JPS59156724A - Manufacture of joining material - Google Patents

Manufacture of joining material

Info

Publication number
JPS59156724A
JPS59156724A JP59022075A JP2207584A JPS59156724A JP S59156724 A JPS59156724 A JP S59156724A JP 59022075 A JP59022075 A JP 59022075A JP 2207584 A JP2207584 A JP 2207584A JP S59156724 A JPS59156724 A JP S59156724A
Authority
JP
Japan
Prior art keywords
plastic
plastic foam
curing
core
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59022075A
Other languages
Japanese (ja)
Inventor
ヴオルフガング・ピープ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of JPS59156724A publication Critical patent/JPS59156724A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • B29C44/16Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining shaped by the expansion of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/128Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles in the form of a mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/255Blocks or tablets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、?リメタク□リルイミPプラスチックフオー
ムからなる心及び心に接合した場合により繊維補強の熱
硬化性プラスチック(これは硬化前には流動性である)
からなる被發層を有する複合月利を、未硬化の熱硬化性
プラスチックをプラスチックフオームの心にのせ、接合
物を硬化温度に加熱して硬化させることによって製造す
る方法に関する。複合材料は、軽くて硬く大きい負荷力
のある部品として多くの産業分野、例えば航空機−及び
車両産業、造船、輸送コンテナその他の製造で使用され
る。
[Detailed Description of the Invention] What is the present invention? Rimetaku□LiluimiP core made of plastic foam and a thermoset plastic reinforced with fibers when bonded to the core (which is flowable before curing)
The present invention relates to a method for manufacturing a composite material having a curable layer consisting of a thermosetting plastic by placing an uncured thermosetting plastic on a plastic foam core and curing the bonded material by heating it to a curing temperature. BACKGROUND OF THE INVENTION Composite materials are used in many industrial fields as light, hard, and highly load-bearing parts, such as in the aircraft and vehicle industry, shipbuilding, shipping containers, and other manufacturing.

ドイツ公開特許第3002584号明細Nシによれば、
予圧縮し、加熱する際発泡圧を発生しながらもとの寸法
に膨張するプラスチックフオームよりなる心と熱硬化性
被薇層拐料とからなるプラスチックフオームの複合月利
を、被着層材料を心にのせ、中空型中で加熱し、その際
同時に心が発泡圧を発生し、被覆層が硬化することによ
って製造する。−この方法では、心のプラスチックフオ
ームを予圧縮する必要性が欠点である。
According to German Published Patent Application No. 3002584,
A composite material of plastic foam consisting of a core made of plastic foam that expands to its original size while generating foaming pressure when pre-compressed and heated, and a thermosetting coating material is used as an adhesive layer material. It is produced by placing it on a core and heating it in a hollow mold, at which time the core simultaneously generates foaming pressure and the coating layer hardens. - A disadvantage of this method is the necessity of pre-compressing the plastic foam of the core.

ポリメタクリルイミドプラスチックフオームからなる心
を有するプラスチックフオームの複合材イ1の製造が、
ドイツ公開特許第2822884号明細書に記載されて
いる。これによれば、170〜250’Cでの発泡に」
;つて得られたプラスチックフオームの心に繊維を有す
る熱硬化性プラスチックをのせ、j40°C以上及び使
用したプラスチックフオームの心の発泡流度以下で存在
する湿度で硬化させる。被覆層iプラスチックフオーム
の心と、結合するためには、外部の圧縮圧を使用する。
The production of a plastic foam composite material I1 having a core made of polymethacrylimide plastic foam comprises:
It is described in German Published Patent Application No. 2822884. According to this, foaming occurs at 170 to 250'C.
A thermosetting plastic having fibers is placed on the core of the plastic foam thus obtained and cured at a humidity of at least 40° C. and below the foam flow rate of the core of the plastic foam used. External compression pressure is used to bond the covering layer to the plastic foam core.

この方法は、一定の中空室の容積を有する中空型中での
複合月利の製造に限定されて適当であるのに過ぎない。
This method is only suitable for the production of composite monthly molds in hollow molds with a constant cavity volume.

それというのも中空型を閉じた後にもはや更に圧縮圧を
使用することはできないからである。
This is because, after closing the hollow mold, no further compression pressure can be used.

ドイツ公開特許第2009841号明細書からzマ、ポ
リメタクリルイミドプラスチックフオームからなる成彫
体を二工程の発泡工程で使用することは公知である。こ
の場合第一の発泡工程では圧力を用いないで予成形体を
製造し、これを場合によって処理して素材にし、これを
、第二工程で数部からなる中空型中での高加熱によって
その最終形態に膨張させる。同時に被覆層の被覆は、こ
の方法では明らかではない。
It is known from DE 2009841 A1 to use molded bodies made of polymethacrylimide plastic foam in a two-step foaming process. In this case, in the first foaming step, a preform is produced without pressure, which is optionally processed to form a blank, which is then transformed in a second step by high heating in a hollow mold consisting of several parts. Expand to final form. At the same time the coverage of the covering layer is not evident with this method.

本発明の課題は、ポリメタクリルイミドプラスチックフ
オームからなる心を有する複合月利を、プラスチックフ
オームを予圧縮せずにかつ外部の圧縮圧を使用しないで
製造すること、である。この課題の解決は、被覆層の熱
硬化性プラスチックとして、硬化温度が、プラスチック
フオームは軟化しかつ発泡圧少くとも1パールを発生す
る扁度軛囲内に存在する熱硬化性プラスチックを使用し
、複合物をか\る前記範囲内の温度に加熱し、この湿度
で熱硬化性プラスチックの流動状態゛が少くともプラス
チックフオームが発泡圧を発生するまで持続し、プラス
チックフオームの膨張を、これを取囲み発泡圧に対して
安定な中空型によって抑制することによって可能である
ことが判明した。
The object of the present invention is to produce a composite porcelain with a core of polymethacrylimide plastic foam without precompressing the plastic foam and without using external compression pressures. The solution to this problem is to use, as the thermosetting plastic of the coating layer, a thermosetting plastic whose curing temperature is within a range of degrees at which the plastic foam softens and generates at least 1 pearl of foaming pressure. Heating the material to a temperature within the above-mentioned range and maintaining the fluid state of the thermosetting plastic at this humidity at least until the plastic foam develops foaming pressure, causing expansion of the plastic foam surrounding it. It has been found that this is possible by suppressing the foaming pressure with a stable hollow mold.

棟々の硬化性を有する多くの熱硬化性プラスチックが存
在する。これらは、硬化温度の犬ぎさ又は高温段での硬
化が行われる速度によって異なる。本発明で選ばれない
熱硬化性プラスチックをv着層の製造に使用すると、プ
ラスチックフオームと被覆層との間に不十分な結合を有
する複合材料が得られる。
There are many thermosetting plastics that have varying degrees of hardening properties. These vary depending on the degree of curing temperature or the speed at which the curing takes place in the hot stage. If thermosetting plastics not selected according to the invention are used in the production of the vat layer, composite materials are obtained with insufficient bonding between the plastic foam and the cover layer.

プラスチックフオームの複合相イC[を製造するために
屡々使用される方法は、先づ製造すべき材料の形態に対
して被覆すべきプラスチック層の厚さに相応する不足量
目を有するプラスチツクツ副−ムからなる心を製造する
ことである。
The process often used for producing composite phase IC of plastic foams consists of first preparing a plastic sub-layer with a quantity corresponding to the thickness of the plastic layer to be coated with respect to the form of the material to be produced. It is to manufacture a mind made of -mu.

心に熱硬化性プラスチックをのせ、中空室が製造すべき
複合利用に正確に相応する中空型中に装入する。一般に
熱硬化性シラスデックを、考慮した厚さの心のすべての
個所に正確に被膜することは殆んど不可能であるので、
中空型は、被覆した心の装入後に直ちに完全に閉じるこ
とはできず、まずのせた被膜の過剰量帯域から不足量帯
域への流動二[程が行わなければならない。出来上った
硬化成形体の試験によって、心と被覆層との間の十分に
固い結合は前記の過剰量41を域で生じるのに過ぎない
ことが判明した。これは中空型を閉じる際及び流動性熱
硬化性プラスチックを分配する際の圧縮圧に帰因する。
The core is covered with thermosetting plastic and placed into a hollow mold whose hollow space corresponds exactly to the complex to be manufactured. In general, it is almost impossible to accurately coat all parts of the core of the considered thickness with thermosetting Shirasudek, so
The hollow mold cannot be completely closed immediately after loading the coated core, but a second step must first take place to allow the deposited coating to flow from the surplus zone to the deficit zone. Testing of the finished cured moldings revealed that a sufficiently tight bond between the core and the covering layer only resulted in the above-mentioned excess amount 41. This is due to the compression pressure when closing the hollow mold and dispensing the flowable thermoset.

これに反して、最初の不足量帯域では心と被發層との間
の十分な結合は生じない。心と被覆層との間並びに被鎧
層が数層から構成されている場合には、被愈層内部にさ
えも気泡及び空洞が存在する。
In contrast, in the first deficit band, insufficient coupling between the mind and the affected layer occurs. Air bubbles and cavities are present between the core and the covering layer and even within the covering layer when the covering layer consists of several layers.

この欠点は、比l咬的低い硬化湿度並びに比較的大きい
硬化77晶度の場合にtlをめらスtた。J?初の場合
には、硬化は前記不足量帯域中でプラスデックフオーム
と被協層との緊密な結合のための圧縮圧が起らないで生
じる。最後の場合には、心は発泡圧を発生するが、この
発泡圧は被鎧層が既に十分に硬fヒし、発泡圧の作用下
にもはや中空型の輪郭に適合せず、被鎧層と心との間の
結合が空洞及び気泡によって妨げられている時点でよう
やく生じる。
This drawback has made Tl difficult in the case of relatively low cure humidity as well as relatively high cure 77 crystallinity. J? In the first case, hardening takes place in the under-dose zone without compressive pressure for a tight bond between the Plusdec foam and the cooperating layer. In the last case, the core generates a foaming pressure which causes the armored layer to become sufficiently hardened that under the action of the foaming pressure it no longer adapts to the contour of the hollow mold and the armored layer This only occurs at the point where the connection between the core and the core is obstructed by cavities and bubbles.

それ故、本発明には硬化工程は発泡圧の発生と同調して
惹起するのが決定的に重要である。
Therefore, it is critical to the present invention that the curing step occur in synchrony with the generation of foaming pressure.

このために存在する本発明による多くの方法は、すべて
プラスチックフオームの心は熱硬什′14ミプラスチツ
クが流動性である場合、十分な発泡圧を発生することに
基づく。発泡圧は、取囲む中空型との共作用で被協層を
硬化させ、プラスチンクツ副−ムの心に対して緊密な固
着1ふ合42りが得られる。
The many methods according to the invention that exist for this purpose are all based on the fact that the core of the plastic foam generates sufficient foaming pressure when the thermoplastic plastic is flowable. The foaming pressure, in conjunction with the surrounding hollow mold, hardens the cooperating layer, resulting in a tight fit 42 to the core of the plastic sub-mold.

製造すべき複合材料の性質の要求によって決められる技
術的理由から、心の材イε゛1として一定のボリメタク
リルイミドプラスチックフ万一ムを使用しなければなら
ない場合には、先づこれが十分な発泡圧を発生する温度
を確かめる。被覆層に対しては、確かめられた温度で少
くとも2分間、好ましくは少くとも10分間流動性であ
り、その後硬化する熱硬化性プラスチックを使用するこ
とが・できるのに過ぎない。逆に、技術的理由から被鎧
層の制別を決めてもよ5’loこの場合には、プラスチ
ックが必要な時間の間流動性であり、その後硬化する)
描度範囲を確かめる。プラスチックフオームは、利用で
きるポリメタクリルイミl:″プラスチックフオームの
ノミレットから、この温度で十分な発泡圧を発生するよ
うに選ぶ。
If, for technical reasons dictated by the requirements of the properties of the composite material to be produced, it is necessary to use a certain polymethacrylimide plastic film as the core material, it must first be ensured that this is sufficient. Check the temperature that generates foaming pressure. For the covering layer, it is only possible to use thermosetting plastics which are flowable for at least 2 minutes, preferably at least 10 minutes, at a determined temperature and then harden. Conversely, technical reasons may dictate the specificity of the armored layer (in this case the plastic is fluid for the required time and then hardens).
Check the drawing range. The plastic foam is selected from the available polymethacrylic foams to generate sufficient foaming pressure at this temperature.

被覆層の拐N”lと心の利用との間の適応は、プラスチ
ックフオームが発泡圧を生じる温度範囲を可塑剤、殊に
水を導入して下げて容易にすることができる。更に、心
の加熱は、これがマイクロ波吸収添”加削を含有する場
合には、マイクロ波の照射によって促進することができ
る。
The adaptation between the thickness of the coating layer and the use of the core can be facilitated by lowering the temperature range in which the plastic foam develops foaming pressure by introducing plasticizers, especially water. Heating can be facilitated by microwave irradiation if this contains a microwave absorbing additive.

実施例 ポリメタクリルイミドプラスチックフオームは、公知方
法によって種々の性質、殊に柿々の比重、種々の圧縮強
ぎその他で製造することができる。製造は、例えば英国
時1i1・第994725号及び第1045229号明
細書、ドイツ特許第18 ’17156号及び第204
709 ’6号明細書、ドイツ公開特許第27.262
59号及び第2726260号明細書に記載されている
。これらのプラスチックフオームは、その製造に使用し
“た発泡温度以上で存在する温度に加熱−)−6ト、1
パール又は数バールの発泡圧を発生する。プラスチック
フオームは、例えば170〜〕80°Cで製造したので
、はソこの温度で再び軟化し、180〜190°Cで発
泡庄約トミールが得られる。これに反して、製造する際
発泡温度200°Cを使用すると、プラスチックフオー
ムを210〜220°Cに加熱しなGづればならず、こ
れによってプラスチンクツ号−ムは発泡圧を生せしめる
。しかしながら発泡圧が生じる温度を、プラスチックフ
オーム中にこれに適当な可塑添加剤を添加すると後から
下げることができる。特に適当なのは水である。大きい
イIJ対湿度を有する空気に対してボリメタクリルイミ
15シラスデックフオームを保存することによって30
重量%までの水が吸収され、これによって後発泡温度を
、極端な場合には水のθlj IIr#温度まで十分に
下げることができる。他の可塑添加剤J &i 、l1
l) エノばホルムアミド、ジメチルポルムアミド及び
アセトアミドであり、これは同じようにして蒸気4’l
Jによってプラスチックフオーム中に拡散させることが
できる。
EXAMPLES Polymethacrylimide plastic foams can be manufactured by known methods with various properties, particularly persimmon specific gravity, various compressive strengths, and the like. Manufacture is possible, for example, in British Patent Nos. 1i1 994 725 and 1045 229, and in German Patent Nos.
709'6, German Published Patent Application No. 27.262
No. 59 and No. 2726260. These plastic foams are heated to temperatures above the foaming temperature used for their manufacture.
Generates a foaming pressure of pearl or several bars. Since the plastic foam is manufactured at, for example, 170 to 80°C, it will soften again at this temperature, and a foamed foam will be obtained at 180 to 190°C. On the other hand, if a foaming temperature of 200 DEG C. is used during production, the plastic foam must be heated to 210 DEG -220 DEG C., thereby causing the plastic foam to develop a foaming pressure. However, the temperature at which the foaming pressure occurs can be lowered later by adding suitable plasticizing additives to the plastic foam. Water is particularly suitable. By storing the polymethacrylic imi 15 Shirasudek foam against air with a large IJ vs. humidity 30
Up to % by weight of water is absorbed, which makes it possible to reduce the post-foaming temperature sufficiently to, in extreme cases, the θlj IIr# temperature of water. Other plasticizer additives J&i, l1
l) enoba formamide, dimethylpormamide and acetamide, which are vaporized in the same way
can be diffused into plastic foam by J.

加熱の温度及び時間が増大するにつれて、発泡圧を約1
0バール夷で、上げることができる。
As the temperature and time of heating increase, the foaming pressure increases to about 1
It can be raised at 0 bari.

これは複雑な形状が又は厚い壁の被覆複合拐料を製造す
る場合に有利である。
This is advantageous when producing coated composite materials with complex shapes or thick walls.

熱硬化性プラスチックとしては、室温で液状、力)ゆ状
又はペースト状が又は固1−i=の樹脂が挙げられ、こ
れは加熱すると先づ流動するが、粘稠状態であり、徐々
に硬化して固く融解しない温度で2分間以下でもはや流
動状rルに変らない樹脂は、本発明方法には不適当であ
る。流動性を失った後に、樹脂は直ちに固化せず先づゲ
ル状態になる。この状態で成形力を用いる場合に、完全
に硬化する4、利用することのできない強度を有する4
144−1が生じる。それ故、樹脂が流動状態からゲル
状態又は硬化状態に変る前に、すべての流動−及び成形
工程は発泡圧が被覆層に作用する際に終っているのが重
要である。
Examples of thermosetting plastics include resins that are liquid, boiled or pasty, or solid at room temperature, which initially flow when heated, but then become viscous and gradually harden. Resins which no longer turn into a fluid liquid in less than 2 minutes at a temperature where they are hard and do not melt are unsuitable for the process of the invention. After losing fluidity, the resin does not solidify immediately but first becomes a gel. When using forming force in this state, 4 will be completely cured, and 4 will have strength that cannot be used.
144-1 is generated. It is therefore important that all flow- and molding steps are completed when foaming pressure is applied to the coating layer before the resin changes from a fluid state to a gel state or a hardened state.

本発明方法に適当な定型的熱硬化性プラスチックハ、ア
ミ7ノラスト而脂、エポキシ樹脂、ポリエステル樹脂、
フェノール@J脂及びイミドゝ栃脂の群に所属する。
Typical thermosetting plastics suitable for the method of the present invention: ami7nolast resin, epoxy resin, polyester resin;
Belongs to the group of phenol@J fat and imido tochi fat.

樹脂は、例えば補強繊維と結合していわゆる”プレプレ
グ〃として市場に出ている。繊維は、例えばガラス、カ
ーボン、岩石ウール又。j天然又は人工の繊維がらなり
、樹脂中で自由に又は結合した形で織物、編物、メリヤ
ス状ゎi)物叉はフリスとして存在していてもよい。一
般に、0.4〜6倍の重量の繊維を有するか\る扁平成
形体を含浸し、平扁形で、場合により数層で心にのせる
ことができる。
The resins are on the market, for example, combined with reinforcing fibers as so-called "prepregs". The fibers can be, for example, glass, carbon, rock wool or natural or artificial fibers, free or bound in the resin. It may be in the form of a woven fabric, knitted fabric, or knitted fabric.i) It may be present in the form of a fabric or frith.Generally, a flat molded body having 0.4 to 6 times the weight of fibers is impregnated, and , can be placed on the mind in several layers depending on the case.

プラスチックフオームの心は、一般に熱硬化性プラスチ
ックからなる層で完全に囲まれているが、これは本発明
には重要ではない。むしろ心は所々被覆されていなくて
もよい。同じようにして別々の“、場合により互いに接
触していない各部が成形体中に含まれ、熱硬化性シラ久
チックの層によって相互に結合していてもよい。
The core of the plastic foam is generally completely surrounded by a layer of thermoset plastic, but this is not critical to the invention. Rather, the heart may be uncovered in places. In the same way, separate, optionally non-contacting parts may be included in the molded body and bonded to each other by a layer of thermosetting silica.

心と上にのせた被覆層の利・料とから作った複合物は、
中空型中で硬化する際その最終形態が得られる。これは
著しい変形を有しないで発泡圧に耐えなければならない
。それというのもが\る変形は最終成形には考慮されて
いないからである。またこの場合には、被覆層の材料の
必要な圧縮及び結合を一保証するために、型の反対圧力
が十分でなければならない。
A composite made from the core and the material of the coating layer placed on top is
Its final form is obtained upon curing in a hollow mold. It must withstand the foaming pressure without significant deformation. This is because the deformation is not taken into consideration in the final molding. Also in this case, the counterpressure of the mold must be sufficient to ensure the necessary compaction and bonding of the material of the covering layer.

閉じた中空型の中空室によって、複合材料の最終形態が
決められる。一般に中空型は数層に分1イ可能であるの
で、出来上った成形体を容易に取出すことができる。裁
断gISを有しない簡単な成形体の場合には、硬化工程
の間固く結合している2つの半分の型からなる型で十分
である。中空型中には、硬化の際抜合拐利と結合する挿
入部分を使用してもよい。
The cavity of the closed hollow mold defines the final form of the composite material. Generally, a hollow mold can be divided into several layers, so the finished molded product can be easily taken out. In the case of simple moldings without cutting gIS, a mold consisting of two mold halves that are tightly connected during the curing process is sufficient. Inserts may be used in the hollow mold, which engage the recesses during curing.

成形工具は、硬化した被覆層の利用から容易に分離する
ことができるように予処理されている。しかしながら、
中空型は複合材料の成分になってもよく、この場合には
好ましくは被憶層の拐利と固着する。例えば円形のプラ
スチックフオームの心に熱硬化性プラスチックを被覆し
、管スリーブ中に挿入し、この中で硬化させることがで
きる。しかしながら複合41料に含まれる中空型は剛体
である必要はない。例えばプレプレグの方法によって熱
硬化性プラスチックを含浸邑た十分な耐圧性の織物のホ
ースで十分である。ポース中にプラスチックフオームか
らなる心を挿入し、複合物を加熱し、その際発泡圧はホ
ースに吸収される。
The forming tool is pretreated so that it can be easily separated from the application of the cured coating layer. however,
The hollow mold may be a component of the composite material, in which case it is preferably fixed to the grooves of the storage layer. For example, a circular plastic foam core can be coated with thermosetting plastic, inserted into a tube sleeve, and cured therein. However, the hollow mold included in Composite 41 material does not need to be a rigid body. A sufficiently pressure-resistant textile hose impregnated with thermosetting plastic, for example by the prepreg method, is sufficient. A core made of plastic foam is inserted into the hose and the composite is heated, the foaming pressure being absorbed by the hose.

プラスチックフオームの心と熱硬化性プラスチックとか
らなる複合物を中空型中で、例えば180〜250°C
の範囲内で存在する硬化温度に加熱する。心は全部加熱
する必要はなく、厚さ10〜30mTnの層が発泡圧を
惹起することができると十分である。これは一般に10
〜60分間続く。加熱時間は、同時に接合物に波長、例
えば2/1501φHzのマイクロ波の照射を作用させ
ると著しく短縮することができる。か\る照射は純粋の
ポリメタクリルイミドにはほとんど吸収されない。しか
しプラスチックフオームが照射吸収添加剤、例えば水を
有する場合には、これは迅速に加熱し、数秒又は数分間
で発泡湿度に達することができる。熱硬化性プラスチッ
クもマイクロ波の照射によって加熱される場合には、他
の熱源を全く放ぎすることができる。熱硬化性プラスチ
ックの硬化が終ると、復合拐料を中空型中で放冷し、こ
れを、所望しない変Jしがもはや牛じない温度に冷却後
に取出す。
The composite consisting of a plastic foam core and a thermosetting plastic is heated in a hollow mold at e.g. 180-250°C.
heating to a curing temperature that lies within the range of . It is not necessary to heat the entire core; it is sufficient that a layer with a thickness of 10 to 30 mTn can generate the foaming pressure. This is generally 10
Lasts ~60 minutes. The heating time can be significantly shortened by simultaneously irradiating the bonded material with microwaves having a wavelength of, for example, 2/1501 φHz. Such radiation is hardly absorbed by pure polymethacrylimide. However, if the plastic foam contains radiation-absorbing additives, for example water, it heats up quickly and can reach foaming humidity in seconds or minutes. If thermosetting plastics are also heated by microwave irradiation, other heat sources can be dispensed with altogether. When the thermosetting plastic has finished curing, the deagglomerated material is allowed to cool in the hollow mold, and is removed after cooling to a temperature at which undesired deformation no longer occurs.

Claims (1)

【特許請求の範囲】 1ノう 1 ポリメタクリルイミドプラスチックフオームからな
る心及び心に接合した場合により繊維補強の熱硬化性プ
ラスチック(これは硬化前には流動性である)からなる
被覆層を有する複合材料を、未硬化の熱硬化性プラスチ
ックをプラスチックフオームの心にのせ、複合物を硬化
流度に加熱して硬化させることによって製造する方法に
おいて、硬化湿度が、プラスチックフオームは軟化しか
つ発泡圧少くとも」パールを発生する温度範囲内に存在
する熱硬化性プラスチックを使用し、複合物をか\る前
記範囲内の温度に加熱し、この温度で熱硬化性プラスチ
ックの流動状態が、少くトモプラスチックフオームが発
泡圧を発生するまで持続し、プラスチックフオームの膨
張を、これを取囲み発泡圧に列して安定な中空型によっ
て抑制することを特徴とする、複合材料の製造法。 2 プラスチックフオームが軟化しかつ発泡圧を発生す
る高度範囲を下げるi」″塑添加剤を含有するプラスチ
ックフオームを特徴する特許請求の範囲婬1項記載の方
法。 3 マイクロ波範囲内での吸収添加剤を含有ず熱硬化性
プラスチックの硬化の間にマイクロ波照射を作用ごせ、
これによってプラスチックフオームの加熱を、プラスチ
ックが軟化しかつ発泡圧を発生する湿度で促進させる、
特許請求の範囲第1項記載の方法。 4 プラスチックフオームは、可塑添加剤及びマイクロ
波吸収添加剤として水0.1〜30重量%を特徴する特
許請求の範囲第2又は3項記載の方法。 5 硬化を数部からなる中空型中で行ない、型を、硬化
の終了後及び複合材料の少くとも1部分冷却後に解放す
る、特許請求の範囲第j〜4項のいづれか1項に記載の
方法。 6 硬化を中空型中で行ない、この型は熱硬化性プラス
チックと固結し、複合月利の成分になる、特許請求の範
囲第1〜4項のいづれが1項に記載の方法。 7 中空型は、熱硬化性プラスチックを含浸邑た多孔性
織物又は編物からなっている、特許請求の範囲第′6項
記載の方法
[Scope of Claims] 1 No. 1 A core made of polymethacrylimide plastic foam and a covering layer made of a thermoset plastic (which is flowable before curing) optionally reinforced with fibers if bonded to the core. A method in which a composite material is manufactured by placing an uncured thermoset plastic on a core of plastic foam and heating the composite to a curing temperature to harden it. Using a thermosetting plastic that exists within a temperature range that produces pearls, the composite is heated to a temperature within said range, at which temperature the flow state of the thermosetting plastic becomes less A method for producing a composite material, which continues until the plastic foam generates foaming pressure, and the expansion of the plastic foam is suppressed by a stable hollow mold surrounding the plastic foam and aligned with the foaming pressure. 2. A method according to claim 1, characterized in that the plastic foam contains a plastic additive that lowers the altitude range in which the plastic foam softens and develops foaming pressure. 3. Absorption addition in the microwave range Microwave irradiation is applied during the curing of thermosetting plastics without any additives.
This promotes heating of the plastic foam with humidity that softens the plastic and generates foaming pressure.
A method according to claim 1. 4. Process according to claim 2 or 3, characterized in that the plastic foam contains 0.1 to 30% by weight of water as plasticizing additive and microwave absorbing additive. 5. The method according to any one of claims j to 4, wherein the curing is carried out in a hollow mold consisting of several parts, and the mold is released after the end of curing and after at least a partial cooling of the composite material. . 6. A method according to any one of claims 1 to 4, wherein the curing is carried out in a hollow mold, which mold consolidates with the thermosetting plastic and becomes a component of the composite monthly rate. 7. The method according to claim '6, wherein the hollow mold is made of a porous woven or knitted fabric impregnated with thermosetting plastic.
JP59022075A 1983-02-12 1984-02-10 Manufacture of joining material Pending JPS59156724A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833304882 DE3304882A1 (en) 1983-02-12 1983-02-12 METHOD FOR PRODUCING A FOAM COMPOSITE BODY

Publications (1)

Publication Number Publication Date
JPS59156724A true JPS59156724A (en) 1984-09-06

Family

ID=6190698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59022075A Pending JPS59156724A (en) 1983-02-12 1984-02-10 Manufacture of joining material

Country Status (5)

Country Link
JP (1) JPS59156724A (en)
DE (1) DE3304882A1 (en)
FR (1) FR2540785A1 (en)
GB (1) GB2134845A (en)
SE (1) SE8306389L (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228228A (en) * 1991-12-26 1993-09-07 Mizuno Corp Racket frame and its manufacture
JP2012076464A (en) * 2004-03-29 2012-04-19 Toray Ind Inc Method of manufacturing fiber-reinforced resin-made sandwich panel
CN102848622A (en) * 2012-09-06 2013-01-02 江苏兆鋆新材料科技有限公司 Sandwich material with PMI foam core material, and preparation method thereof
JP2013538137A (en) * 2010-07-30 2013-10-10 エボニック インダストリーズ アクチエンゲゼルシャフト In-mold foaming method using foamable medium and surface layer, and plastic molded body obtained by the method
JP2015518789A (en) * 2012-05-21 2015-07-06 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Pull-core method using PMI foam core

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3630930A1 (en) * 1986-09-11 1988-03-24 Roehm Gmbh METHOD FOR PRODUCING A HARD FOAM BY MEANS OF A MICROWAVE OR HIGH FREQUENCY FIELD
EP0272359A1 (en) * 1986-12-22 1988-06-29 Ware, Maximilian Thermal expansion resin transfer molding
DE3873008D1 (en) * 1987-09-28 1992-08-27 Welker Paul Ag METHOD FOR PRODUCING STIRRERS FOR REACTION CONTAINERS.
DE3826469A1 (en) * 1988-08-04 1990-02-08 Roehm Gmbh HARD FOAM AS A CORE MATERIAL FOR LAYING MATERIALS
GB9119873D0 (en) * 1991-09-17 1991-10-30 Harford David M Method of manufacturing an integral moulder body
DE19547672A1 (en) * 1995-12-20 1997-06-26 Roehm Gmbh Insulation layers for fire-protected rooms
DE19606530C2 (en) 1996-02-22 1998-04-02 Roehm Gmbh Process for the production of polymethacrylimide foams with flame retardant additives and foams produced thereafter
EP1652558B1 (en) * 2004-10-28 2011-07-27 Bauer Hockey Corp. Method of making a formable hockey stick blade
DE102007033120A1 (en) 2007-07-13 2009-01-15 Evonik Röhm Gmbh Improved butt joints for core materials
IT1410977B1 (en) * 2010-06-14 2014-10-03 Automobili Lamborghini Spa PROCESS AND DEVICES FOR MANUFACTURING PRODUCTS IN COMPOSITE MATERIALS
DE102011085026A1 (en) 2011-10-21 2013-04-25 Evonik Röhm Gmbh Process for the production of grain boundary adhesion of expanded copolymers based on methacrylic and acrylic compounds and adhesion of various cover layers on the foam core
DE102013205963A1 (en) * 2013-04-04 2014-10-09 Evonik Industries Ag Process for continuous PMI foam production
RU2561972C1 (en) * 2014-03-26 2015-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Method to produce multi-layer foam plastic
CN107856379B (en) * 2017-10-17 2019-11-01 浙江石金玄武岩纤维股份有限公司 A kind of moulding process of basalt fibre enhancing phenolic board sandwich PMI composite plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1135926A (en) * 1954-09-02 1957-05-06 Bayer Ag Floating bodies in foamy polyurethane materials
NL256156A (en) * 1960-09-23
GB1113389A (en) * 1965-11-10 1968-05-15 Shinichiro Oki A method of preparing foamed styrene polymer structures
AT296622B (en) * 1967-07-04 1972-02-25 Bayer Ag Heavy-duty foam body
ZA702467B (en) * 1969-08-01 1971-11-24 Willcox & Gibbs Inc Lightweight pallet and method of making same
GB1329094A (en) * 1969-12-22 1973-09-05 Profile Expanded Plastics Ltd Moulding articles of expandable thermoplastics material with a reinforcement
DE2009841A1 (en) * 1970-03-03 1971-09-30 Roehm Gmbh Rigid acrylic foam mouldings prodn
GB1469039A (en) * 1974-02-13 1977-03-30 Fansteel Inc Elongate composite aritcles
US4119583A (en) * 1975-11-13 1978-10-10 Klf Inventions And Patent Development And Marketing Corporation Ltd. Foamed articles and methods for making same
DE3002584C2 (en) * 1980-01-25 1982-02-11 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Method for producing a shaped body from a base body and a cover layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228228A (en) * 1991-12-26 1993-09-07 Mizuno Corp Racket frame and its manufacture
JP2012076464A (en) * 2004-03-29 2012-04-19 Toray Ind Inc Method of manufacturing fiber-reinforced resin-made sandwich panel
JP2013538137A (en) * 2010-07-30 2013-10-10 エボニック インダストリーズ アクチエンゲゼルシャフト In-mold foaming method using foamable medium and surface layer, and plastic molded body obtained by the method
JP2015518789A (en) * 2012-05-21 2015-07-06 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Pull-core method using PMI foam core
CN102848622A (en) * 2012-09-06 2013-01-02 江苏兆鋆新材料科技有限公司 Sandwich material with PMI foam core material, and preparation method thereof

Also Published As

Publication number Publication date
DE3304882A1 (en) 1984-08-16
GB2134845A (en) 1984-08-22
SE8306389L (en) 1984-08-13
SE8306389D0 (en) 1983-11-18
FR2540785A1 (en) 1984-08-17
GB8403577D0 (en) 1984-03-14

Similar Documents

Publication Publication Date Title
JPS59156724A (en) Manufacture of joining material
US8932499B2 (en) Method for producing an SMC multi-layer component
US6156146A (en) Resin transfer molding with honeycomb core and core filler
JP6386185B2 (en) 3D printing manufacturing method of short fiber reinforced thermosetting resin composite product
US3420923A (en) Process for manufacturing foamed plastic articles having outer skin by curing with microwaves
US9120272B2 (en) Smooth composite structure
CN102069523B (en) Shaped wooden mould pressing furniture part and manufacturing method thereof
US20130127092A1 (en) Moulded multilayer plastics component with continuously reinforced fibre plies and process for producing this component
JPS58212921A (en) Molding method of plastic hollow product
KR970704573A (en) Syntactic foam sheet material
US5152856A (en) Cure/bonding method for sandwiched plastic structure
US4294787A (en) Method of producing reinforced composite racket frame
JP2020151876A5 (en)
US3790421A (en) Composite articles and methods of making the same
US20060175730A1 (en) Method of manufacturing composite panels
DE10117979A1 (en) Microwave heated molding tool for manufacture of plastic components, is made from triazine and/or cyanate polymers
CA3147880A1 (en) Process for the production of moulded parts from particle foams
CN103214847B (en) Silicon rubber mold for integral moulding of composite skirt and preparation method
GB2259667A (en) Method for manufacturing an integral moulded body
JPS6025252B2 (en) Molding method for fiber-reinforced thermosetting resin using resin in-die extension method
FR2457753A1 (en) Porous resin bonded moulds for ceramics - mfd. by consolidating in hot mould and then completely curing outside mould
JPH07148851A (en) Production f foamed phenol frp molded product by microwave heating
RU2723856C1 (en) Method of making composite bumper for ground vehicle
JPH03183511A (en) Manufacture of composite molded product
JPS5856511B2 (en) Molding method for thermosetting materials