JPS59154821A - Circuit for transmitting initializing signal - Google Patents

Circuit for transmitting initializing signal

Info

Publication number
JPS59154821A
JPS59154821A JP2876783A JP2876783A JPS59154821A JP S59154821 A JPS59154821 A JP S59154821A JP 2876783 A JP2876783 A JP 2876783A JP 2876783 A JP2876783 A JP 2876783A JP S59154821 A JPS59154821 A JP S59154821A
Authority
JP
Japan
Prior art keywords
voltage
circuit
signal
inputted
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2876783A
Other languages
Japanese (ja)
Inventor
Michio Kai
甲斐 通生
Hiroshi Shimamori
浩 島森
Mitsuo Nakamura
光男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2876783A priority Critical patent/JPS59154821A/en
Publication of JPS59154821A publication Critical patent/JPS59154821A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied

Abstract

PURPOSE:To attain sure operation by detecting a voltage when a power supply voltage is its minimum permissible voltage or below at the rising of the power supply voltage so as to zero the initialized signal voltage and making the rising voltage pass through the permissible voltage lower than the signal voltage. CONSTITUTION:The power supply voltage Vcc is inputted to an inverting input of a comparator 2a and a reference voltage VREF is inputted to a non-inverting input. Further, the power supply voltage Vcc is inputted to an integration circuit having a time constant comprising a resistor R3 and a capacitor C, its output is inputted to an inverting input of a comparator 2b and the power supply voltage Vcc is inputted to a non-inverting input. Then, the comparator 2b detects a delayed voltage and an NOT signal of the output of the comparator 2b is inputted in parallel with the inverting input of the comparator 2b so as to attain initialization. Further, the output of the comparators 2a, 2b is inputted to an NOR circuit, and when a voltage higher than the reference voltage is detected at the rising of the power supply, the initializing signal is transmitted with the time constant of the integration circuit, and when a lower voltage is detected, the initializing signal is cancelled immediately.

Description

【発明の詳細な説明】 lal  発明の技術分野 本発明は論理回路における初期化信号送出手段の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION lal Technical Field of the Invention The present invention relates to an improvement in initialization signal sending means in a logic circuit.

lbl  技術の背景 論理回路は古来リレー、真空管等に始まり近年大部分が
半導体累子により構成される。論理回路は基本的にCf
ナンドおよびノア回路のような組合せ回路ユニット(ゲ
ート)とレジスタ、ラッチ。
Background of lbl technology Logic circuits have traditionally been made of relays, vacuum tubes, etc., but in recent years, most of them have been made of semiconductors. Logic circuits are basically Cf
Combinational circuit units (gates) like NAND and NOR circuits and registers and latches.

フリップフロップ回路のような順序回路ユニットを多数
相互接続してなる。また機能的には論理回路はデータブ
ロックと制御ブロックに大別され、データプロ、りはデ
ータを保持するための各種レジスタ、ラッチ、フリップ
フロップ回路(FF)等とこれ等相互間を結ぶデータ転
送路よりなり、制御ブロックはデータブロック内の転送
シーケンス。
It consists of a large number of interconnected sequential circuit units such as flip-flop circuits. In addition, functionally, logic circuits are roughly divided into data blocks and control blocks, and data processors are used to transfer data between various registers, latches, flip-flop circuits (FF), etc. used to hold data. The control block is the transfer sequence within the data block.

行シーケンス等を制御する各種レジスタ、ラッチ。Various registers and latches that control row sequences, etc.

FF群よりなる。このように論理回路には数多くの各種
目的の順序回路ユニットと必要に応じ順序回路ユニット
の周辺に挿入されるゲートから構成され、るがこれ等の
順序回路はゲートが入力信号に対し一意的に出力信号の
論理が決まるのに対し、順序回路はFFのように入力信
号番こ対し出力信号は1またOの2安定の論理を有する
。従って特に初期化手段を備えた順序回路を除き通常は
論理動作番こ先立ちすべての順序回路を予め設定した論
理状態にするため論理回路の供給電源電圧が所定の動作
電圧に達した一定時間後初期化信号を印加してリセット
する必要がある。
Consists of FF group. In this way, logic circuits are composed of many sequential circuit units for various purposes and gates inserted around the sequential circuit units as necessary, but in these sequential circuits, the gates uniquely respond to input signals. While the logic of the output signal is determined, the sequential circuit has two stable logics, 1 or 0, for the output signal in response to the input signal number, like an FF. Therefore, with the exception of sequential circuits that are particularly equipped with initialization means, normally the logic operation period is first started, and after a certain period of time after the supply voltage of the logic circuit reaches a predetermined operating voltage, all sequential circuits are brought into a preset logic state. It is necessary to apply a reset signal to reset.

(cl  従来技術と問題点 従来の論理回路においては第1図の従来における論理回
路の初期化信号送出回路を示す構成図のように簡易な回
路によっていた。第2図[al t (’l +(cl
にそのタイム千ヤードを示す。図において1は論理回路
例えばマイクロプロセ、す(MPU)、 Cはコンデン
サ、Rは抵抗およびDはダイオードである。CおよびR
6は積分回路を構成しDGJMPUlの供給電源電圧V
CCが切断されたときの急速放電用である。この構成に
よればVCCが立上りのときはMPU1のリセット端子
に印刀口される初期化信号電圧VRは第2図(帽こ示す
VCCのように変化して、Vccの立上り後即ちVcc
の最小許容電圧w面に達した一定時間t l ”’−’
 2 =’ IIの充分な余裕時間例えば数10m5〜
100m5後VRは論理”l”のしきい値Vs例えばV
CCの標準値5.OVに対し2.4Vに達してMPUI
をリセットし正常な動作が開始可能状態となる。一方V
ccが切断される立下りにはVCCの下降についてVR
も下降するがDの順方向電圧VFキ0.6V高い電圧の
軌跡を辿る結果となる。
(cl Prior Art and Problems Conventional logic circuits have a simple circuit as shown in FIG. 1, which is a block diagram showing the initialization signal sending circuit of a conventional logic circuit. FIG. 2 [al t ('l + (cl.
shows that time 1,000 yards. In the figure, 1 is a logic circuit such as a microprocessor (MPU), C is a capacitor, R is a resistor, and D is a diode. C and R
6 constitutes an integrator circuit, and the supply voltage V of DGJMPUL is
This is for rapid discharge when CC is disconnected. According to this configuration, when VCC rises, the initialization signal voltage VR applied to the reset terminal of MPU 1 changes as shown in FIG.
The fixed time t l ”'-' when the minimum allowable voltage w plane is reached
2 = Sufficient spare time for 'II, e.g. several tens of m5~
After 100m5, VR is the threshold value of logic “L” Vs, for example, V
Standard value of CC5. MPUI reaches 2.4V against OV
is reset and normal operation can begin. On the other hand, V
At the falling edge when cc is disconnected, VR
Although the forward voltage VF of D also drops by 0.6 V, the result follows a voltage trajectory higher than that of VF by 0.6 V.

従ってVCCの最小、最大許容電圧Vmln、Vmax
の範囲でしかその正常動作が保証されないMPUIはV
CCがVmin以下の領域ではエラーを発生したり暴走
したりする。このため通常は図示省略したがVCCの電
源側においてVCCを監視しVminを下廻る事態が発
生したときは例えば低電圧検出手段を備えてアラームを
送出しVCCを切断する等の手段3− によってMPUIの動作を停止するような制御手段が設
けられている。VccがVminを下廻り且VRがVs
を下廻るとき例えばOになったときは改めて第2図(a
lによるVCCの上昇が実行されるときは雀がOから再
度上昇してVsに達したとき印加されるのでMPU 1
の動作に問題はないが第2図(clに示すようにVCC
が商用電源の瞬断等によりVRがVsを下廻らない形で
復旧し、例えば他のVCC検出手段である低電圧検出手
段によっても制御されないときは、Vccは一旦Vmi
nを下廻る時間域t4を経過するのでMPU1はエラー
または暴走したま\復旧することなくエラーを発生した
ま\動作を続ける場合が存在する欠点がある。このよう
な異常事態に操作者が一旦電源を切断して再投入しデー
タ処理等の作業のやり直しを実行する必要があるが操作
者に異常事態を認知し難く、またやり直し作業が煩しい
ため見逃されて正常な作業が失われる。
Therefore, the minimum and maximum allowable voltages of VCC Vmln, Vmax
MPUI whose normal operation is guaranteed only within the range of V
In a region where CC is lower than Vmin, an error occurs or a runaway occurs. For this reason, normally, although not shown in the drawings, VCC is monitored on the VCC power supply side, and when a situation occurs where the voltage drops below Vmin, for example, a low voltage detection means is provided to send out an alarm and disconnect VCC. Control means are provided to stop the operation. Vcc is below Vmin and VR is Vs
For example, if it becomes O when going below the
When VCC is increased by l, it is applied when the sparrow rises again from O and reaches Vs, so MPU 1
There is no problem with the operation of the VCC as shown in Figure 2 (cl).
If VR is restored without falling below Vs due to a momentary interruption of the commercial power supply, etc., and is not controlled by low voltage detection means, which is another VCC detection means, for example, Vcc is temporarily reduced to Vmi.
Since the time period t4, which is less than n, has elapsed, the MPU 1 may continue to operate without recovering due to an error or runaway. In such an abnormal situation, the operator needs to turn off the power, turn it on again, and redo the data processing or other work, but it is difficult for the operator to recognize the abnormal situation, and the redo work is cumbersome, so it is often overlooked. normal work is lost.

idl  発明の目的 本発明の目的は上記の欠点を除去するためVCC4− た一定時間抜初期信号としてVsを上廻りMPU1をリ
セyトし、Vccの立上り時にはVCCがVminを下
廻ったことを検出して速やかにVRをOにリセットする
手段を備えて、引続きVCCが上昇してVminを上廻
るときは必ずVRをVSより低い電圧から通過するよう
に構成して初期化信号を印加せしめる手段を提供しよう
とするものである。
idl Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned drawbacks by resetting the MPU1 by exceeding Vs as an initial signal for a certain period of time, and detecting that VCC has fallen below Vmin when Vcc rises. and a means for quickly resetting VR to O when VCC continues to rise and exceeding Vmin, and a means for applying an initialization signal by configuring VR to be passed from a voltage lower than VS whenever VCC rises and exceeds Vmin. This is what I am trying to do.

(el  発明の構成 この目的は、順序回路ユニットを有する論理回路の電源
投入切断システムにおいて、論理回路の供給電源電圧を
反転端子に入力し基準電圧を非反転端子に入力してその
比較信号を出力する第1の演算増幅器による連動形の電
圧を検出する手段、該電源電圧を任意の時定数を有する
積分回路を介し反転端子に入力し該基準電圧を非反転端
子に入力してその比較信号を出力する第2の演算増幅器
による遅延形の電圧を検出する手段、運動形電圧検出手
段における出力の否定信号を遅延形電圧検出手段の反転
端子に並列入力して該検出手段を初印刀口して否定論理
和を得るゲート手段を備えてなり、該ゲート手段は論理
回路の供給電源電圧の立上り時において基準電圧を上廻
る電圧が検出されたときは積分回路の時定数によるタイ
ミングにおいて論理回路の初期化信号を送出し、下廻る
電圧が検出されたときは直ちに該初期化信号を消去する
ことを特徴とする論理回路の初期化信号送出回路を提供
することによって達成することが出来る。
(el) Structure of the Invention The object of the present invention is to provide a power on/off system for a logic circuit having a sequential circuit unit by inputting the supply voltage of the logic circuit to an inverting terminal, inputting a reference voltage to a non-inverting terminal, and outputting a comparison signal thereof. means for detecting an interlocked voltage by a first operational amplifier, the power supply voltage is input to an inverting terminal via an integrating circuit having an arbitrary time constant, the reference voltage is input to a non-inverting terminal, and a comparison signal thereof is obtained. Means for detecting the delayed voltage outputted by the second operational amplifier, a negation signal of the output of the motion type voltage detecting means is input in parallel to the inverting terminal of the delayed voltage detecting means, and the detecting means is first stamped. The gate means is provided with a gate means for obtaining a negative OR, and when a voltage exceeding the reference voltage is detected at the rise of the supply voltage of the logic circuit, the gate means performs an initialization of the logic circuit at a timing determined by the time constant of the integrating circuit. This can be achieved by providing an initialization signal sending circuit for a logic circuit, which is characterized in that it sends out an initialization signal and immediately erases the initialization signal when a lower voltage is detected.

(fl  発明の実施例 以下図面を参照しつ\本発明の一実施例番こついて説明
する。第3図は本発明の一実施例における初期化信号送
出回路の構成図および第4図1al 、 (blはその
タイムチャートである。図において1は従来と同じく論
理回路例えばマイクロプロセッサ(MPU)、2aは第
1の演算増幅器、2bは第2の演算増幅器、NORはノ
ア回路、R,、R,、R。
(fl Embodiment of the Invention An embodiment of the invention will be explained below with reference to the drawings. FIG. 3 is a block diagram of an initialization signal sending circuit in an embodiment of the invention, and FIG. 4 1al, (bl is the time chart. In the figure, 1 is the same logic circuit as before, such as a microprocessor (MPU), 2a is the first operational amplifier, 2b is the second operational amplifier, NOR is the NOR circuit, R, , R ,,R.

は抵抗およびCはコンデンサである。演算増幅器2aは
通常の出力OIの他にその否定出力0.を送出する機能
を備え、論理回路における“1″のしきい値VSと同一
電圧の基準電圧VRFtFを非反転端子番こ入力し、抵
抗R8とR8によってVc CX R。
is a resistor and C is a capacitor. In addition to the normal output OI, the operational amplifier 2a has its negative output 0. A reference voltage VRFtF, which is the same voltage as the "1" threshold VS in the logic circuit, is input to the non-inverting terminal number, and Vc CX R is input by resistors R8 and R8.

/ RI十几、=Vk電圧をこ\ではMPU1の供給電
源電圧VCCの下限許容値Vminに等しい値に設定す
る。従って該演算増幅器2aの出力01は非反転端子に
入力されるVk < Vugpのときは高レベル“1″
を、Vk>VasFのときは低しベノシ0”を送出する
比較器として動作する。同様に演算増幅器2bは基準電
圧VREFを非反転端子に入力し、抵抗IRmとコンデ
ンサCによる積分回路における電圧Vtを反転端子に入
力してVl(VREFのときは″l”を、Vt)VRE
Fのときは10#を送出する比較器として動作する。但
し、演算増幅器2aの否定出力O7が抵抗R6を介して
非反転端子番こ電圧Vtと並列に印加されているので演
算増幅器2aがVk<VREFの間は10”を印加され
た電圧Vtの上昇は抑止される。従ってVCCの立上り
特番こは第4図1alのタイムチャートに示すように従
来と同じ(Vccが上昇して、演算増幅器2aのO1出
力が1→0に、O2出力がQ −+ l Jこ転位する
VkがVmlnと交叉するタイミングよりVlが上昇を
始め演算7− 増幅器2bの出力はVt)VRgpのタイミングtl+
で′1”→“0″に転位する。その結果NORの入力は
演算増幅器2aの01出力と演算増幅器26の出力が印
加されているのでタイミングt1では共に@1″″″l
”でNOR,の出力は10”、タイミング1゜の時間領
域″′0”11”、更にVtがVREFと交叉する点で
″O″″′0#が得られるのでNORの出力VRRはO
→1に転位してMPUの初期化信号が送出される。従来
問題となったVCCの立下り時は第4図(blに示すよ
うにVCCが下降し始めてその電圧がhに至ると演算増
幅器2aの01出力はO−+1に変化してNOR,の出
力VRRを1→Oに転位させると共屹O7出力がl→0
に変化して演算増幅器2bの反転端子電圧を強制的に下
降せしめる。従ってVtは急速に0に近接する。従って
従来エラーを発生する場合のある第2図telと同様の
瞬断にjiJlz’てもVRRは一旦0にセットされV
CCが上昇して■かを横切る時点からVtの上昇が開始
されVtがVRBFと交叉する点のt@経過迄VRRの
再送出が抑止さ8− はVCCがVm i nを下廻ると必ず初期化信号VR
Rが抑止されMPUIが動作可能のVminを上廻った
時点より積分回路を構成する抵抗R8,コンデンサCの
時定数による一定時間後にVRRが送出されるので従来
のように論理回路の動作にエラー等の発生することのな
い初期化信号送出回路が得られる。
/ RI 10, = Vk voltage is set here to a value equal to the lower limit permissible value Vmin of the supply power voltage VCC of the MPU1. Therefore, the output 01 of the operational amplifier 2a is a high level "1" when Vk < Vugp, which is input to the non-inverting terminal.
When Vk>VasF, it operates as a comparator that outputs a low velocity of 0''.Similarly, the operational amplifier 2b inputs the reference voltage VREF to the non-inverting terminal, and the voltage Vt in the integrating circuit formed by the resistor IRm and the capacitor C is input to the operational amplifier 2b. is input to the inverting terminal and Vl (“l” for VREF, Vt) VRE
When it is F, it operates as a comparator that sends out 10#. However, since the negative output O7 of the operational amplifier 2a is applied in parallel to the non-inverting terminal voltage Vt via the resistor R6, when the operational amplifier 2a is Vk<VREF, the applied voltage Vt increases by 10''. Therefore, the rising special number of VCC is the same as the conventional one as shown in the time chart of FIG. + l Vl starts to rise from the timing when Vk intersects with Vmln, which is transposed in Operation 7- The output of amplifier 2b is Vt) Timing tl+ of VRgp
As a result, the 01 output of the operational amplifier 2a and the output of the operational amplifier 26 are applied to the input of the NOR, so at timing t1, both are @1''''l.
At ``, the output of NOR is 10'', the time domain of timing 1° is ``0'', 11'', and at the point where Vt intersects VREF, ``O'''''0# is obtained, so the output VRR of NOR is 0.
→Transferred to 1 and an MPU initialization signal is sent. When VCC falls, which was a problem in the past, as shown in Figure 4 (bl), when VCC starts to fall and its voltage reaches h, the 01 output of operational amplifier 2a changes to O-+1 and the output of NOR. When VRR is shifted from 1 to O, the co-reactive O7 output changes from l to 0.
The voltage at the inverting terminal of the operational amplifier 2b is forcibly lowered. Therefore, Vt rapidly approaches zero. Therefore, even if there is an instantaneous interruption similar to that shown in Fig. 2, which may conventionally cause errors, VRR is temporarily set to 0 and
Vt starts to rise from the point when CC rises and crosses ①, and retransmission of VRR is suppressed until t@ at the point where Vt crosses VRBF. conversion signal VR
Since VRR is sent out after a certain period of time determined by the time constant of resistor R8 and capacitor C, which constitute the integrating circuit, from the point when R is suppressed and MPUI exceeds Vmin, which enables operation, VRR is sent out, so there is no error in the operation of the logic circuit as in the conventional case. This provides an initialization signal sending circuit that does not cause the occurrence of.

同第1の演算増幅器2aを正反2出力としたが第2の演
算増幅器2bと同様の1出力に否定回路を付加しても同
様に実現出来ることはいう迄もない。
Although the first operational amplifier 2a has two positive and negative outputs, it goes without saying that the same implementation can be achieved by adding a negative circuit to one output similar to the second operational amplifier 2b.

tgl  発明の詳細 な説明したように本発明によれば論理回路の供給電源電
圧がその下限許容値を下廻る時は必ず初期化信号が抑止
され、下限許容値を上廻った時点より一定時間後に初期
化信号が送出されて論理回路がリセットされるので、従
来のように供給電源電圧が下限許容値を下廻る領域を経
過して再びリセットされることなく下限許容値以上に戻
ることはない。従って論理回路において供給電源電圧の
降下に伴って発生するデータエラーを操作者がな煩わし
さがなくなるので有用である。
tgl As described in detail, according to the present invention, the initialization signal is always suppressed whenever the supply voltage of the logic circuit falls below the lower limit tolerance, and a certain period of time after the supply voltage exceeds the lower limit tolerance. Since the initialization signal is sent and the logic circuit is reset, the supply power supply voltage does not go through the region below the lower limit tolerance and return to the lower limit tolerance or higher without being reset again, unlike in the conventional case. Therefore, it is useful because the operator no longer has to worry about data errors that occur in logic circuits due to a drop in supply voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来における論理回路の初期化信号送出回路に
よる構成図、第2図fal l tbl j (C1は
そのタイムチャート、第3図は本発明の一実施例に8け
る初期化信号送出回路の構成図および第4図(a)。 (blはそのタイムチャートを示す。図において1はマ
イクロプロセッサ(MPU) 、2a、2bは演算増幅
器NORはノア回路、Ro、 R,、g、 、 R3,
R,は抵抗およびCはコンデンサである。 11− 峯1 図 幽                峠+71(
Fig. 1 is a configuration diagram of a conventional initialization signal sending circuit of a logic circuit, Fig. 2 is a time chart thereof, and Fig. 3 is an initialization signal sending circuit according to an embodiment of the present invention. The configuration diagram and FIG. 4(a). (bl shows the time chart. In the figure, 1 is a microprocessor (MPU), 2a and 2b are operational amplifiers, NOR is a NOR circuit, Ro, R, , g, , R3 ,
R, is a resistor and C is a capacitor. 11- Mine 1 Zuyu Pass +71 (

Claims (1)

【特許請求の範囲】[Claims] 順序回路ユニットを有する論理回路の電源投入切断シス
テムにおいて、論理回路の供給電源電圧を反転端子に人
力し基準電圧を非反転端子に入力してその比較信号を出
力する第1の演算増幅器による連動形の電圧を検出する
手段、該電源電圧を任意の時定数を有する積分回路を介
し反転端子に入力し該基準電圧を非反転端子に入力して
その比較信号を出力する第2の演算増幅器による遅延形
の電圧を検出する手段、連動形電圧検出手段における出
力の否定信号を遅延形電圧検出手段の反転端子に並列入
力して該検出手段を初期化する手段および両型圧検出手
段の出力信号を印加して否定論理和を得るゲート手段を
備えてなり、該ゲート手段は論理回路の供給電源電圧の
立上り時に2いて基準電圧を上相る電圧が検出されたと
きは積分の初期化信号を送出し、下相る電圧が検出され
たときは直ちに該初期化信号を消去することを特徴とす
る論理回路の初期化信号送出回路。
In a power on/off system for a logic circuit having a sequential circuit unit, an interlocking type using a first operational amplifier that manually inputs the supply voltage of the logic circuit to an inverting terminal, inputs a reference voltage to a non-inverting terminal, and outputs a comparison signal thereof. means for detecting the voltage of , a delay by a second operational amplifier that inputs the power supply voltage to the inverting terminal via an integrating circuit having an arbitrary time constant, inputs the reference voltage to the non-inverting terminal, and outputs the comparison signal. means for detecting the voltage of the type, means for initializing the detection means by inputting in parallel the negation signal of the output of the interlocking voltage detection means to the inverting terminal of the delay type voltage detection means, and means for initializing the detection means; The gate means is provided with a gate means for obtaining a negative disjunction by applying a voltage to the logic circuit, and the gate means sends out an initialization signal for integration when a voltage higher than the reference voltage is detected at the rise of the supply voltage of the logic circuit. An initialization signal sending circuit for a logic circuit, wherein the initialization signal is immediately erased when a lower phase voltage is detected.
JP2876783A 1983-02-23 1983-02-23 Circuit for transmitting initializing signal Pending JPS59154821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2876783A JPS59154821A (en) 1983-02-23 1983-02-23 Circuit for transmitting initializing signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2876783A JPS59154821A (en) 1983-02-23 1983-02-23 Circuit for transmitting initializing signal

Publications (1)

Publication Number Publication Date
JPS59154821A true JPS59154821A (en) 1984-09-03

Family

ID=12257555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2876783A Pending JPS59154821A (en) 1983-02-23 1983-02-23 Circuit for transmitting initializing signal

Country Status (1)

Country Link
JP (1) JPS59154821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497112A (en) * 1994-07-12 1996-03-05 General Instrument Corporation Of Delaware Power-out reset system
US5818271A (en) * 1996-04-16 1998-10-06 Exar Corporation Power-up/interrupt delay timer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497112A (en) * 1994-07-12 1996-03-05 General Instrument Corporation Of Delaware Power-out reset system
EP0692876A3 (en) * 1994-07-12 1997-04-02 Gen Instrument Corp Power-out reset system
US5818271A (en) * 1996-04-16 1998-10-06 Exar Corporation Power-up/interrupt delay timer
US5910739A (en) * 1996-04-16 1999-06-08 Exar Corporation Power-up/interrupt delay timer

Similar Documents

Publication Publication Date Title
JPH01265718A (en) Schmitt trigger circuit
JPS62264728A (en) Analog-digital converter
US20130207697A1 (en) Digital power on reset controller
JPS59154821A (en) Circuit for transmitting initializing signal
JPH0863264A (en) Power-on resetting circuit
EP0595748A1 (en) Power up detection circuits
SE451418B (en) TIMING CIRCUIT OF THE TYPE USED FOR GENERATING TIME-DELAYED OUTPUT SOURCE SIGNALS
JPS6016129A (en) Power source resetting circuit
US3824583A (en) Apparatus for digitizing noisy time duration signals
JPH0334689B2 (en)
JPH05235705A (en) Rs flip-flop circuit
JPS5943778A (en) Controller for elevator
JPS6122721A (en) Power interruption time detector
CN115603752A (en) Analog-to-digital conversion circuit and method based on PWM
JP2583446B2 (en) Clock signal stop detection circuit
JPH0132138Y2 (en)
JPH01194715A (en) Digital pll circuit
JPH0453452B2 (en)
CN116203464A (en) Analog signal detection circuit with single power supply and broken line detection function
JP2985582B2 (en) Clock circuit
JPH02291722A (en) Analog/digital converter
JPS6243390Y2 (en)
RU2053593C1 (en) Flip-flop device
JPS6231215A (en) Monostable multivibrator circuit
JPS61276414A (en) Set rest flip-flop circuit