する真空槽と、 この真空槽内において、蒸発物質を蒸発させる
ための蒸発源と、 上記真空槽内に配備され、被蒸着基板を上記蒸
発源に対向するように保持し、かつ、上記蒸発源
と同電位におかれる対電極と、 上記蒸発源と対電極との間に配備され、蒸発物
質を通過させうるグリツドと、 このグリツドを、対電極、蒸発源の電位に対
し、正電位とする手段と、 上記真空槽内において、上記グリツドに関し、
蒸発源側に配備され、蒸発物質の一部をイオン化
するための、熱電子発生用のフイラメントと、上
記真空槽内または真空槽外に配備され蒸発物質を
イオン化するための高周波電磁界を上記グリツド
と対電極との間に発生させる電極とを有する、薄
膜蒸着装置。[Scope of Claims] 1. A vacuum chamber into which an active gas, an inert gas, or a mixture of both gases is introduced; an evaporation source for evaporating an evaporable substance within the vacuum chamber; a counter electrode arranged to hold the substrate to be evaporated so as to face the evaporation source and placed at the same potential as the evaporation source; and a counter electrode arranged between the evaporation source and the counter electrode to pass through the evaporation substance. means for bringing the grid to a positive potential with respect to the potential of the counter electrode and the evaporation source;
A filament for generating thermionic electrons is placed on the evaporation source side to ionize a part of the evaporated substance, and a high-frequency electromagnetic field is placed in the vacuum chamber or outside the vacuum chamber to ionize the evaporated substance. and a counter electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24258883A JPS59157279A (en) | 1983-12-22 | 1983-12-22 | Vapor deposition device for thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24258883A JPS59157279A (en) | 1983-12-22 | 1983-12-22 | Vapor deposition device for thin film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17969783A Division JPS5989763A (en) | 1983-09-28 | 1983-09-28 | Vapor deposition device for thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59157279A JPS59157279A (en) | 1984-09-06 |
JPH0216380B2 true JPH0216380B2 (en) | 1990-04-17 |
Family
ID=17091286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24258883A Granted JPS59157279A (en) | 1983-12-22 | 1983-12-22 | Vapor deposition device for thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59157279A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2204596B (en) * | 1986-06-18 | 1991-04-03 | Ricoh Kk | Thin film forming apparatus |
US4974544A (en) * | 1986-10-07 | 1990-12-04 | Ricoh Company, Co. | Vapor deposition apparatus |
US4982696A (en) * | 1988-01-08 | 1991-01-08 | Ricoh Company, Ltd. | Apparatus for forming thin film |
US5133849A (en) * | 1988-12-12 | 1992-07-28 | Ricoh Company, Ltd. | Thin film forming apparatus |
US5114559A (en) * | 1989-09-26 | 1992-05-19 | Ricoh Company, Ltd. | Thin film deposition system |
-
1983
- 1983-12-22 JP JP24258883A patent/JPS59157279A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59157279A (en) | 1984-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0153351B2 (en) | ||
US4854265A (en) | Thin film forming apparatus | |
JP2834797B2 (en) | Thin film forming equipment | |
JPH04503889A (en) | Metal ion source and metal ion generation method | |
JPH0216380B2 (en) | ||
JP2843125B2 (en) | Thin film forming equipment | |
JP2716715B2 (en) | Thin film forming equipment | |
JPH03104881A (en) | Formation of thin film of iron-iron nitride | |
JP2768960B2 (en) | Thin film forming equipment | |
JP2549398B2 (en) | Method for forming thin film of silicon dioxide | |
JPH0250954A (en) | Thin film-forming equipment | |
JP2892047B2 (en) | Thin film forming equipment | |
JPS6386866A (en) | Thin film forming device | |
JPS63192862A (en) | Thin film forming device | |
JPS63192861A (en) | Thin film forming device | |
JP2594949B2 (en) | Thin film forming equipment | |
JPH0765165B2 (en) | Thin film deposition equipment | |
JP2544405B2 (en) | Method for forming transparent sapphire thin film | |
JPH059717A (en) | Thin film forming device | |
JPH059716A (en) | Thin film forming device | |
JP3081259B2 (en) | Thin film forming equipment | |
JPH01177366A (en) | Thin film forming device | |
JPH01180971A (en) | Thin film forming device | |
JPH04165065A (en) | Thin film forming device | |
JPH01177365A (en) | Thin film forming device |