JPS59157235A - Production of aluminum alloy blank material for laser reflection mirror - Google Patents

Production of aluminum alloy blank material for laser reflection mirror

Info

Publication number
JPS59157235A
JPS59157235A JP3023283A JP3023283A JPS59157235A JP S59157235 A JPS59157235 A JP S59157235A JP 3023283 A JP3023283 A JP 3023283A JP 3023283 A JP3023283 A JP 3023283A JP S59157235 A JPS59157235 A JP S59157235A
Authority
JP
Japan
Prior art keywords
impurities
ingot
alloy
aluminum alloy
amt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3023283A
Other languages
Japanese (ja)
Other versions
JPH0252683B2 (en
Inventor
Hiroshi Iinuma
飯沼 寛
Koichi Takada
紘一 高田
Haruyumi Kosuge
張弓 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP3023283A priority Critical patent/JPS59157235A/en
Publication of JPS59157235A publication Critical patent/JPS59157235A/en
Publication of JPH0252683B2 publication Critical patent/JPH0252683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a blank material from which a specular surface is immediately obtd. by ultraprecision-cutting using a diamond tool, etc. by specifying the permissible amt. of Mg and impurities in an Al alloy, further removing non- metallic inclusions therefrom to minimize an insoluble metallic compd. and limiting the grain size thereof. CONSTITUTION:A molten Al alloy which contains, by weight, 2-6% Mg, consists of the balance Al, and contains impurities to a permissible limit amt. of total 0.10% including 0.15% iron, 0.05% silicon, 0.25% copper, 0.50% zinc, 1.0% Mn, 0.05% Cr, 0.10% Zr, 0.02% Ti and other impurities, is filtered by a filter medium having <=10mu pore size. The molten metal removed of non-metallic inclusions in such a way is cast so as to solidify at a cooling rate of >=300 deg.C/sec to obtain a cast ingot. The ingot is subjected to a homogenization treatment if necessary and is thereafter hot-rolled and cold-rolled by the conventional method or the ingot is subjected to final annealing after the cold rolling alone. The amt. of the insoluble intermetallic compd. is thus minimized and the grain size thereof is limited to <=2mu.

Description

【発明の詳細な説明】 本発明はレーザー反射鏡に用いられる精密鏡面加工用ア
ルミニウム合金素材の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an aluminum alloy material for precision mirror finishing used in a laser reflecting mirror.

レーザースキャナー用回転多面鏡等レーザー反射鏡とし
てアルミニウム合金素材を用いる場合、従来一般に耐食
性、被剛性2強度等のすぐれたAl−81−Mg系合金
素材を精密研削盤若しくは精密切削旋盤などによって平
面加工を行ない次いで素材表面にニッケルメッキを施し
、最後にボリシングを施こすことによってつくられてい
た。しかし乍らこの方法ではメッキやポリシングに非常
に長時間を要し、また操作もはん雑であるために表面キ
ズの発生する機会が多く。
When using an aluminum alloy material as a laser reflecting mirror such as a rotating polygon mirror for a laser scanner, conventionally, an Al-81-Mg alloy material with excellent corrosion resistance, rigidity and 2 strength is flattened using a precision grinder or a precision cutting lathe. It was made by first applying nickel plating to the surface of the material, and finally applying boring. However, this method requires a very long time for plating and polishing, and the operations are complicated, so there are many chances for surface scratches to occur.

これが製品歩留を低下させ、コスト高の原因となってい
る。
This reduces product yield and causes high costs.

このような鏡面加工法における欠点を改善するだめにダ
イヤモンドバイトによる超精密切削加工した後1表面保
護被膜処理を行って境面とする方法が開発された。
In order to improve the drawbacks of the mirror finishing method, a method has been developed in which a surface protective coating is applied after ultra-precision cutting with a diamond cutting tool to create a boundary surface.

この方法は素材表面にメッキやポリンング埠のはん雑な
操作を行なう必要がなく、また加工時間も短縮できるな
どすぐれた境面仕上法であるが仕上けられた素材面がそ
のま\レーザー光の反射面として機能しなければならな
いため。
This method is an excellent interface finishing method as it does not require complicated operations such as plating or poling on the surface of the material and can shorten the processing time. as it must act as a reflective surface.

従来用いられたアルミニウム合金素材ではその要求特性
を満すことができない6 即ち、レーザー反射鏡の鏡面としては表面あらざ(几m
ax) 103μm以下、平面精度(平面うねりの高低
)0.1μm以下で局部的なピットやスクラッチがない
極めて高度の反射機能を有するものが要求される。
Conventionally used aluminum alloy materials cannot meet the required properties6.
ax) 103 μm or less, a plane accuracy (height of plane waviness) of 0.1 μm or less, and an extremely high reflective function with no local pits or scratches is required.

またさらに、この材料をレーザースキャナー用の回転多
面反射鏡に用いるなどの場合には。
Furthermore, when this material is used in rotating polygonal reflectors for laser scanners.

鏡体を毎分数万回という高速回転を行なわせる関係上1
弾性変形もしくは塑性変形によって反射機能が低下しな
いような強度と則性を有することが必要である。
Due to the fact that the mirror body rotates at a high speed of tens of thousands of times per minute,
It is necessary to have such strength and regularity that the reflective function will not deteriorate due to elastic or plastic deformation.

発明者うはダイヤモンドバイト等による超精密旋削を施
こして直ちにこれをレーザー反射鏡素材として使用が可
能なアルミニウム合金素材の製造法について研究検討を
重ねた結果本発明を完成したものであって1本発明は重
量でマグネシウム2〜6係を含み、残部アルミニウムお
よび不純物からなり、不純物の含有許容限界量が鉄Q、
15幅、硅素0.05%、銅0.25係、亜鉛0.50
饅、マンガンto係、クロム0.05噛。
The inventor has completed the present invention as a result of repeated research and consideration on a method of manufacturing an aluminum alloy material that can be used as a laser reflecting mirror material immediately after being subjected to ultra-precision turning using a diamond cutting tool, etc. The present invention contains magnesium 2 to 6 parts by weight, and the balance consists of aluminum and impurities, and the permissible content limit amount of impurities is iron Q,
15 width, silicon 0.05%, copper 0.25%, zinc 0.50
Steamed rice cake, manganese toke, 0.05 bite of chrome.

ジルコニウムcL10%、チタンQ、02q6およびそ
の他の不純物の合計Q、10係であるアルミニウム合金
浴場を孔径10μm以下の濾過材を通過させた後、60
0℃/秒以上の冷却速度で凝固が行われるように鋳造し
て鋳塊をつくシ、この鋳塊を常法に従って溶体化処理、
熱間、冷間圧延または直ちに冷間圧延を行って所定の厚
みに加工し、最終的に焼鈍することを特徴とするもので
ある。
After passing through an aluminum alloy bath containing 10% zirconium cL, titanium Q, 02q6 and other impurities, Q, 10%, through a filter medium with a pore size of 10 μm or less,
An ingot is produced by casting so that solidification occurs at a cooling rate of 0°C/second or more, and this ingot is solution-treated according to a conventional method.
It is characterized by hot rolling, cold rolling or immediate cold rolling to obtain a predetermined thickness, and finally annealing.

即ち1発明者らの検討によるとレーザー反射鏡として要
求される緒特性のうち強度剛性や反射機能を満足するア
ルミニウム合金系としてはマグネシウムを2〜6係含む
固溶強化型のアルミニウムーマグネシウム合金が適当で
あることが判った。
In other words, according to a study by the inventors, a solid solution strengthened aluminum-magnesium alloy containing 2 to 6 parts of magnesium is an aluminum alloy system that satisfies the strength, rigidity, and reflection function among the characteristics required for a laser reflecting mirror. It was found to be appropriate.

しかし乍ら一般市販馬格のアルミニウムーマグネシウム
合金によってつくられた素材を用いてダイヤモンドバイ
ト等による超精密切削加工を施した場合において、素材
加工面に先に述べたような高度の平滑度とそれに伴う反
射機能を付与するためには種々の問題点が存在した。
However, when using a material made from a commercially available aluminum-magnesium alloy and performing ultra-precision cutting using a diamond cutting tool, etc., the processed surface of the material has a high level of smoothness as described above. Various problems have arisen in order to impart the accompanying reflective function.

即ち、市販規格のアルミニウム合金素材中には種々の不
純物金属元素に基づく不溶性金属間化合物粒子や、工程
中で混入する非金属介在物粒子が存在し、これらの介在
物の多くは合金マトリックスよシ硬質であるために介在
物粒子が仕上後の表面に突起物として残留したり、ある
いは切削などに際して脱落してピットやスクラッチを生
じたシするために、この部分で投射光の散乱が起り、正
確で鮮明な反射像をうろことが極めて困難であった。
In other words, in commercial standard aluminum alloy materials, there are insoluble intermetallic compound particles based on various impurity metal elements and nonmetallic inclusion particles that are mixed in during the process, and many of these inclusions are separated from the alloy matrix. Because it is hard, inclusion particles may remain as protrusions on the surface after finishing, or may fall off during cutting, resulting in pits or scratches. This causes scattering of the projected light in these areas, making it difficult to accurately It was extremely difficult to see the clear reflected image.

発明者らは合金素材中に含有されるこれら介在物〃5素
素材面仕上後のレーザー光に対する反射機能におよぼす
影響について詳細に検討を行った結果、不溶性金属間化
合物粒子の大きさが2μm以下であればレーザー反射鏡
として良好な反射面を形成しうること、即ち2合金溶湯
を10μm以下の孔径の濾過材で一回乃至数回濾過し非
金属介在物を除去するだけでなく、不溶性金属間化合物
を生成する元素の存在♂を限度量まで制限した上で濾過
後の溶湯f:300℃/秒以上の冷却速度で凝固するよ
うに鋳造することによって素材中に含まれる不溶性金属
間化合物の量を僅少にとどめ、且つその粒径をば2μm
以下にすることに成功した、 本発明によって得られた合金素材はダイヤモンドバイト
による被剛性がすぐれているうえに被削面の平滑度も良
好で2反射率をはX:’;’as以上にすることができ
、また反射像の鮮明度も高いのでレーザー反射鏡、特に
レーザースキャナー用回転多面6境としてすぐれた性能
を有するものである。
The inventors conducted a detailed study on the influence of these inclusions contained in the alloy material on the laser beam reflection function after finishing the material surface, and found that the size of the insoluble intermetallic compound particles was 2 μm or less. If so, it is possible to form a good reflective surface as a laser reflecting mirror. In other words, the molten metal of the two alloys is filtered once or several times through a filter material with a pore size of 10 μm or less to not only remove nonmetallic inclusions, but also remove insoluble metal inclusions. Insoluble intermetallic compounds contained in the material can be removed by restricting the presence of elements that produce intermetallic compounds to a limited amount and casting the molten metal after filtration to solidify at a cooling rate of 300°C/second or more. The amount is kept small and the particle size is 2 μm.
The alloy material obtained by the present invention has excellent rigidity by diamond cutting, has a good smoothness of the cut surface, and has a reflectance of X:';'as or higher. In addition, since the reflected image has high clarity, it has excellent performance as a laser reflecting mirror, especially as a rotating polygon for a laser scanner.

本発明において合金元素としてのマグネシウムを2〜6
係と定めた理由はマグネシウム2%′以下では十分な強
度とダイヤモンドバイトによる良好な被剛性かえられず
、また6%を超えると合金組織中にβAl−Mg金属間
化合物を生じ。
In the present invention, the amount of magnesium as an alloying element is 2 to 6.
The reason for this is that if the magnesium content is less than 2%, sufficient strength and good stiffness by diamond bite cannot be achieved, and if it exceeds 6%, βAl-Mg intermetallic compounds are formed in the alloy structure.

これが合金の加工性を低下し、またこの化合物が2μm
以上の粗粒となって鏡面の反射機能を低下させる。
This reduces the workability of the alloy, and this compound
The particles become coarser and reduce the reflective function of the mirror surface.

本発明においては特に合金中に不溶性金属間化合物を生
ずるような金属不縄物元素の含有量規制が重要であるこ
とは前述した。即ち、これらの金属元素としては鉄、珪
素、クロム、マンガン、ジルコニウム、チタンが挙げら
れるが。
As mentioned above, in the present invention, it is especially important to control the content of non-metallic elements that cause insoluble intermetallic compounds in the alloy. That is, these metal elements include iron, silicon, chromium, manganese, zirconium, and titanium.

これらの元素の最大含有許容量を鉄0.15%、珪素0
.05係、クロム[105q6.マンガンtOチ、ジル
コニウムα10係、チタン0.02受に制限する理由は
、各元素が上記制限量以上あると300℃/秒以上の冷
却速度で溶湯を冷却凝固しても不溶性金属間化合物粒子
の大きさが2μmを超えレーザー反射鏡としての機能を
達成できなくなるからである。
The maximum allowable content of these elements is 0.15% iron and 0 silicon.
.. Section 05, Chrome [105q6. The reason for limiting the amounts of manganese to O, zirconium to α10, and titanium to 0.02 is because if each element exceeds the above-mentioned limits, even if the molten metal is cooled and solidified at a cooling rate of 300°C/sec or more, insoluble intermetallic compound particles will be formed. This is because if the size exceeds 2 μm, the function as a laser reflecting mirror cannot be achieved.

本発明は上記組成のアルミニウムーマグネシウム合金溶
湯を10μmの孔径を有するフィルターを通過させて、
非金属介在物を除去した後。
In the present invention, a molten aluminum-magnesium alloy having the above composition is passed through a filter having a pore size of 10 μm,
After removing non-metallic inclusions.

300%品上の冷却速度で凝固されるように鋳造して鋳
塊とする。このような大きな冷却速度で合金溶湯を凝固
させるときは鋳塊は極めて急速に冷却され不溶性金属間
化合物の析出量も少く、またその粒径も2μm以下にと
どめることρSできる。
The ingot is cast to solidify at a cooling rate of 300%. When the molten alloy is solidified at such a high cooling rate, the ingot is cooled extremely rapidly, the amount of insoluble intermetallic compounds precipitated is small, and the particle size can be kept at 2 μm or less.

このようにして得られた鋳塊は直ちに所定の厚さまで冷
延するか、または400〜550℃で2〜24時間焼鈍
した後熱間圧延および冷間圧延を加えて所望の厚さの冷
延板とした後、最終的に300〜550℃に0.5〜5
時間焼鈍を施して歪取シを行ってし〜ザー反射鏡用素材
に供する。
The ingot thus obtained is either immediately cold-rolled to a predetermined thickness or annealed at 400-550°C for 2-24 hours and then hot-rolled and cold-rolled to a desired thickness. After making a plate, it is finally heated to 300-550℃ by 0.5-5
It is subjected to time annealing to remove distortion and then used as a material for a laser reflecting mirror.

なお、最終焼鈍に際して焼鈍温度を500〜550℃と
し、且つ焼鈍後250℃までの冷却を100℃/分以上
の冷却速度とするときは素材反射率をさらに2〜6qb
向上させることができるのでよ)好ましい。
In addition, when the annealing temperature is 500 to 550°C during final annealing, and the cooling rate to 250°C after annealing is 100°C/min or more, the material reflectance is further increased by 2 to 6 qb.
It is preferable because it can be improved.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例1゜ 第1表に示す合金組成を有する試料番号1〜14までの
アルミニウムーマグネシウム合金溶湯を孔径10μmの
多孔質黒鉛フィルターで濾過した後、650℃/秒の冷
却速度で凝固させて厚さ8μmの板状鋳塊に鋳造した後
、6皿厚さまで冷間圧延を施し1次いでこの冷延板を4
20℃で4時間の焼鈍を行った。
Example 1 The molten aluminum-magnesium alloys of sample numbers 1 to 14 having the alloy composition shown in Table 1 were filtered through a porous graphite filter with a pore size of 10 μm, and then solidified at a cooling rate of 650°C/sec to obtain a thick After casting into a plate-shaped ingot with a diameter of 8 μm, it was cold-rolled to a thickness of 6 plates.
Annealing was performed at 20°C for 4 hours.

Cのようにして得られた素材について機械的性質、結晶
粒径および不溶性金属間化合物の粒径測定を行った。
Mechanical properties, crystal grain size, and particle size of insoluble intermetallic compounds were measured for the material obtained as in C.

また更にこの素材をダイヤモンドバイトを用いて精密切
削加工を施して鏡面仕上を施こし。
Furthermore, this material is precision cut using a diamond cutting tool to give it a mirror finish.

表面粗さ、刃先跡、キズ等の条痕の有無およびレーザー
人射光に対する60°反射率ならびに反射像の鮮明度測
定を行なってレーザー反射鏡としての適性を評価した。
The suitability as a laser reflector was evaluated by measuring the surface roughness, the presence or absence of streaks such as cutting edge marks, scratches, etc., the 60° reflectance of human laser radiation, and the sharpness of the reflected image.

これらの結果を一括して第2表に示す、 尚、適正評価に際し2μm以上の晶出物、介在物の存在
の有無、刃先跡目1表面キズの有無については顕微鏡(
倍率400倍)により、また表面粗さについては触針式
表面ららさ計による測定を2反射能の測定については2
r、w可視光領域のレーザー光(He−Heレーザー;
λ=632.8nm)の照射による600反射率と反射
像の形状の測定によった。
These results are summarized in Table 2. For proper evaluation, the presence or absence of crystallized substances and inclusions of 2 μm or more, and the presence or absence of blade edge marks and surface scratches were examined using a microscope (
400x magnification), and 2 for surface roughness measurements using a stylus type surface roughness meter, and 2 for reflectivity measurements.
r, w Laser light in the visible light region (He-He laser;
600 reflectance and the shape of the reflected image were measured by irradiation with λ=632.8 nm).

第2表の債果よ多試料番号1〜7で示される本発明によ
る合金素材は金属間化合物粒子の最大粒径が2μm以下
であり、またダイヤモンドバイトによる切削性も良好で
刃先跡目や表面キズも残らず、しかもレーザ光による6
0°反射率も88〜91で反射像の鮮明度も著しく良好
であるのに対し、試料番号8〜14で示される比較素材
は金属間化合物粒子の最大粒径が2μm以上でアシ、ま
たダイヤモンドバイトによる切削加工による刃先跡目や
表面キズが存在するなど、切削性が劣シ、且つレーザー
光による反射率や反射像の鮮明度も低いなどすべての点
において劣ることが判る。
The alloy materials according to the present invention, shown as sample numbers 1 to 7 in Table 2, have a maximum grain size of intermetallic compound particles of 2 μm or less, and also have good machinability with a diamond cutting tool, and are free from cutting edge marks and surface scratches. Also, the laser beam does not leave any residue.
The 0° reflectance is 88-91 and the clarity of the reflected image is also extremely good, whereas the comparative materials shown in sample numbers 8-14 have intermetallic compound particles with a maximum particle size of 2 μm or more and have reeds and diamonds. It can be seen that it is inferior in all respects, such as poor cutting performance, such as the presence of cutting edge marks and surface scratches due to cutting with a cutting tool, and low reflectance and clarity of reflected images by laser light.

実施例2 実施例1に用いた本発明による合金(第1表試料番号2
)溶湯について実施例1と同様の濾過処理を施した後、
#同時の冷却速度が15℃/秒(試料番号2−1)、2
00℃/秒(試料番号2−2)、および400℃/秒(
試料番号2−6および2−4)、になるようにして厚さ
8皿の板状鋳塊に鋳迫した。
Example 2 Alloy according to the invention used in Example 1 (Table 1 Sample No. 2)
) After subjecting the molten metal to the same filtration treatment as in Example 1,
# Simultaneous cooling rate of 15°C/sec (sample number 2-1), 2
00°C/sec (sample number 2-2), and 400°C/sec (
Sample numbers 2-6 and 2-4) were cast into a plate-shaped ingot with a thickness of 8 plates.

次いで、鋳塊を480℃に8時間均質化処理を施した後
t5mlまで熱間圧延し、さらに4題まで冷間圧延して
、640℃に1時間の最終焼鈍を施し室温まで自然冷却
した。なお試料番号2−4については試料番号2−6の
試料について最終焼鈍を520℃で1時間行ない、25
0℃までを150℃/分の冷却速度で冷却した。
Next, the ingot was homogenized at 480°C for 8 hours, hot rolled to 5ml, further cold rolled to 4mm, final annealed at 640°C for 1 hour, and naturally cooled to room temperature. Regarding sample number 2-4, the final annealing was performed at 520°C for 1 hour with respect to sample number 2-6.
It was cooled down to 0°C at a cooling rate of 150°C/min.

第3表に評価試験結果を示す。Table 3 shows the evaluation test results.

第3表の結果よシ同−組成の合金であっても本発明の条
件で製造されない試料番号2−1および2−2の合金素
材には2μm以上の金属間化合物粒子が発生し、−1:
たダイヤモンドバイトによる切削性も不良で且つレーザ
ー光による60° 反射率9反射像鮮明度も良好でない
のに対し本発明による素材(試料番号2−6および2ユ
4)は反射性能評価のすべての点でずぐれていることが
判る。
The results in Table 3 show that even though the alloys have the same composition, intermetallic compound particles of 2 μm or more are generated in the alloy materials of sample numbers 2-1 and 2-2, which are not manufactured under the conditions of the present invention. :
The machinability with a diamond cutting tool was also poor, and the sharpness of the 60° reflectance 9 reflection image with a laser beam was also not good, whereas the materials according to the present invention (sample numbers 2-6 and 2-4) failed in all of the reflection performance evaluations. It can be seen that the points are off.

特許出願人  日本軽金属株式会社Patent applicant: Nippon Light Metal Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)重量でマグネシウム2〜6チを含み、残部アルミ
ニウムおよび不純物からなシ、不純物の含有許容限界量
が鉄α15優、珪素0.05チ。 銅0.25俤、亜鉛0.50%、マンガン1.0俤。 クロムα05チ、ジルコニウムα10チ、チタン0.0
296およびその他の不純物の合計[110チであるア
ルミニウム合金溶湯全孔径10μm以下の濾過材を通過
させた後、600℃/秒以上の冷却速度で凝固するよう
鋳造して鋳塊をつくシ、必要あれば均質化処理を施した
後、常法によ多熱間圧延および冷間圧延、または冷間圧
延のみを行ない、最終焼鈍を施こすことを特徴とするレ
ーザー反射鏡用アルミニウム合金素材の製造法。
(1) Contains 2 to 6 inches of magnesium by weight, the balance is aluminum and impurities, and the permissible limit content of impurities is 15 degrees of iron α and 0.05 inches of silicon. Copper 0.25 yen, zinc 0.50%, manganese 1.0 yen. Chromium α05, zirconium α10, titanium 0.0
The molten aluminum alloy containing 296 and other impurities must be passed through a filter medium with a total pore diameter of 10 μm or less, and then cast to solidify at a cooling rate of 600°C/sec or more to form an ingot. Manufacture of an aluminum alloy material for a laser reflecting mirror, which is characterized by subjecting it to homogenization treatment if necessary, followed by multi-hot rolling and cold rolling, or only cold rolling, and final annealing. Law.
(2)最終焼鈍は500〜550℃で60分乃至5時間
の加熱保持を行な′りた後100℃/分以上の温度で冷
却する特許請求の範囲第1項記載のレーザー反射鏡用ア
ルミニクム合金素材の製造法。
(2) Final annealing is performed by heating and holding at 500 to 550°C for 60 minutes to 5 hours, and then cooling at a temperature of 100°C/min or more. Manufacturing method for alloy materials.
JP3023283A 1983-02-26 1983-02-26 Production of aluminum alloy blank material for laser reflection mirror Granted JPS59157235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3023283A JPS59157235A (en) 1983-02-26 1983-02-26 Production of aluminum alloy blank material for laser reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023283A JPS59157235A (en) 1983-02-26 1983-02-26 Production of aluminum alloy blank material for laser reflection mirror

Publications (2)

Publication Number Publication Date
JPS59157235A true JPS59157235A (en) 1984-09-06
JPH0252683B2 JPH0252683B2 (en) 1990-11-14

Family

ID=12297961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023283A Granted JPS59157235A (en) 1983-02-26 1983-02-26 Production of aluminum alloy blank material for laser reflection mirror

Country Status (1)

Country Link
JP (1) JPS59157235A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133920A (en) * 1984-12-04 1986-06-21 Ricoh Co Ltd Manufacture of rotary polygon mirror
JPS61159545A (en) * 1984-12-29 1986-07-19 Canon Inc Aluminum alloy for precision working, and tubing and photo-conductive member by use of it
JPH09307129A (en) * 1996-05-17 1997-11-28 Canon Inc Photovoltaic element
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product
CN110527878A (en) * 2019-09-23 2019-12-03 东莞市灿煜金属制品有限公司 A kind of manufacturing method of laptop dedicated aluminium alloy
JP2020513063A (en) * 2017-04-05 2020-04-30 ノベリス・インコーポレイテッドNovelis Inc. Anodizing quality 5XXX aluminum alloy having high strength and high formability and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294552B2 (en) 2016-01-27 2019-05-21 GM Global Technology Operations LLC Rapidly solidified high-temperature aluminum iron silicon alloys
US10260131B2 (en) 2016-08-09 2019-04-16 GM Global Technology Operations LLC Forming high-strength, lightweight alloys

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133920A (en) * 1984-12-04 1986-06-21 Ricoh Co Ltd Manufacture of rotary polygon mirror
JPH063499B2 (en) * 1984-12-04 1994-01-12 株式会社リコー Rotary polygon mirror and manufacturing method thereof
JPS61159545A (en) * 1984-12-29 1986-07-19 Canon Inc Aluminum alloy for precision working, and tubing and photo-conductive member by use of it
JPH0428773B2 (en) * 1984-12-29 1992-05-15 Canon Kk
JPH09307129A (en) * 1996-05-17 1997-11-28 Canon Inc Photovoltaic element
DE10231437B4 (en) 2001-08-10 2019-08-22 Corus Aluminium N.V. Process for producing an aluminum wrought alloy product
JP2020513063A (en) * 2017-04-05 2020-04-30 ノベリス・インコーポレイテッドNovelis Inc. Anodizing quality 5XXX aluminum alloy having high strength and high formability and method for producing the same
JP2022037039A (en) * 2017-04-05 2022-03-08 ノベリス・インコーポレイテッド Anodized quality 5xxx aluminum alloys with high strength and high formability and methods of making the same
US11821061B2 (en) 2017-04-05 2023-11-21 Novelis Inc. Anodized quality 5XXX aluminum alloys with high strength and high formability and methods of making the same
CN110527878A (en) * 2019-09-23 2019-12-03 东莞市灿煜金属制品有限公司 A kind of manufacturing method of laptop dedicated aluminium alloy

Also Published As

Publication number Publication date
JPH0252683B2 (en) 1990-11-14

Similar Documents

Publication Publication Date Title
JP4410835B2 (en) Aluminum alloy thick plate and manufacturing method thereof
US4431461A (en) Method for producing Al-base alloy substrates for magnetic recording media
CN105324500A (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JPS59157235A (en) Production of aluminum alloy blank material for laser reflection mirror
JPS59157255A (en) Aluminum alloy material for superprecision working to form specular surface
JPS59180832A (en) Alumite substrate for magnetic recording material
JPS63118045A (en) Aluminum alloy for bright disk wheel
KR0129525B1 (en) Aluminium alloy for magnetic disc substrate excellent platability
JP2000054093A (en) Manufacture of aluminum foil
JP3286982B2 (en) Mold material
JPH0210215B2 (en)
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH04272150A (en) Aluminum alloy for magnetic disk excellent in grindability
JPS6154854B2 (en)
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JPH0639664B2 (en) Manufacturing method of aluminum alloy material for laser mirror
JP3833348B2 (en) Method for producing glittering aluminum material
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JPH0310168B2 (en)
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JP2000054094A (en) Manufacture of aluminum foil
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JP2000054045A (en) Aluminum foil base for thin foil and its production