JPS63227770A - Ion plating device - Google Patents

Ion plating device

Info

Publication number
JPS63227770A
JPS63227770A JP6149887A JP6149887A JPS63227770A JP S63227770 A JPS63227770 A JP S63227770A JP 6149887 A JP6149887 A JP 6149887A JP 6149887 A JP6149887 A JP 6149887A JP S63227770 A JPS63227770 A JP S63227770A
Authority
JP
Japan
Prior art keywords
vapor
filament
workpiece
current
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6149887A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
伸一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Priority to JP6149887A priority Critical patent/JPS63227770A/en
Publication of JPS63227770A publication Critical patent/JPS63227770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the bonding strength and denseness of a film formed on a body to be processed by accelerating and neutralizing vapor ionized by an ionizing electrode and by colliding the vapor against the body. CONSTITUTION:An evaporating source 2 is evaporated by radiating electron beams from an electron gun 3. The resulting vapor is ionized by arc discharge caused between the source 2 and an ionizing electrode 6. The ionized vapor is accelerated toward a body 4 to be processed in an electric field applied by an accelerating electrode 7 and the accelerated ions are neutralized by thermoelectrons emitted from a thermoelectron emitting filament 8. The velocity of the ions is maintained even after the neutralization and the vapor collides against the body 4 at high velocity, forming a high quality film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はイオンプレーテイング装置にかs9、特に導
体または半導体上に絶縁被膜を形成したり、絶縁体上に
導体または半導体の被膜を形成するための装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to an ion plating apparatus, particularly for forming an insulating film on a conductor or semiconductor, or forming a conductor or semiconductor film on an insulator. Relating to a device for

〔従来の技術〕[Conventional technology]

古くから実施されている真空蒸着技術では、被加工物表
面に到達する蒸気が殆ど運動エネルギを持っていないた
めに、蒸着層の付着強度や組織に問題がある。これを改
善するために開発されたイオンブレーティング技術では
、蒸気をイオン化した上で加速して被加工物表面に到達
させるために、蒸着層の付着強度や組織は大幅に改善さ
れる。
In the vacuum evaporation technology that has been practiced for a long time, the vapor that reaches the surface of the workpiece has almost no kinetic energy, so there are problems with the adhesion strength and structure of the evaporated layer. Ion blating technology, developed to improve this problem, ionizes and accelerates the vapor to reach the surface of the workpiece, thereby significantly improving the adhesion strength and texture of the vapor deposited layer.

この種のイオンプレーティング装置の中で、最も蒸気の
イオン化率が高く、優れた被膜を形成できるものは、実
公昭59−4045号公報に示されている装置である。
Among this type of ion plating apparatus, the apparatus shown in Japanese Utility Model Publication No. 59-4045 has the highest rate of vapor ionization and can form an excellent film.

これは、蒸発源に接近してイオン化電極と熱電子放射用
フィラメントとが設けられておシ、フィラメントが放射
した熱電子の助けを借シながら、蒸発源とイオン化電極
との間で蒸気を通してのアーク放電を起こさせ、これに
よって蒸気の80%以上をイオン化することができるも
のである〇 〔発明が解決しようとする問題点〕 導体または半導体上にイオンプレーテイングによって絶
縁被膜を形成する場合、組織が緻密で耐着強度が高い被
膜を得ることができるが、その反面に、絶縁被膜の表面
の電荷蓄積が増大し、絶縁被膜を通して放電して放電痕
を作る。同様に、絶縁性の基板上に導電性の被膜を形成
する場合にも、導電性被膜に多量の電荷が蓄積し、絶縁
性基板を通して放電が起シ、基板の絶縁特性を損なう。
In this method, an ionizing electrode and a filament for emitting thermionic electrons are provided close to the evaporation source, and vapor is passed between the evaporation source and the ionizing electrode with the help of thermionic electrons emitted by the filament. It causes an arc discharge, which can ionize more than 80% of the vapor. [Problem to be solved by the invention] When forming an insulating film on a conductor or semiconductor by ion plating, the structure Although it is possible to obtain a film that is dense and has high adhesion resistance, on the other hand, charge accumulation on the surface of the insulating film increases and discharge occurs through the insulating film, creating discharge marks. Similarly, when a conductive film is formed on an insulating substrate, a large amount of charge accumulates in the conductive film, and discharge occurs through the insulating substrate, impairing the insulation properties of the substrate.

このような被加工物における電荷の蓄積の問題は、前記
実公昭59−4045号公報に示されている装置のよう
に、蒸気のイオン化率が高いもの程増大する。
This problem of charge accumulation in the workpiece increases as the ionization rate of steam increases, as in the apparatus shown in the above-mentioned Japanese Utility Model Publication No. 59-4045.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、イオンブレーティング装置において、蒸気
イオンが被加工物へ向う径路中またはその近傍に、熱電
子放射フィラメントを設けたことを特徴とする。
The present invention is characterized in that, in an ion brating apparatus, a thermionic emission filament is provided in or near the path of vapor ions toward a workpiece.

この熱電子放射フィラメントは、蒸発源やイオン化のた
めの電極等の近傍ではなく、蒸気イオンが十分に運動エ
ネルギを取得した位置に設けなければならない。即ち、
被加工物に加速電位が与えられる場合には、比較的に被
加工物に近い位置に設け、蒸気径路の途中に加速電極が
存在する場合には、加速電極附近に設けることが望まし
い〇また、熱電子放射フィラメントは、イオンの衝撃に
耐えることが必要であシ、かつ蒸発物が付着しないこと
が必要であるから、高温のタングステンフィラメントを
用いることが望ましい。
This thermionic emission filament must be provided at a location where vapor ions have acquired sufficient kinetic energy, rather than near an evaporation source or an ionization electrode. That is,
When an accelerating potential is applied to the workpiece, it is desirable to install it at a position relatively close to the workpiece, and when there is an accelerating electrode in the middle of the steam path, it is desirable to install it near the accelerating electrode. It is desirable to use a high temperature tungsten filament because the thermionic emitting filament must be able to withstand ion bombardment and must not be evaporated.

〔作  用〕[For production]

蒸発源から蒸発し、イオン化電極によってイオン化され
た蒸気は、加速電位によって加速されてから、熱電子放
射フィラメントが放射する熱電子によって中和され、運
動エネルギは十分保有するが電荷は殆ど持たない状態で
、被加工物に到達する。その結果、被加工物に形成され
る被膜は、蒸気が大きな運動エネルギを持って衝突して
作られたものであるために、従来のイオンブレーティン
グによる被膜に匹敵し得る付着強度や緻密な組織を持つ
に至るが、電荷の蓄積は殆ど起こらない。
The vapor evaporated from the evaporation source and ionized by the ionization electrode is accelerated by the accelerating potential and then neutralized by thermionic electrons emitted by the thermionic emission filament, resulting in a state in which it has sufficient kinetic energy but almost no electric charge. and reaches the workpiece. As a result, the film formed on the workpiece is created by colliding steam with high kinetic energy, so it has an adhesion strength and a dense structure comparable to that of a film produced by conventional ion blasting. However, almost no charge accumulation occurs.

そのために、絶縁被膜を形成する場合には放電痕が出来
ず、絶縁物上に被膜を形成する場合には絶縁物に絶縁破
壊が起こらない。
Therefore, when forming an insulating film, no discharge marks are created, and when forming a film on an insulating material, no dielectric breakdown occurs in the insulating material.

〔実 施 例〕〔Example〕

第1図において、1は真空槽で、槽内の下部には蒸発源
2とこれに電子ビームを照射する電子銃3とが置かれ、
上部には円板状の被加工物4が支持されている。蒸発源
2から被加工物4へ向う蒸気径路の何方で、蒸発源2に
接近した位置には、熱電子放射用タングステン・フィラ
メント5及びイオン化電極6が配置されている。また、
蒸発源2と被加工物4との大略中間位置には、前記蒸気
径路を囲んで環状の加速電極7が配置され、かつその近
傍にはこの発明の特徴である熱電子放射用タングステン
・フィラメント8が設ケラれている〇なお、9はフィラ
メント5の加熱電源、10はイオン化電極6のバイアス
電源、11は加速電極7のバイアス電源、12はフィラ
メント8の加熱電源、Aは電流計である。また、真空槽
lは、真空ボングヘ向う排気路13と雰囲気ガスを導入
するためのガス導入管路14とを有している。
In FIG. 1, 1 is a vacuum chamber, and at the bottom of the chamber there is placed an evaporation source 2 and an electron gun 3 that irradiates it with an electron beam.
A disk-shaped workpiece 4 is supported at the top. A tungsten filament 5 for thermionic emission and an ionization electrode 6 are arranged close to the evaporation source 2 on either side of the vapor path from the evaporation source 2 to the workpiece 4 . Also,
An annular accelerating electrode 7 is placed approximately midway between the evaporation source 2 and the workpiece 4, surrounding the vapor path, and near the accelerating electrode 7 is a tungsten filament 8 for thermionic emission, which is a feature of the present invention. In addition, 9 is a heating power source for the filament 5, 10 is a bias power source for the ionization electrode 6, 11 is a bias power source for the accelerating electrode 7, 12 is a heating power source for the filament 8, and A is an ammeter. Further, the vacuum chamber 1 has an exhaust path 13 leading to the vacuum bong and a gas introduction pipe 14 for introducing atmospheric gas.

上述の装置において、電子銃3が発した電子ビームの衝
突により、蒸発源2は蒸発し、その蒸気は、蒸発源2と
イオン化電極6との間に起る蒸気を通してのアーク放電
によって80%以上の高い率でイオン化し、加速電極7
で加速されて被加工物4へ向かう。しかし、その加速さ
れた蒸気イオンは、フィラメント8が放射する多量の熱
電子によって中和されるけれども、加速によって得た速
度はそのまに維持する結果、高速で被加工物4に衝突し
て良好な被膜を作る。なお、フィラメント5は、蒸発源
2とイオン化電極6との間でアーク放電が起シにくい場
合に、これを助けるために使用するものである〇 上述の装置の各部の寸法は次の通シである。
In the above-mentioned apparatus, the evaporation source 2 is evaporated by the collision of the electron beam emitted by the electron gun 3, and more than 80% of the vapor is evaporated by arc discharge through the vapor that occurs between the evaporation source 2 and the ionization electrode 6. The acceleration electrode 7 ionizes at a high rate of
is accelerated and heads toward the workpiece 4. However, although the accelerated vapor ions are neutralized by a large amount of thermionic electrons emitted by the filament 8, the velocity obtained by acceleration is maintained, and as a result, they collide with the workpiece 4 at high speed, resulting in a good result. Creates a film. The filament 5 is used to assist when arc discharge is difficult to occur between the evaporation source 2 and the ionization electrode 6. The dimensions of each part of the above device are as follows. be.

なお、フィラメント8は、直径Iff、長さ10αのタ
ングステン棒である。
Note that the filament 8 is a tungsten rod with a diameter Iff and a length 10α.

上述の装置において、蒸発源2としてチタンを用い、被
加工物4として直径1ullの18−8ステンレス鋼円
板を置き、真空槽1内を10−”Pa以下の高真空に排
気し、電子銃3を動作させて蒸発源2よシチタンを蒸発
させ、イオン化電極6に40Vの正バイアスを加えてチ
タン蒸気をイオン化させた。
In the above-mentioned apparatus, titanium is used as the evaporation source 2, an 18-8 stainless steel disk with a diameter of 1 µl is placed as the workpiece 4, the inside of the vacuum chamber 1 is evacuated to a high vacuum of 10-"Pa or less, and an electron gun is used. 3 was operated to evaporate titanium from the evaporation source 2, and a positive bias of 40 V was applied to the ionization electrode 6 to ionize the titanium vapor.

電子銃3の電子ビームを調節してイオン化電極6を流れ
る電流工1が1OAになるようにし、加速電極7の電位
Eeを一10Q Vに設定し、フィラメント8の加熱電
流工fを変化させたときのフィラメント8の電子放射電
流工eの変化状況は、第2図の如くであった。
The electron beam of the electron gun 3 was adjusted so that the current flow 1 flowing through the ionization electrode 6 was 1OA, the potential Ee of the accelerating electrode 7 was set to -10QV, and the heating current f of the filament 8 was changed. The changes in the electron emission current e of the filament 8 at that time were as shown in FIG.

次に、フィラメント8の加熱電流工fを4OAに固定し
、加速tti電位Eeを変化させたときのフィラメント
8の電子放射電流工eの変化状況を、イオン化電極電流
工1が5Aの場合とIOAの場合について求めた結果は
、それぞれ第3図の曲線31及び320通りであった。
Next, the changes in the electron emission current e of the filament 8 when the heating current f of the filament 8 is fixed at 4OA and the acceleration tti potential Ee are changed are compared with those when the ionization electrode current 1 is 5A and the IOA The results obtained for the cases shown in FIG. 3 were 31 and 320 curves, respectively.

また、フィラメント8のm熱電流工fと被加工物4を流
れる電流工tとの関係を、イオン化電[6を流れる電流
工1がそれぞれ!5A、IOA及び15Aの場合につい
て求めた結果を、第4図に曲線41.42及び43で示
す。
In addition, the relationship between the m thermoelectric current f of the filament 8 and the current t flowing through the workpiece 4 is expressed as follows: ionization current [current 1 flowing through 6] respectively! The results obtained for the cases of 5A, IOA and 15A are shown in FIG. 4 by curves 41, 42 and 43.

更に、イオン化電極電流工1がIOA、加速電極電位E
(3が−ユOOvのときの、フィラメント8の電子放射
電流工eと被加工物電流工tとの関係を第5図に示す。
Furthermore, the ionization electrode current 1 is IOA, the acceleration electrode potential E
(FIG. 5 shows the relationship between the electron emission current e of the filament 8 and the workpiece current t when 3 is -YOOv.

上述の実験結果により、次の事項が証明された。The above experimental results proved the following.

(1)第2図より、フィラメント8の放射電流工eは周
知のように加熱電流工fの増大に伴って増大するので、
加熱電流工fによって調節することができる〇 (2)第3図より、加速電極7のバイアスEeを高めて
イオンのエネルギが増す程、またイオン化電FM6の電
流工1を増してイオンの量が増える程、フィラメント8
の放射電流工eが増大する。
(1) From Fig. 2, the radiation current e of the filament 8 increases as the heating current f increases, as is well known.
It can be adjusted by the heating current factor f.〇(2) From Fig. 3, the more the bias Ee of the accelerating electrode 7 is raised to increase the energy of ions, the more the current factor 1 of the ionizing electric current FM6 is increased, the more the amount of ions is increased. The more it increases, the more filament 8
The radiation current e increases.

(3)第4図及び第5図よυ、被加工物4へ流入するイ
オンに起因する電流工tは、フィラメント8が放射する
熱電子電流工eが成る値のときに0になり、熱電子電流
工eが更に増大すると負値になる。被加工物電流工tを
0にするための熱電子放射電流工eの値は、イオン化電
極電流工1や加速電極電位Eeによって変化するが、フ
ィラメント加熱電流工fを調節することによって被加工
物電流工tを0に調節するととができる。
(3) As shown in Figs. 4 and 5, the electric current t caused by the ions flowing into the workpiece 4 becomes 0 when the thermionic current e emitted by the filament 8 becomes 0. If the electronic current factor e increases further, it becomes a negative value. The value of the thermionic emission current e to bring the workpiece current t to 0 varies depending on the ionization electrode current 1 and the accelerating electrode potential Ee, but by adjusting the filament heating current f, the workpiece By adjusting the electric current t to 0, it is possible to obtain .

〔発明の効果〕〔Effect of the invention〕

上記実施例によって明らかなように、この発明によると
きは、熱電子放射フィラメントの加熱電流を調節するこ
とによシ、蒸気を腑速して被加工物面に衝突させるイオ
ンプレーティング本来の利益を享受しながら、形成され
る被膜における電荷の蓄積を防ぐことができる。よって
、放電痕を生ずることなく絶縁波膜を形成したシ、絶縁
板上に絶縁破壊を起こすことなく導電性被膜を形成した
りすることが可能であるため、高品質の被膜を得ること
ができる。
As is clear from the above embodiments, according to the present invention, by adjusting the heating current of the thermionic emitting filament, the inherent benefit of ion plating in which vapor is made to collide with the surface of the workpiece can be achieved. It is possible to prevent charge accumulation in the formed film while enjoying the same effect. Therefore, it is possible to form an insulating wave film without causing discharge marks, and to form a conductive film on an insulating plate without causing dielectric breakdown, making it possible to obtain a high-quality film. .

【図面の簡単な説明】 第1図はこの発明の実施例の略断面図、第2図は同実施
例におけるフィラメント加熱電流−電子放射電流特性図
、第3図は同実施例における加速電極電位−電子放射電
流特性図、第4図は同実施例におけるフィラメント加熱
電流−被加工物電流特性図、第5図は同実施例における
電子放射電流−被加工物電流特性図である。 1・・・真空槽、2・・・蒸発源、4・・・被加工物、
6・・・イオン化電極、マ・・・加速電極、8・・・熱
電子放射フィラメント。
[Brief Description of the Drawings] Fig. 1 is a schematic sectional view of an embodiment of the present invention, Fig. 2 is a filament heating current-electron emission current characteristic diagram in the same embodiment, and Fig. 3 is an accelerating electrode potential in the same embodiment. - Electron emission current characteristic diagram, FIG. 4 is a filament heating current-workpiece current characteristic diagram in the same example, and FIG. 5 is an electron emission current-workpiece current characteristic diagram in the same example. 1... Vacuum chamber, 2... Evaporation source, 4... Workpiece,
6... Ionization electrode, M... Accelerating electrode, 8... Thermionic emission filament.

Claims (1)

【特許請求の範囲】[Claims] (1)蒸発源と、この蒸発源から蒸発した蒸気のイオン
化手段と、これによりイオン化された蒸気を被加工物へ
向けて加速する電界を附与する手段とを有するイオンプ
レーティング装置において、上記被加工物へ向う蒸気イ
オンの径路中または径路に接近した位置に熱電子放射フ
イラメントを設けたことを特徴とするイオンプレーテイ
ング装置。
(1) In an ion plating apparatus having an evaporation source, means for ionizing vapor evaporated from the evaporation source, and means for applying an electric field to accelerate the ionized vapor toward the workpiece, An ion plating apparatus characterized in that a thermionic emitting filament is provided in the path of vapor ions toward a workpiece or in a position close to the path.
JP6149887A 1987-03-16 1987-03-16 Ion plating device Pending JPS63227770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149887A JPS63227770A (en) 1987-03-16 1987-03-16 Ion plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149887A JPS63227770A (en) 1987-03-16 1987-03-16 Ion plating device

Publications (1)

Publication Number Publication Date
JPS63227770A true JPS63227770A (en) 1988-09-22

Family

ID=13172819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149887A Pending JPS63227770A (en) 1987-03-16 1987-03-16 Ion plating device

Country Status (1)

Country Link
JP (1) JPS63227770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060649A (en) * 2011-09-15 2013-04-04 Shinko Seiki Co Ltd Ion plating apparatus and ion plating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258081A (en) * 1975-11-10 1977-05-13 Hitachi Ltd Apparatus for attaching thin film
JPS546874A (en) * 1977-06-20 1979-01-19 Nippon Telegr & Teleph Corp <Ntt> Thin film forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258081A (en) * 1975-11-10 1977-05-13 Hitachi Ltd Apparatus for attaching thin film
JPS546874A (en) * 1977-06-20 1979-01-19 Nippon Telegr & Teleph Corp <Ntt> Thin film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060649A (en) * 2011-09-15 2013-04-04 Shinko Seiki Co Ltd Ion plating apparatus and ion plating method

Similar Documents

Publication Publication Date Title
US5840167A (en) Sputtering deposition apparatus and method utilizing charged particles
US5315121A (en) Metal ion source and a method of producing metal ions
JP2501828B2 (en) Thin film deposition equipment
GB2248340A (en) Thin film deposition apparatus
JPH0357191B2 (en)
JPS63227770A (en) Ion plating device
JPH06158319A (en) Method and device for continuous coating of nonconducting sheet in vacuum
JP3186777B2 (en) Plasma source
JPH08190995A (en) High speed atomic beam source
JPH03104881A (en) Formation of thin film of iron-iron nitride
JPH0214426B2 (en)
JPS594045Y2 (en) Ionization device for thin film production
RU2817564C1 (en) Fast atom source for dielectric etching
JPS62122210A (en) Apparatus for forming thin film
JPH0645871B2 (en) Reactive ion plating method
JP2812517B2 (en) Ion plating method and apparatus
JP2566602B2 (en) Ion source
JPH0426758A (en) Thin film forming device
JPS595732Y2 (en) Ion plating equipment
CN114242549A (en) Ion source device for forming plasma by sputtering substance
JP3140248B2 (en) Method and apparatus for controlling ion energy
JPS6280263A (en) Thin film forming device
JP2832256B2 (en) Plasma deposition equipment
JPS589156B2 (en) Ionization plating device
JPH0766873B2 (en) Fast atom beam source