JPH0426758A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH0426758A
JPH0426758A JP12885090A JP12885090A JPH0426758A JP H0426758 A JPH0426758 A JP H0426758A JP 12885090 A JP12885090 A JP 12885090A JP 12885090 A JP12885090 A JP 12885090A JP H0426758 A JPH0426758 A JP H0426758A
Authority
JP
Japan
Prior art keywords
grid
thin film
filament
substrate
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12885090A
Other languages
Japanese (ja)
Inventor
Wasaburo Ota
太田 和三郎
Hajime Yuzurihara
肇 譲原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12885090A priority Critical patent/JPH0426758A/en
Publication of JPH0426758A publication Critical patent/JPH0426758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin film which is dense and has a good adhesive property and reactivity on a substrate by providing a magnet near a grid to generate a magnetic field near the grid surface and applying spiral motion to the electrons from a filament. CONSTITUTION:The evaporating material evaporated from an evaporating source 4 is ionized by the thermions from a filament 6 and is accelerated toward a counter electrode 12 by the grid 8 to form the thin film on a substrate 13. The permanent magnet 17 having the length below the diameter of the grid 8 and a suitable thickness is installed near the grid 8 in such a manner that the N pole and S pole are positioned on the electrode 7 side of the grid 8 and another side, respectively. The grid 8 is disposed within the space inclusive of the N and S pole faces of the magnet 17. The electrons heading toward the grid 8 are spirally moved by the magnetic field and are easily captured. The gases introduced into a vacuum chamber are ionized near the same, by which the ionization of the evaporating metal is enhanced. The dense thin film having the good adhesive property and reactivity is formed on the substrate 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空蒸着法に基づいた方式の薄膜形成装置に関
し、特に、酸化物系薄膜、例えばY−BaCu−0超伝
導薄膜や、In、O,のような透明導電性薄膜、あるい
はFe−N窒化物磁性薄膜等の形成への応用が可能な薄
膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film forming apparatus based on a vacuum evaporation method. The present invention relates to a thin film forming apparatus that can be applied to forming transparent conductive thin films such as O, or Fe--N nitride magnetic thin films.

〔従来の技術〕[Conventional technology]

薄膜形成装置としては、従来種々のものが知られており
、その方式も多岐にわたっている。例えば真空蒸着法、
rfマグネトロンスパッタ法、イオンブレーティング法
、CV D (Chemical VaporDepo
sition)法、 M B E (Molecula
r  Beam  Epitaxy)法等がある。
Various types of thin film forming apparatuses have been known in the past, and their methods are also wide-ranging. For example, vacuum evaporation method,
rf magnetron sputtering method, ion blating method, CVD (Chemical VaporDepo
position) method, MBE (Molecular
r Beam Epitaxy) method, etc.

近年、これらの方式を用いて、導入ガスをプラズマ状態
にしイオン化する方法を併用し、薄膜を作製することが
行われているが、高周波電界法、電子サイクロトロン共
鳴法などがそれであり、酸素ガスをイオン化し酸化膜を
作製する等の反応性成膜が行われている。
In recent years, thin films have been fabricated using these methods in conjunction with a method of ionizing the introduced gas into a plasma state, such as high-frequency electric field method and electron cyclotron resonance method. Reactive film formation, such as ionization to create an oxide film, is being carried out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の薄膜形成装置にあっては、形成された薄
膜と被薄膜形成用基板との密着性が弱かったり、あるい
は、耐熱性のない基板上への薄膜形成が困難である等の
問題があった。
However, conventional thin film forming apparatuses have problems such as weak adhesion between the formed thin film and the substrate on which the thin film is formed, or difficulty in forming a thin film on a substrate that is not heat resistant. there were.

そこで、これらの問題を解決するため、本出願人は先に
、薄膜形成装置として、基板を蒸発源に対向させて対向
電極に保持し、この対向電極と蒸発源との間にグリッド
を配置すると共に、このグリッドと蒸発源との間に熱電
子発生用のフィラメントを配し、上記グリッドをフィラ
メントに対して正電位にして薄膜形成を行う装置を提案
した(特開昭59−89763号公報)。
Therefore, in order to solve these problems, the applicant first developed a thin film forming apparatus in which a substrate is held on a counter electrode facing an evaporation source, and a grid is placed between the counter electrode and the evaporation source. At the same time, they proposed an apparatus in which a filament for generating thermionic electrons is arranged between the grid and the evaporation source, and the grid is set at a positive potential with respect to the filament to form a thin film (Japanese Patent Laid-Open No. 89763/1983). .

この薄膜形成装置では、蒸発源から蒸発した蒸発物質は
、先ずフィラメントからの熱電子によりイオン化され、
このイオン化された蒸発物質は、グリッドを通過するこ
とにより、グリッドから対向電極に向かう電界の作用に
より加速されて基板に衝突し、密着性の良い薄膜が形成
されるという特徴を有している。
In this thin film forming apparatus, the evaporated substance evaporated from the evaporation source is first ionized by thermionic electrons from the filament.
This ionized evaporated substance has the characteristic that when it passes through the grid, it is accelerated by the action of the electric field from the grid toward the counter electrode and collides with the substrate, forming a thin film with good adhesion.

本発明の目的は、上記先願技術による薄膜形成装置を基
に、導入ガス及び蒸発物質のイオン化率の向上と、それ
によるより一層の薄膜と基板との密着性の向上、膜の緻
密化、基盤温度の低温化を図ることのできる薄膜形成装
置を提供することにある。
The purpose of the present invention is to improve the ionization rate of the introduced gas and the evaporated substance, thereby further improving the adhesion between the thin film and the substrate, making the film denser, and improving the ionization rate of the introduced gas and the evaporated substance based on the thin film forming apparatus according to the prior art. An object of the present invention is to provide a thin film forming apparatus that can lower the substrate temperature.

〔課題を解決するための手段及び作用〕上記目的を達成
するため、本発明の薄膜形成装置は、活性ガス若しくは
不活性ガスあるいはこれら両者の混合ガスが導入される
真空槽と、この真空槽内において蒸発物質を蒸発させる
ための蒸発源と、上記真空槽内において上記蒸発源と対
向するように配置され被薄膜形成基板を保持する対電極
と、上記蒸発源と上記対電極との間に配備された熱電子
発生用のフィラメントと、このフィラメントと上記対電
極との間に配備され蒸発物質を通過させうるグリッドと
、真空槽内に所定の電気的状態を実現するための電源手
段と、真空槽内と上記電源手段とを電気的に連結する導
電手段とを有すると共に、上記グリッドの近傍には磁石
が設けられ、該磁石により磁場をグリッド面近傍に発生
させることを特徴とする。
[Means and effects for solving the problems] In order to achieve the above object, the thin film forming apparatus of the present invention includes a vacuum chamber into which an active gas, an inert gas, or a mixture of these gases is introduced, and a an evaporation source for evaporating the evaporated substance in the vacuum chamber; a counter electrode arranged to face the evaporation source in the vacuum chamber and holding the thin film forming substrate; and a counter electrode disposed between the evaporation source and the counter electrode. a filament for generating thermionic electrons; a grid disposed between the filament and the counter electrode to allow the evaporated substance to pass; a power supply means for achieving a predetermined electrical state in the vacuum chamber; The apparatus is characterized in that it has a conductive means that electrically connects the inside of the tank and the power supply means, and that a magnet is provided near the grid, and the magnet generates a magnetic field near the grid surface.

以下、本発明による薄膜形成装置の構成、動作について
より詳細に説明する。
Hereinafter, the configuration and operation of the thin film forming apparatus according to the present invention will be explained in more detail.

本発明の基となる薄膜形成装置は、前述の公報記載の装
置であるが、その構成と原理について説明する。
The thin film forming apparatus on which the present invention is based is the apparatus described in the above-mentioned publication, and its configuration and principle will be explained.

この薄膜形成装置は、真空槽、対電極、グリッド、熱電
子発生用のフィラメント、及び蒸発源とを有し、真空槽
内には活性若しくは不活性ガス、あるいはこれら両者の
混合ガスが導入される。
This thin film forming apparatus has a vacuum chamber, a counter electrode, a grid, a filament for generating thermionic electrons, and an evaporation source, and an active gas, an inert gas, or a mixture of these gases is introduced into the vacuum chamber. .

対電極は真空槽内に配備され、基板を蒸発源と対向する
ように保持している。
A counter electrode is placed within the vacuum chamber and holds the substrate facing the evaporation source.

グリッドは、蒸発源からの蒸発物質を通過させうるちの
であって、蒸発源と対電極との間に配備され、フィラメ
ント及び対電極の電位に対し正電位に置かれる。従って
、真空槽内にはグリッドから基板に向かう電界と、グリ
ッドから蒸発源に向かう電界とが逆向きに形成される。
The grid allows passage of evaporated material from the evaporation source, is disposed between the evaporation source and the counter electrode, and is placed at a positive potential relative to the potential of the filament and the counter electrode. Therefore, an electric field from the grid toward the substrate and an electric field from the grid toward the evaporation source are formed in opposite directions in the vacuum chamber.

熱電子発生用のフィラメントは、真空槽内の上記グリッ
ドよりも蒸発源側に配備され、このフィラメントにより
発生する熱電子は蒸発物質の一部をイオン化するのに供
される。
A filament for generating thermionic electrons is placed closer to the evaporation source than the grid in the vacuum chamber, and the thermoelectrons generated by the filament are used to ionize a portion of the evaporated substance.

以上の構成よりなる薄膜形成装置において、蒸発源から
の蒸発物質は、その一部がフィラメントからの電子によ
り正イオンにイオン化される。このように一部イオン化
された蒸発物質はグリッドを通過し、さらにイオン化さ
れたガスにより正イオンにイオン化を促進され、上記電
界の作用により基板の方へと加速され、基板に衝突して
薄膜を形成する。
In the thin film forming apparatus having the above configuration, a part of the evaporated substance from the evaporation source is ionized into positive ions by electrons from the filament. The partially ionized evaporated substances pass through the grid, are further ionized into positive ions by the ionized gas, are accelerated toward the substrate by the action of the electric field, and collide with the substrate to form a thin film. Form.

尚、フィラメントからの電子はフィラメント温度に相当
する運動エネルギーをもって、フィラメントから放射さ
れるので、正電位のグリッドに直ちに吸収されずにこれ
を通過し、グリッドによるクーロン力に引き戻され、更
にグリッドを通過し、というようにグリッドを中心とし
て振動運動を繰返し、遂にはグリッドに吸収されるので
基板へは達せず、基板は熱電子による電子衝撃を受けな
いのでそれによる加熱の影響はほとんどない。
Note that the electrons from the filament are emitted from the filament with kinetic energy corresponding to the filament temperature, so they pass through the positive potential grid without being absorbed immediately, are pulled back by the Coulomb force of the grid, and then pass through the grid. Then, the vibrational motion is repeated around the grid, and finally it is absorbed by the grid, so it does not reach the substrate, and the substrate is not subjected to electron bombardment by thermionic electrons, so there is almost no heating effect from it.

さて、本発明では、この熱電子の基板への影響をさらに
少なくし、しかも、導入ガス、蒸発物質のイオン化率を
さらに高めるため、上記構成による装置のグリッド部近
傍に磁石を設置する。この磁石の設置により、電子は磁
石により印加される磁場により螺旋運動することで、ガ
ス、蒸発物質との衝突回数が増えると同時にフィラメン
ト近傍に電子がいる時間が長くなるために、やがてグリ
ッドに捕らえられ易くなる。
Now, in the present invention, in order to further reduce the influence of these thermoelectrons on the substrate and to further increase the ionization rate of the introduced gas and evaporated substance, a magnet is installed near the grid portion of the apparatus having the above configuration. By installing this magnet, the electrons move spirally due to the magnetic field applied by the magnet, which increases the number of collisions with gas and evaporated substances, and at the same time increases the time the electrons stay near the filament, so they are eventually captured by the grid. It becomes easier to get caught.

尚、磁界は永久磁石によりグリッド面、対電極に対し平
行になるように印加するか、あるいは電磁石を使用し、
磁場をグリッド面に垂直に印加する。この場合、磁場は
交流でも良い。
The magnetic field is applied parallel to the grid surface and the counter electrode using a permanent magnet, or an electromagnet is used.
A magnetic field is applied perpendicular to the grid plane. In this case, the magnetic field may be an alternating current.

〔実 施 例〕〔Example〕

以下、本発明の実施例について図面を参照して詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す薄膜形成装置の概略的
構成図である。
FIG. 1 is a schematic diagram of a thin film forming apparatus showing an embodiment of the present invention.

第1図において、ベースプレート1とペルジャー2とは
バッキング21を介して一体化され真空槽を構成してい
る。ベースプレート1は、支持体兼用電極3,5,7.
9により貫通されているが、二九ら支持体兼用電極3,
5,7.9の貫通部は気密状態であり、さらにこれら支
持体兼用電極3゜5.7.9とベースプレート1とは電
気的に絶縁されている。また、ベースプレート1の中央
部に穿設された孔IAは図示されない真空排気系へ連結
されている。
In FIG. 1, a base plate 1 and a Pelger 2 are integrated via a backing 21 to form a vacuum chamber. The base plate 1 includes electrodes 3, 5, 7.
Although it is penetrated by 9, the support electrode 3,
The penetration portions 5 and 7.9 are airtight, and furthermore, these support electrodes 3 degrees 5, 7.9 and the base plate 1 are electrically insulated. Further, a hole IA formed in the center of the base plate 1 is connected to a vacuum exhaust system (not shown).

ここで、一対の支持体兼用電極3は抵抗加熱式の蒸発源
4を支持しているが、抵抗加熱式の蒸発源に変えて電子
ビーム加熱方式の蒸発源を用いても良い。また、一対の
支持体兼用電極5の間には、タングステン等による熱電
子発生用のフィラメント6が支持されている。このフィ
ラメント6の形状は、複数本の線状のフィラメントを平
行に配列したり、あるいは網目状にしたりするなどして
蒸発源4から蒸発した物質の拡がりをカバーするように
定められている。
Here, the pair of support electrodes 3 support the resistance heating type evaporation source 4, but an electron beam heating type evaporation source may be used instead of the resistance heating type evaporation source. Furthermore, a filament 6 made of tungsten or the like for generating thermoelectrons is supported between the pair of electrodes 5 that also serve as supports. The shape of the filament 6 is determined so as to cover the spread of the substance evaporated from the evaporation source 4 by arranging a plurality of linear filaments in parallel or forming a mesh.

支持体兼用電極7にはグリッド8が支持されており、こ
のグリッド8は蒸発物質を通過させうる形に定められる
のであるが、図示の例では網目状にしである。
A grid 8 is supported on the support electrode 7, and the grid 8 has a shape that allows the evaporated substance to pass through, and in the illustrated example, it has a mesh shape.

支持体兼用電極9には対電極12が支持されており、こ
の対電極12の蒸発源4と対向する面には薄膜形成用の
基板13が保持される。
A counter electrode 12 is supported on the support electrode 9, and a substrate 13 for forming a thin film is held on the surface of the counter electrode 12 facing the evaporation source 4.

第1図中、符号14,15.16は真空槽内に所定の電
気的状態を実現するための電源を示しており、14は蒸
発源用の交流電源、15はフィラメント加熱用の交流電
源、16はグリッド8をフィラメント6及び対電極12
の電位に対し正電位に置くための直流電源であり、これ
ら各電源は配線により各支持体兼用電極と電気的に連結
されている。尚、図示されないが、配線はスイッチ類を
含むものである。
In FIG. 1, numerals 14, 15, and 16 indicate power supplies for realizing a predetermined electrical state in the vacuum chamber, 14 is an AC power source for the evaporation source, 15 is an AC power source for heating the filament, 16 connects the grid 8 to the filament 6 and the counter electrode 12
These power supplies are electrically connected to each support electrode by wiring. Although not shown, the wiring includes switches.

上記グリッド8の近傍には、グリッド8の直径未満の長
さと適当な厚さを有し、グリッド8の電極7側ともう一
方の側に夫々N極、S極がくるように永久磁石17が設
置されており、磁石17のN、S極面を含む空間内にグ
リッド8が配置される。これにより。グリッド8に向か
ってくる電子が磁場により回転運動し、捕らえられやす
くなる。
In the vicinity of the grid 8, a permanent magnet 17 is installed, which has a length less than the diameter of the grid 8 and an appropriate thickness, and has an N pole and an S pole on the electrode 7 side and the other side of the grid 8, respectively. The grid 8 is placed in a space including the N and S pole faces of the magnet 17. Due to this. Electrons approaching the grid 8 are rotated by the magnetic field and are easily captured.

従って、真空槽内への導入ガスは、この付近でさらにイ
オン化される。
Therefore, the gas introduced into the vacuum chamber is further ionized in this vicinity.

尚、磁石17は、磁場が変えられるように電磁石を使用
しても良く、この場合は永久磁石と同様の位置に置き、
磁場をグリッド面に垂直に加える。
In addition, an electromagnet may be used as the magnet 17 so that the magnetic field can be changed, and in this case, it is placed in the same position as a permanent magnet,
Apply a magnetic field perpendicular to the grid plane.

また、電磁石を用いる場合は、電磁石の温度上昇を防ぐ
ために磁石の周りには冷却水を流すようにするのが良い
。尚、この場合においても、イオン化率は高められる。
Furthermore, when using an electromagnet, it is recommended to flow cooling water around the magnet to prevent the temperature of the electromagnet from rising. In this case as well, the ionization rate can be increased.

次に、上述の構成からなる薄膜形成装置により酸化物超
伝導薄膜の作製を行う場合の例について示す。
Next, an example will be described in which an oxide superconducting thin film is manufactured using the thin film forming apparatus having the above-described configuration.

蒸発方法としては、蒸発源に電子ビーム加熱方式を用い
る。蒸発物質としては、Y2O31BajCuを王台の
電子銃のハースに入れ、真空槽内を真空排気した後、酸
素ガスを導入して真空槽内の雰囲気を酸素ガス圧1〜5
X10−’torrにする。このとき、Arガスを10
%程度混合しても良い。
As an evaporation method, an electron beam heating method is used as an evaporation source. As the evaporated substance, Y2O31BajCu was put into the hearth of the electron gun of Odai, and after the inside of the vacuum chamber was evacuated, oxygen gas was introduced and the atmosphere inside the vacuum chamber was adjusted to an oxygen gas pressure of 1 to 5.
Set to X10-'torr. At this time, Ar gas was
% may be mixed.

この状態でフィラメント6に電流を流し、熱電子を発生
させると、酸素ガスは熱電子との衝突によって一部イオ
ン化される。次に、蒸発物質を所定の蒸発速度で飛ばし
、基板13での膜組成が、Y:Ba:Cu=1:2:3
の比になるようにする。
When current is passed through the filament 6 in this state to generate thermoelectrons, part of the oxygen gas is ionized by collision with the thermoelectrons. Next, the evaporated substance is evaporated at a predetermined evaporation rate, and the film composition on the substrate 13 is Y:Ba:Cu=1:2:3.
The ratio should be as follows.

尚、基板13としては5rTiO3(110)、MgO
(100)等のセラミック単結晶を用いる。
Note that the substrate 13 is 5rTiO3 (110), MgO
A ceramic single crystal such as (100) is used.

また、基板13は予め400℃〜650℃の範囲内で加
熱しておく。
Further, the substrate 13 is heated in advance within the range of 400°C to 650°C.

次に、グリッド8と対電極12間に数100vの電圧を
かけると、電子はグリッド8側に引っ張られる。このと
き、グリッド8近傍に設置しである磁石17により10
0〜2000eの磁場を印加すると、グリッド8近傍の
電子は螺旋運動し、さらに酸素ガス、蒸発金属をイオン
化すると共に、グリッドに滞る時間が長いため、やがて
グリッド8に吸収される。従って、対電極12とグリッ
ド8間の電場(電界)と上記磁場の作用とにより、フィ
ラメント6からの熱電子が基板13に到達することがな
い。
Next, when a voltage of several hundred volts is applied between the grid 8 and the counter electrode 12, the electrons are pulled toward the grid 8 side. At this time, the magnet 17 installed near the grid 8
When a magnetic field of 0 to 2000 e is applied, electrons near the grid 8 move in a spiral manner, further ionizing oxygen gas and evaporated metal, and since they remain in the grid for a long time, they are eventually absorbed by the grid 8. Therefore, due to the action of the electric field between the counter electrode 12 and the grid 8 and the magnetic field, the thermoelectrons from the filament 6 do not reach the substrate 13.

尚、上記磁石をグリッド近傍に限らず、フィラメント6
とグリッド8間等、フィラメント6と対電極12との間
の広範囲に設置すれば、より酸素ガスと蒸発金属のイオ
ン化が高まる。
Note that the magnet is not limited to the vicinity of the grid;
If it is installed in a wide area between the filament 6 and the counter electrode 12, such as between the filament 6 and the grid 8, the ionization of oxygen gas and evaporated metal will be further enhanced.

さて、本発明の装置では、以上のようにして酸素ガスと
蒸発金属のイ、オン化が高まるため、金属イオンとガス
イオンにより、基板付近での反応と金属イオンが基板を
電界により叩く効果で、緻密で密着性が良く且つ反応性
のよい薄膜を基板上に作製することができ、基板温度が
低くても臨界温度の高い酸化物超伝導薄膜の作製が可能
となる。
Now, in the apparatus of the present invention, the ionization of oxygen gas and evaporated metal is enhanced as described above, so that the metal ions and gas ions cause a reaction near the substrate, and the metal ions hit the substrate by the electric field. A dense, highly adhesive, and highly reactive thin film can be produced on a substrate, and an oxide superconducting thin film with a high critical temperature can be produced even when the substrate temperature is low.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による薄膜形成装置におい
ては、基板温度が低く、緻密で且つ密着性の良い薄膜作
製が可能となり、特に、ガスを導入しながらの反応性成
膜に効果があり、酸化物系薄膜、例えばY−Ba−Cu
−0超伝導薄膜や、In。
As explained above, in the thin film forming apparatus according to the present invention, it is possible to fabricate a thin film that is dense and has good adhesion at a low substrate temperature, and is particularly effective in reactive film formation while introducing a gas. Oxide thin film, e.g. Y-Ba-Cu
-0 superconducting thin film, In.

03のような透明導電性薄膜、あるいはFa−N窒化物
磁性薄膜等の形成への応用が可能となる。
Application to the formation of transparent conductive thin films such as No. 03, Fa-N nitride magnetic thin films, etc. is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す薄膜形成装置の概略的
構成図である。 1・・・・ベースプレート、2・・・・ペルジャー、3
゜5.7.9・・・・支持体兼用電極、4・・・・蒸発
源、6・・・・フィラメント、8・・・・グリッド、1
4,15.16・・・・電源、17・・・・磁石、21
・・・・バッキング。
FIG. 1 is a schematic diagram of a thin film forming apparatus showing an embodiment of the present invention. 1...Base plate, 2...Pelger, 3
゜5.7.9... Electrode that also serves as support, 4... Evaporation source, 6... Filament, 8... Grid, 1
4,15.16...power supply, 17...magnet, 21
····backing.

Claims (1)

【特許請求の範囲】[Claims]  活性ガス若しくは不活性ガスあるいはこれら両者の混
合ガスが導入される真空槽と、この真空槽内において蒸
発物質を蒸発させるための蒸発源と、上記真空槽内にお
いて上記蒸発源と対向するように配置され被薄膜形成基
板を保持する対電極と、上記蒸発源と上記対電極との間
に配備された熱電子発生用のフィラメントと、このフィ
ラメントと上記対電極との間に配備され蒸発物質を通過
させうるグリッドと、真空槽内に所定の電気的状態を実
現するための電源手段と、真空槽内と上記電源手段とを
電気的に連結する導電手段とを有すると共に、上記グリ
ッドの近傍には磁石が設けられ、該磁石により磁場をグ
リッド面近傍に発生させることを特徴とする薄膜形成装
置。
a vacuum chamber into which an active gas or an inert gas or a mixture of these gases is introduced; an evaporation source for evaporating the evaporation substance within the vacuum chamber; and an evaporation source disposed in the vacuum chamber so as to face the evaporation source. a counter electrode that holds the substrate on which the thin film is to be formed; a filament for generating thermionic electrons disposed between the evaporation source and the counter electrode; and a filament disposed between the filament and the counter electrode that passes through the evaporated substance. The grid has a power source means for realizing a predetermined electrical state in the vacuum chamber, a conductive means for electrically connecting the inside of the vacuum chamber and the power source means, and a conductive means in the vicinity of the grid. A thin film forming apparatus characterized in that a magnet is provided, and the magnet generates a magnetic field near a grid surface.
JP12885090A 1990-05-18 1990-05-18 Thin film forming device Pending JPH0426758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12885090A JPH0426758A (en) 1990-05-18 1990-05-18 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12885090A JPH0426758A (en) 1990-05-18 1990-05-18 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH0426758A true JPH0426758A (en) 1992-01-29

Family

ID=14994926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12885090A Pending JPH0426758A (en) 1990-05-18 1990-05-18 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH0426758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321172A (en) * 2006-05-30 2007-12-13 Toppan Printing Co Ltd Manufacturing method of transparent conductive film, and manufacturing method of organic electroluminescence device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321172A (en) * 2006-05-30 2007-12-13 Toppan Printing Co Ltd Manufacturing method of transparent conductive film, and manufacturing method of organic electroluminescence device

Similar Documents

Publication Publication Date Title
US4006073A (en) Thin film deposition by electric and magnetic crossed-field diode sputtering
US5133849A (en) Thin film forming apparatus
JP2834797B2 (en) Thin film forming equipment
US4209552A (en) Thin film deposition by electric and magnetic crossed-field diode sputtering
JPS5989763A (en) Vapor deposition device for thin film
JP3064214B2 (en) Fast atom beam source
JPH0426758A (en) Thin film forming device
JPH03104881A (en) Formation of thin film of iron-iron nitride
JPH0472060A (en) Thin-film forming device
JP2549398B2 (en) Method for forming thin film of silicon dioxide
JPH02258972A (en) Thin film forming device
JP2892047B2 (en) Thin film forming equipment
JPH02285070A (en) Forming device for thin film
JP2544405B2 (en) Method for forming transparent sapphire thin film
JPH03291372A (en) Thin film forming device
JP2971541B2 (en) Thin film forming equipment
JPH03219077A (en) Thin film forming device
JPH02159369A (en) Thin film forming device
JPS63192862A (en) Thin film forming device
JPH03153866A (en) Thin film forming device
JPS6386866A (en) Thin film forming device
JPH0375360A (en) Thin film forming device
JPH04154961A (en) Thin film forming device
JPH0617240A (en) Thin film forming device
JPS63227770A (en) Ion plating device