JPS61133920A - Manufacture of rotary polygon mirror - Google Patents

Manufacture of rotary polygon mirror

Info

Publication number
JPS61133920A
JPS61133920A JP25510484A JP25510484A JPS61133920A JP S61133920 A JPS61133920 A JP S61133920A JP 25510484 A JP25510484 A JP 25510484A JP 25510484 A JP25510484 A JP 25510484A JP S61133920 A JPS61133920 A JP S61133920A
Authority
JP
Japan
Prior art keywords
mirror surface
polygon mirror
mirror
rotary polygon
surface part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25510484A
Other languages
Japanese (ja)
Other versions
JPH063499B2 (en
Inventor
Hiroshi Kimura
宏 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59255104A priority Critical patent/JPH063499B2/en
Publication of JPS61133920A publication Critical patent/JPS61133920A/en
Publication of JPH063499B2 publication Critical patent/JPH063499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To subdivide and equalize a crystal particle diameter of a mirror surface part, and to improve the characteristics of the mirror surface of a reflection factor and a scattered light intensity, etc. by forming a stepped part on the whole periphery of the vicinity on the outside periphery which becomes the mirror surface part, and performing the shearing and the annealing. CONSTITUTION:A stepped part 2 whose width is narrow is formed by compressing a base material by plastic working, on the whole periphery of the vicinity on the outside periphery which becomes a mirror surface part of a rotary polygon mirror 1. In this compression process, a crystal particle diameter of the base material of the rotary polygon mirror is recrystallized, and subdivided and equalized. That is to say, by forming a stepped shape by the compression, an optimum draft for obtaining a characteristic of a mirror surface of the rotary polygon mirror can be selected. Also, a mirror surface part 3 of the rotary polygon mirror 1 is formed by shearing, a shearing surface of the time of punching by a press generates a plastic flow of a crystal organization by a shearing stress of the time of punching, and becomes small. Thereafter, annealing is performed to the mirror surface part 3, and the crystal particle diameter of the mirror surface part 3 is subdivided and also equalized, and a base material of the rotary polygon mirror can be obtained. In this way, the characteristic of the mirror surface is improved, and the working time of the time of super-precise cutting can be shortened.

Description

【発明の詳細な説明】 萩亙立亙 本発明は、レーザプリンタ等の光学系に使用される光偏
光器としての回転多面鏡の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a rotating polygon mirror as an optical polarizer used in an optical system such as a laser printer.

灸未筐! 従来、レーザプリンタにおいては、レーザ発振器から出
射したレーザ光は、反射ミラー、変調器、ビームエキス
パンダ等を通過した後、モータに取り付けられた回転多
面鏡にて振られ収束レンズにより感光体の軸方向に照射
されるようになっている。
Moxibustion yet! Conventionally, in a laser printer, a laser beam emitted from a laser oscillator passes through a reflecting mirror, a modulator, a beam expander, etc., and then is deflected by a rotating polygon mirror attached to a motor and focused by a converging lens to the axis of the photoreceptor. It is designed to be irradiated in the direction.

ところで、モータに取り付けられる回転多面鏡において
は、その製造方法は次の如きものである。
By the way, the manufacturing method for a rotating polygon mirror attached to a motor is as follows.

すなわち、まず、アルミニウム合金製である丸棒の材料
切断を行い、次いで両端面を旋削した後研摩し、次に、
フライス切削して所望の多面形状にすると共に禁面部と
なる平滑面を形成し、さらに、穴明けおよび座ぐり加工
を施し、その後、歪取り焼鈍を行って回転多面篤素材を
得ているにの回転多面鏡素材の鏡面部となる平滑面に超
精密切削加工を施せば、完成品である回転多面鏡が得ら
れる。
That is, first, a round bar made of aluminum alloy is cut, then both end faces are turned and polished, and then,
Milling is performed to form the desired multifaceted shape and a smooth surface is formed to serve as the prohibited surface area, followed by drilling and counterbore processing, followed by strain relief annealing to obtain a rotary multifaceted material. By performing ultra-precision cutting on the smooth surface that will become the mirror surface of the rotating polygon mirror material, a finished rotating polygon mirror can be obtained.

しかして1回転多面鏡の鏡面部の反射率や散乱光強度等
の鏡面特性は、その結晶ffl織における結晶粒径によ
って左右され、超精密切削加工を施す前の回転多面R素
材の平滑面の結晶粒径は、細分化および均一化されてい
ることが望ましい。これは、結晶粒径が、細分化および
均一化されていれば、超精密切削加工後の鏡面特性が向
上するためであるが、従来においては、前述したとおり
、丸棒の原材料における結晶粒径のままであり、アルミ
ニウム合金製の回転多面鏡としては鏝面特性が未だ充分
でないという問題がある。
However, the mirror characteristics such as the reflectance and scattered light intensity of the mirror surface of a single-rotation polygon mirror are influenced by the crystal grain size in the crystal FFL weave, and the smooth surface of the rotary polygon R material before ultra-precision cutting is affected. It is desirable that the crystal grain size be finely divided and uniform. This is because if the crystal grain size is finely divided and made uniform, the specular properties after ultra-precision cutting will improve. However, there is a problem in that the trowel surface characteristics are still insufficient for a rotating polygon mirror made of aluminum alloy.

亘−一煎 本発明は、上記従来技術に存する問題点に鑑みてなされ
たものであり、鏡面部の結晶粒径の細分化および均一化
を可能として反射率や散乱光強度等の累面持性が向上で
きる回転多面鏡の製造方法を提供することを目的とする
ものである。
The present invention has been made in view of the problems existing in the prior art described above, and makes it possible to refine and make the crystal grain size of the mirror surface part fine and uniform, thereby improving the surface properties such as reflectance and scattered light intensity. It is an object of the present invention to provide a method for manufacturing a rotating polygon mirror that can improve performance.

1−一風 上記目的を達成させるため、本発明の構成は、多面形状
を成してモータに取り付けられる回転多面鏡の製造方法
であって1回転多面鏡の鏡面部となる外周上の近傍全周
に、塑性加工にて圧縮して段付部を形成すると共に、剪
断加工にて所望の多面形状として鏡面部を形成し、しか
る後、焼鈍加工を施して前記鏡面部の結晶粒径を細分化
すると共に均一化して回転多面鏡素材を得ることを特徴
としている。
1-1 Wind In order to achieve the above object, the present invention provides a method for manufacturing a rotating polygon mirror that has a polygonal shape and is attached to a motor, in which the entire vicinity on the outer periphery, which is the mirror surface of a single-rotation polygon mirror, is At the same time, a stepped portion is formed by compressing the periphery by plastic working, and a mirror surface portion is formed into a desired polygonal shape by shearing, and then annealing is performed to finely divide the crystal grain size of the mirror surface portion. It is characterized in that it obtains a rotating polygon mirror material by making it uniform and uniform.

男−施一匠 以下、本発明の一実施例を図に基づいて説明する。Man - Shi Issho Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図ないし第3図において、回転多面′W41の鏡面
部となる外周上の近傍全周に、塑性加工にて母材を圧縮
して幅狭とした段付部2を形成する。
In FIGS. 1 to 3, a narrow stepped portion 2 is formed by compressing the base material by plastic working on the entire circumference near the outer periphery of the rotating polygon 'W41, which becomes the mirror surface portion.

この段付部2は後に焼鈍加工が施されるが、この圧縮、
焼鈍の過程を経て回転多面鏡の母材の結晶粒径は、再結
晶して細分化および均一化が果される。この場合、再結
晶粒度は、圧縮加工の加工度が高い程、細かくなること
は知られている。すなわち、圧縮して段付形状にするこ
とにより、回転多面鏡の鏡面部の鏡面特性を得る最適加
工度を選定することかできる。
This stepped portion 2 will be annealed later, but this compression,
Through the annealing process, the crystal grain size of the base material of the rotating polygon mirror is recrystallized to become finer and more uniform. In this case, it is known that the recrystallized grain size becomes finer as the degree of compression processing increases. That is, by compressing it into a stepped shape, it is possible to select the optimum degree of machining to obtain the mirror characteristics of the mirror surface portion of the rotating polygon mirror.

また、回転多面鏡lの鏡面部3は剪断加工にて形成され
るが、ブレス打抜時の剪断面は打抜時の剪断応力により
、結晶、1111!が塑性流動を起こし、結晶粒径が細
かくなる。すなわち、この剪断現象の剪断面を、回転多
面鏡の鏡面部に適用したので、この面からも鏡面部の鏡
面特性の向上が果されている。
Furthermore, the mirror surface portion 3 of the rotating polygon mirror l is formed by shearing, and the sheared surface during press punching is crystalline, 1111!, due to the shear stress during punching. causes plastic flow and the crystal grain size becomes finer. That is, since the shear surface of this shear phenomenon is applied to the mirror surface portion of the rotating polygon mirror, the mirror surface characteristics of the mirror surface portion are improved from this surface as well.

なお、回転多面鏡1の鏡面部3の端部にコーナRあるい
は面取りを設けると、超精密切削加工時に発生するパリ
を抑えることができるが、このコーナRはブレス打抜時
の過程により形成されるもので、この現象をこのまま活
用すればよい(第3図参照)。
Note that if a corner R or a chamfer is provided at the end of the mirror surface part 3 of the rotating polygon mirror 1, it is possible to suppress burrs that occur during ultra-precision cutting, but this corner R is formed during the press punching process. This phenomenon can be used as is (see Figure 3).

次に、第4図ないし第6図を用いて加工工程を説明する
。本加工工程の基本構成は、第1工程から第3工程まで
で構成されている。第1工程では。
Next, the processing steps will be explained using FIGS. 4 to 6. The basic structure of this processing step consists of a first step to a third step. In the first step.

モータ軸組付基準穴4、モータ組付用ねじの座ぐり部の
潰し用材料逃げ下穴51段付部の圧縮材料逃げスリット
6を同時加工する。次いで第2工程では1段付部2の圧
縮成形、座ぐり部7の潰し成形、モータ軸組付基準穴4
の表面面取を同時加工する。さらに、第3工程では、鏡
面部3を有する所望の多面形状8、モータ組付用ねじの
取付穴9、モータ軸組付基準穴4の裏面面取を同時加工
する。
Simultaneously process the motor shaft assembly reference hole 4, the material escape pilot hole 51 for crushing the counterbore portion of the motor assembly screw, and the compressed material escape slit 6 in the stepped portion. Next, in the second step, the first step part 2 is compression molded, the counterbore part 7 is crushed, and the motor shaft assembly reference hole 4 is formed.
Simultaneously process surface chamfering. Furthermore, in the third step, the desired multifaceted shape 8 having the mirror surface portion 3, the mounting hole 9 for the motor assembly screw, and the back chamfering of the motor shaft assembly reference hole 4 are simultaneously processed.

これによって、回転多面鏡素材が得られることとなる。As a result, a rotating polygon mirror material is obtained.

次に、上記工程を採る際の加工方法について述べる。Next, the processing method used in the above steps will be described.

第1工程においては、単なる穴形状が得られればよいか
ら、一般的なブレス打抜工法でよい。第2工程において
は、段付部の圧縮成形、座ぐり部の潰し成形があるので
鍛造工法がよい。また、第3工程においては、鏡面部の
面粗度、剪断部垂直度、および材料硬度を得るためには
、静水圧を付加した打抜工法が適している。
In the first step, since it is sufficient to obtain a simple hole shape, a general press punching method may be used. In the second step, the forging method is preferable because it involves compression molding of the stepped portion and crushing molding of the counterbore portion. In addition, in the third step, a punching method that applies hydrostatic pressure is suitable in order to obtain the surface roughness of the mirror surface, the perpendicularity of the sheared part, and the material hardness.

また、生産方式は、これらの単発流し生産方式と、li
[vJ効率を考慮した順送り生産方式か考えられる。順
送り生産方式の場合は、第1工程ないし第3工程までの
要求機能(第1工程ないし第3工程を同時に加工する複
合加工)を有した設備を検討する必要がある。現在考え
られる設備としては、鍛造プレス、対向ダイスプレス、
ファインブランキングプレス等があるが、加ニスピード
、加工エリア等の制約を考慮すると、ファインブランキ
ングプレスが条件に最も適合している。
In addition, the production methods include these single-shot flow production methods and li
[VJ A progressive production method that takes efficiency into consideration may be considered. In the case of a progressive production system, it is necessary to consider equipment that has the required functions for the first to third processes (compound processing that processes the first to third processes simultaneously). Currently considered equipment includes forging presses, opposed die presses,
There are fine blanking presses, etc., but considering constraints such as cutting speed and processing area, fine blanking presses are the most suitable for the conditions.

以上述べたように本実施例としては、回転多面its材
を形成するにあたって、全ての加工に塑性加工を適用し
ているが1次に第7図に基づいて具体的な回転多面鏡素
材形成層の塑性加工金型について説明する。
As mentioned above, in this example, plastic working was applied to all processing in forming the rotating polygon mirror material. The plastic working mold will be explained.

第7図において、10は上型、11は下型であるが。In FIG. 7, 10 is an upper mold, and 11 is a lower mold.

基本的な金型碍造は、ファインブランキングの固定パン
チ方式の順送り型形式とする。そして、金型は潰し鍛造
と打抜きを同時加工しなくてはならないため、それらの
タイミングを取るためにダイフローティング方式とし、
フローティングダイ12を設ける。また、クリヤーな剪
断面を得るために、静水圧発生機構を設ける6図におい
て、13は静水圧発生リングを示している。また、モー
タ軸組付基型穴の潰し時の変形をイ6正する目的で第3
ステージにバニッシュバンチ14を設け、且つ、そのパ
ンチに面取機能も併設する。
The basic mold construction is a progressive die type using a fixed punch method with fine blanking. Since the die must be processed for crushing and punching at the same time, a die floating method was used to ensure the timing of these operations.
A floating die 12 is provided. Further, in order to obtain a clear shear surface, a hydrostatic pressure generating mechanism is provided. In Fig. 6, 13 indicates a hydrostatic pressure generating ring. In addition, in order to correct the deformation when the motor shaft assembly base hole is crushed,
A vanish bunch 14 is provided on the stage, and the punch is also provided with a chamfering function.

夏−一困 以上述べた如く、本発明によれば、結晶粒径の細分化お
よび均一化が果された回転多面jJ!素材が得られるの
で、鏡面特性の向上が達成できる。また、後工程の超精
密切削加工における加工時間の短縮も達成できる。また
、従来の切削加工に代えて塑性加工にしたので、回転多
面鏡の原価低減が可能となる。
As mentioned above, according to the present invention, the rotating polyhedral jJ! Since the material can be obtained, improvement in specular properties can be achieved. Furthermore, it is possible to shorten the machining time in ultra-precision cutting in the post-process. Furthermore, since conventional cutting is replaced by plastic working, the cost of the rotating polygon mirror can be reduced.

なお、本実施例におけるが如く、回転多面鏡素材を得る
ための加工を全て塑性加工にすれば、加工時間の大幅な
短縮により、回転多面鏡の原価低減は更に顕著なものと
することができる。
In addition, if the processing to obtain the rotating polygon mirror material is all plastic working as in this example, the processing time can be significantly shortened, and the cost reduction of the rotating polygon mirror can be even more remarkable. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る回転多面鏡の平面図、第2@は第
1図の■−■線に沿う断面図、第3図は第2図の頂部の
詳細図、第4図ないし第6図は本発明に係る一実施例を
示すもので、第4図は第1工程の素材の底面図、第5図
は第2工程の素材の底面図、第6図は第3工程の素材の
底面図、第7図は本発明に係る金型の説明図である。 ■・・回転多面鏡、   2・・・段付部、3・・・鋲
面部、     4・・・モータ軸組付基準穴。 7・・・モータ組付用ねじの座ぐり部、8・・・多面形
状、 9・・・モータ組付用ねじの取付穴、 10・・・上型、     11・・・下型、12・・
・フローティングダイ、 13・・・静水圧発生リング。 第1図      第2図 ■ 第3図
FIG. 1 is a plan view of a rotating polygon mirror according to the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a detailed view of the top of FIG. 2, and FIGS. Fig. 6 shows an embodiment of the present invention, Fig. 4 is a bottom view of the material in the first step, Fig. 5 is a bottom view of the material in the second step, and Fig. 6 is a bottom view of the material in the third step. The bottom view of FIG. 7 is an explanatory view of the mold according to the present invention. ■...Rotating polygon mirror, 2...Stepped part, 3...Rivet surface part, 4...Motor shaft assembly reference hole. 7... Counterbore portion for motor assembly screw, 8... Multifaceted shape, 9... Mounting hole for motor assembly screw, 10... Upper die, 11... Lower die, 12...・
・Floating die, 13... Hydrostatic pressure generation ring. Figure 1 Figure 2 ■ Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)多面形状を成してモータに取り付けられる回転多
面鏡の製造方法であって、 回転多面鏡の鏡面部となる外周上の近傍全周に、塑性加
工にて圧縮して段付部を形成すると共に、剪断加工にて
所望の多面形状として鏡面部を形成し、しかる後、焼鈍
加工を施して前記鏡面部の結晶粒径を細分化すると共に
均一化して回転多面鏡素材を得ることを特徴とする回転
多面鏡の製造方法。
(1) A method for manufacturing a rotating polygon mirror that has a polygonal shape and is attached to a motor, in which a stepped portion is formed by compressing the entire circumference of the outer periphery of the rotating polygon mirror, which will become the mirror surface portion, by plastic working. At the same time, a mirror surface part is formed into a desired polygonal shape by shearing, and then annealing is performed to finely divide and uniformize the crystal grain size of the mirror surface part to obtain a rotating polygon mirror material. A manufacturing method for a rotating polygon mirror.
(2)モータ軸組付基準穴、モータ組付用ねじの座ぐり
部および取付穴等も塑性加工で形成する特許請求の範囲
第1項記載の回転多面鏡の製造方法。
(2) The method for manufacturing a rotating polygon mirror according to claim 1, wherein the motor shaft assembly reference hole, the counterbore for the motor assembly screw, the mounting hole, etc. are also formed by plastic working.
JP59255104A 1984-12-04 1984-12-04 Rotary polygon mirror and manufacturing method thereof Expired - Lifetime JPH063499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255104A JPH063499B2 (en) 1984-12-04 1984-12-04 Rotary polygon mirror and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255104A JPH063499B2 (en) 1984-12-04 1984-12-04 Rotary polygon mirror and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61133920A true JPS61133920A (en) 1986-06-21
JPH063499B2 JPH063499B2 (en) 1994-01-12

Family

ID=17274162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255104A Expired - Lifetime JPH063499B2 (en) 1984-12-04 1984-12-04 Rotary polygon mirror and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH063499B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170802U (en) * 1987-04-24 1988-11-07
US4820005A (en) * 1986-12-27 1989-04-11 Ricoh Company, Ltd. Method of fixing a polygon mirror and an optical deflector having such polygon mirror
US5692287A (en) * 1994-10-04 1997-12-02 Canon Kabushiki Kaisha Method of manufacturing a metal polygon mirror

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189434A (en) * 1975-02-03 1976-08-05 KAGAMI
JPS5674203A (en) * 1979-11-24 1981-06-19 Masao Watanabe Odd mirror
JPS59157235A (en) * 1983-02-26 1984-09-06 Nippon Light Metal Co Ltd Production of aluminum alloy blank material for laser reflection mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189434A (en) * 1975-02-03 1976-08-05 KAGAMI
JPS5674203A (en) * 1979-11-24 1981-06-19 Masao Watanabe Odd mirror
JPS59157235A (en) * 1983-02-26 1984-09-06 Nippon Light Metal Co Ltd Production of aluminum alloy blank material for laser reflection mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820005A (en) * 1986-12-27 1989-04-11 Ricoh Company, Ltd. Method of fixing a polygon mirror and an optical deflector having such polygon mirror
JPS63170802U (en) * 1987-04-24 1988-11-07
US5692287A (en) * 1994-10-04 1997-12-02 Canon Kabushiki Kaisha Method of manufacturing a metal polygon mirror

Also Published As

Publication number Publication date
JPH063499B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US5647790A (en) Method for generating tooth surfaces of globoid worm wheel
US5918575A (en) Processing method for a connecting rod
US5692287A (en) Method of manufacturing a metal polygon mirror
JPS61133920A (en) Manufacture of rotary polygon mirror
US4048835A (en) Method of punching a small hole in a precision mechanics workpiece
EP0294218A2 (en) Manufacturing process for polygonal mirror
JPH05138260A (en) Low noise piercing method of press and device therefor
EP0277269A1 (en) Process for manufacturing a part having a tooth profile and boss
JPH07214193A (en) Precise sharing die in press machine
JPH07144244A (en) Forging die and forging method of forging gear
JP3746828B2 (en) Manufacturing method for cylindrical parts
JP3365949B2 (en) Manufacturing method of valve lifter
JP3577877B2 (en) Pressed part manufacturing method and watch
JP3577878B2 (en) Pressed part manufacturing method and watch
JP4217691B2 (en) Manufacturing method for cylindrical parts
JPH11156457A (en) Method for forming tapered hole, and manufacture op optical element
JP2002045932A (en) Punch die, manufacturing method for the die and punch tip base material
JPH03133530A (en) Manufacture of bearing, bearing blank and bearing
JP4340855B2 (en) Manufacturing method of dynamic pressure generating groove
JP4397564B2 (en) Manufacturing method of plate member and rotating polygon mirror manufactured thereby
JP2841727B2 (en) Rotating polygon mirror manufacturing method
JP2003136150A (en) Method for machining stepped flange and its die for this method
JPH0824972A (en) Method for working case
JPH06210389A (en) Manufacture of bottomed cylindrical part
JPS5973137A (en) Manufacture of spiral grooved bearing housing