JPH0453452B2 - - Google Patents
Info
- Publication number
- JPH0453452B2 JPH0453452B2 JP8978387A JP8978387A JPH0453452B2 JP H0453452 B2 JPH0453452 B2 JP H0453452B2 JP 8978387 A JP8978387 A JP 8978387A JP 8978387 A JP8978387 A JP 8978387A JP H0453452 B2 JPH0453452 B2 JP H0453452B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power supply
- voltage
- supply voltage
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000010354 integration Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 13
- 238000001514 detection method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000007257 malfunction Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明はマイクロコンピユータを応用した装置
のリセツト回路に関するもので、さらに詳しくい
えば、瞬間的な電源電圧の低下が生じても、常に
一定パルス長のリセツト信号を得る回路に関する
ものである。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a reset circuit for equipment using a microcomputer. This invention relates to a circuit for obtaining a long reset signal.
「従来の技術」
マイクロコンピユータを応用した装置では、電
源電圧の低下、瞬断、喪失を検出し、マイクロコ
ンピユータを確実に停止、再起動させることが重
要であり、この目的でリセツト回路が付加されて
いる。``Prior art'' In devices that use microcomputers, it is important to detect drops, instantaneous interruptions, or loss of power supply voltage and to reliably stop and restart the microcomputer, and a reset circuit is added for this purpose. ing.
第2図は従来のリセツト回路の一例であり、本
図を用いて従来の方式について説明する。このリ
セツト回路は電源電圧低下検出要素7と電源断検
出要素8の大きく2つの要素から構成されてお
り、OR回路6により両者の出力の論理和をとる
ことによりリセツト信号を得ている。 FIG. 2 shows an example of a conventional reset circuit, and the conventional system will be explained using this figure. This reset circuit is mainly composed of two elements, a power supply voltage drop detection element 7 and a power supply cutoff detection element 8, and a reset signal is obtained by calculating the logical sum of the outputs of both elements using an OR circuit 6.
電源電圧低下検出要素7は電源電圧を検出する
分圧回路1とマイクロコンピユータ(図示略)の
動作が保証される最低電源電圧レベルに相当する
基準電圧を発生する基準電圧発生回路2と、両者
の出力を比較判定するコンパレータ3により構成
される。電源部の異常などにより電源電圧が連続
的に低下した場合は、このコンパレータ3の出力
によりリセツト信号を発生し、マイクロコンピユ
ータを停止させ不正動作を防止している。 The power supply voltage drop detection element 7 includes a voltage dividing circuit 1 that detects the power supply voltage, a reference voltage generation circuit 2 that generates a reference voltage corresponding to the minimum power supply voltage level that guarantees operation of a microcomputer (not shown), and a voltage dividing circuit 1 that detects the power supply voltage. It is composed of a comparator 3 that compares and determines the output. When the power supply voltage drops continuously due to an abnormality in the power supply unit, a reset signal is generated by the output of the comparator 3, and the microcomputer is stopped to prevent malfunction.
また、電源断検出要素8は電源10とアース1
1間に接続された抵抗41とコンデンサ42とか
らなるCR積分回路4と、ダイオード12により
構成される。電源投入時はCR積分回路4の時定
数で決まる一定パルス長のリセツト信号を得ると
ともに、電源断時には電源10に接続されたダイ
オード12によりコンデンサ42の充電電荷を急
速放電することにより、電源電圧の瞬断に対して
も一定パルス長のリセツト信号が得られるように
構成されている。 In addition, the power failure detection element 8 has a power supply 10 and a ground 1.
The CR integrating circuit 4 is composed of a resistor 41 and a capacitor 42 connected between each other, and a diode 12. When the power is turned on, a reset signal with a constant pulse length determined by the time constant of the CR integration circuit 4 is obtained, and when the power is turned off, the charge in the capacitor 42 is rapidly discharged by the diode 12 connected to the power supply 10, thereby reducing the power supply voltage. The configuration is such that a reset signal with a constant pulse length can be obtained even in the event of a momentary power outage.
第3図a,b,cに従来回路の各部の波形を横
軸に時間tをとつて示す。第3図aのT1からT
2の間に、分圧回路1の出力電圧が基準電圧Gよ
り低下するような電源電圧低下Aが発生すると、
電源電圧低下検出要素7によりT1からT2の間
連続したリセツト信号Bが発生する。T3からT
4の間あるいはT5からT6の間に電源断Cおよ
びDが発生すると、T3あるいはT5でコンデン
サ42の充電電荷は急速放電されるため、T4あ
るいはT6で電源が復電すると、第3図bに示す
ように、コンデンサ42はアース電位から充電が
開始され、第3図cに示すような一定パルス長T
のリセツト信号EおよびFが発生する。ここでS
はOR回路6のスレツシヨルド電圧である。この
ように電源電圧低下時には電源電圧低下検出要素
7により連続したリセツト信号が得られ、電源断
時には電源断検出要素8により断時間の長短に拘
らず一定パルス長Tのリセツト信号E,Fが得ら
れる。 FIGS. 3a, b, and c show waveforms of various parts of the conventional circuit with time t plotted on the horizontal axis. From T1 to T in Figure 3a
2, if a power supply voltage drop A occurs such that the output voltage of the voltage divider circuit 1 falls below the reference voltage G,
The power supply voltage drop detection element 7 generates a continuous reset signal B from T1 to T2. T3 to T
If the power is cut off between C and D between 4 or between T5 and T6, the charge in the capacitor 42 will be rapidly discharged at T3 or T5, so when the power is restored at T4 or T6, the state shown in Fig. 3b will occur. As shown, charging of the capacitor 42 is started from ground potential, and a constant pulse length T as shown in FIG.
Reset signals E and F are generated. Here S
is the threshold voltage of the OR circuit 6. In this way, when the power supply voltage drops, a continuous reset signal is obtained by the power supply voltage drop detection element 7, and when the power supply is cut off, the power cutoff detection element 8 obtains reset signals E and F with a constant pulse length T regardless of the length of the cutoff time. It will be done.
「発明が解決しようとする問題点」
マイクロコンピユータを応用した大・中規模の
装置では、機能単位に装置を分割し、複数の機能
ユニツトと共通電源により装置を構成することが
よく行われている。第4図に示す例では2つの機
能ユニツト#1,#2と共通電源20により構成
されている。この場合、機能ユニツト#1を運転
状態で機能ユニツト#2の取替えなどにより電源
SWS2を再投入するとき、共通電源20は機能
ユニツト#2への突入電流により瞬間的な電圧低
下が発生し、機能ユニツト#1のマイクロコンピ
ユータが暴走などの不正動作を起こすことが考え
られる。"Problems to be Solved by the Invention" In large and medium-sized equipment that uses microcomputers, it is common practice to divide the equipment into functional units and configure the equipment with multiple functional units and a common power supply. . The example shown in FIG. 4 is composed of two functional units #1 and #2 and a common power supply 20. In this case, while functional unit #1 is in operation, the power supply is removed by replacing functional unit #2, etc.
When the SWS 2 is turned on again, the common power supply 20 will experience a momentary voltage drop due to the rush current to the functional unit #2, which may cause the microcomputer in the functional unit #1 to malfunction, such as runaway.
この電圧低下の時間はマイクロコンピユータの
リセツト信号に必要な時間に比べて短い場合もあ
り、このとき前述した従来回路の電源電圧低下検
出要素7および電源断検出要素8では、十分な時
間長のリセツト信号が得られない欠点があつた。 The time for this voltage drop may be shorter than the time required for the reset signal of the microcomputer, and in this case, the power supply voltage drop detection element 7 and power-off detection element 8 of the conventional circuit described above do not provide a reset signal of sufficient length. The problem was that I couldn't get a signal.
例えば分圧回路1の出力電圧を示す第5図aの
T11からT12の間、あるいはT13からT1
4の間に瞬間的な電源電圧の低下PおよびHが発
生した場合を考える。 For example, between T11 and T12 in FIG. 5a showing the output voltage of voltage divider circuit 1, or between T13 and T1
Consider the case where instantaneous drops P and H in the power supply voltage occur between 4 and 4.
電源電圧低下PおよびHが発生しても、第5図
bに示すようにコンデンサ42の電圧はアース電
位まで低下せず、コンデンサ42の充電電荷は十
分に放電されない。このためT12およびT14
で電源が復電しても、コンデンサ42の充電開始
からOR回路6のスレツシヨルド電圧まで充電さ
れる時間は、第3図cの一定パルス長Tより短
く、リセツト信号IおよびJのパルス長は、第3
図のリセツト信号EおよびFのパルス長と較べ短
いものとなる。 Even if power supply voltage drops P and H occur, the voltage of the capacitor 42 does not drop to the ground potential as shown in FIG. 5b, and the charge in the capacitor 42 is not sufficiently discharged. Therefore T12 and T14
Even if the power is restored, the time from the start of charging the capacitor 42 to the threshold voltage of the OR circuit 6 is shorter than the constant pulse length T shown in FIG. 3c, and the pulse lengths of the reset signals I and J are as follows. Third
The pulse length is shorter than the pulse length of reset signals E and F shown in the figure.
本発明はこのような点に鑑みて創案されたもの
で、従来回路の構成を一部変更するだけで瞬間的
な電圧低下に対しても、一定パルス長のリセツト
信号が得られるマイクロコンピユータのリセツト
回路を提供することを目的としている。 The present invention has been devised in view of these points, and provides a microcomputer reset method that allows a reset signal of a constant pulse length to be obtained even in the event of a momentary voltage drop simply by partially changing the configuration of the conventional circuit. The purpose is to provide circuits.
「問題点を解決するための手段」
第1図にブロツク図で示したように1は電源電
圧を検出する分圧回路、2は基準電圧発生回路で
あり、分圧回路1の出力電圧と基準電圧発生回路
2の出力電圧はコンパレータ3で比較判定され
る。コンパレータ3の出力端子はOR回路6の1
つの入力端子6aに接続される。また、電源10
とアース11間に接続された抵抗41とコンデン
サ42とからなるCR積分回路4はOR回路6のも
う1つの入力端子6bに接続され、リセツト信号
はOR回路6の出力端子6cから得られる。ダイ
オード5はコンデンサ42の充電電荷を放電させ
るためのもので、コンパレーター3の出力端子に
接続される。"Means for solving the problem" As shown in the block diagram in Figure 1, 1 is a voltage divider circuit that detects the power supply voltage, 2 is a reference voltage generation circuit, and the output voltage of voltage divider circuit 1 and the reference voltage are The output voltage of the voltage generating circuit 2 is compared and determined by a comparator 3. The output terminal of comparator 3 is 1 of OR circuit 6.
It is connected to two input terminals 6a. Also, power supply 10
A CR integrating circuit 4 consisting of a resistor 41 and a capacitor 42 connected between the output terminal 11 and the ground 11 is connected to another input terminal 6b of the OR circuit 6, and a reset signal is obtained from the output terminal 6c of the OR circuit 6. The diode 5 is for discharging the charge in the capacitor 42 and is connected to the output terminal of the comparator 3.
「作用」
電源電圧の低下が生じた場合、コンパレータ3
の出力端子は電源電圧が基準電圧Gを下回る間、
時間遅れなしでローレベルとなり、コンデンサ4
2の充電電荷は、ダイオード5とコンパレータ3
の出力端子を介して急速放電される。従つて瞬間
的な電源電圧の低下に対しても、コンデンサ42
はアース電位となり、電源電圧に低下レベルとは
無関係に、電源電圧が正常レベルに復帰後一定パ
ルス長のリセツト信号が得られる。"Function" When the power supply voltage drops, comparator 3
While the power supply voltage is below the reference voltage G, the output terminal of
It becomes low level without time delay, and capacitor 4
The charging charge of 2 is the diode 5 and comparator 3.
is rapidly discharged through the output terminal of the Therefore, even in the event of a momentary drop in power supply voltage, the capacitor 42
becomes the ground potential, and a reset signal of a constant pulse length is obtained after the power supply voltage returns to the normal level, regardless of the drop level of the power supply voltage.
「実施例」
第6図は本発明の実施例である。分圧回路1は
抵抗31,32とからなり、また基準電圧発生回
路2はツエナーダイオード21と、抵抗22,2
3,24で構成されている。"Embodiment" FIG. 6 shows an embodiment of the present invention. The voltage dividing circuit 1 includes resistors 31 and 32, and the reference voltage generating circuit 2 includes a Zener diode 21 and resistors 22 and 2.
It consists of 3,24.
分圧回路1の分圧比は、リセツト信号を発生さ
せる電源電圧のしきい値と基準電圧の値との比か
ら決定される。 The voltage dividing ratio of the voltage dividing circuit 1 is determined from the ratio between the threshold value of the power supply voltage that generates the reset signal and the value of the reference voltage.
第7図a,b,cは本実施例の波形説明図であ
る。分圧回路1の電圧を示す第7図aのT21か
らT22の間あるいはT23からT24の間に瞬
間的な電源電圧の低下KおよびLが発生すると、
コンパレータ3の出力はその間ローレベルとな
り、第7図bに示すコンデンサ42の充電電荷は
即時に放電され、T22あるいはT24で電源が
復電すると、電源断検出要素8のCR積分回路4
の時定数でコンデンサ42は充電され、第7図c
に示すような一定パルス長Tのリセツト信号Mお
よびNを発生する。従つて電源電圧の低下レベル
とは無関係に、電源電圧が正常レベルに復帰後一
定パルス長のリセツト信号が得られる。 FIGS. 7a, b, and c are waveform explanatory diagrams of this embodiment. When an instantaneous drop in the power supply voltage K and L occurs between T21 and T22 or between T23 and T24 in FIG. 7a, which shows the voltage of the voltage divider circuit 1,
During that time, the output of the comparator 3 becomes low level, and the charge in the capacitor 42 shown in FIG.
The capacitor 42 is charged with a time constant of
Reset signals M and N of constant pulse length T as shown in FIG. Therefore, regardless of the drop level of the power supply voltage, a reset signal with a constant pulse length can be obtained after the power supply voltage returns to the normal level.
なお、電源電圧が連続的に低下した場合の動
作、および電源断時の動作は従来回路と同様であ
るのでその説明は省略する。 Note that the operation when the power supply voltage continuously decreases and the operation when the power supply is cut off are the same as those of the conventional circuit, so a description thereof will be omitted.
「発明の効果」
以上述べてきたように、本発明によれば、従来
回路のダイオードの接続先を変更するだけで、瞬
間的な電源電圧の低下に対しても、一定パルス長
のリセツト信号を得ることができ、実用的には極
めて有用である。"Effects of the Invention" As described above, according to the present invention, a reset signal of a constant pulse length can be generated even in response to a momentary drop in power supply voltage by simply changing the connection destination of the diode in the conventional circuit. can be obtained, and is extremely useful in practice.
第1図は本発明のリセツト回路のブロツク図、
第2図は従来回路のブロツク図、第3図a,b,
c及び第5図a,b,cは従来回路の波形説明
図、第4図はマイクロコンピユータを応用した装
置の装置構成例、第6図は本発明の実施例を示す
回路図、第7図a,b,cは本発明の実施例にお
ける波形説明図である。
図において、1は分圧回路、2は基準電圧発生
回路、3はコンパレータ、4はCR積分回路、5
はダイオード、6はOR回路、10は電源、11
はアースである。
FIG. 1 is a block diagram of the reset circuit of the present invention.
Figure 2 is a block diagram of the conventional circuit, Figure 3 a, b,
c and FIGS. 5a, b, and c are explanatory diagrams of waveforms of conventional circuits, FIG. 4 is an example of a device configuration of a device to which a microcomputer is applied, FIG. 6 is a circuit diagram showing an embodiment of the present invention, and FIG. a, b, and c are waveform explanatory diagrams in an embodiment of the present invention. In the figure, 1 is a voltage divider circuit, 2 is a reference voltage generation circuit, 3 is a comparator, 4 is a CR integration circuit, and 5
is a diode, 6 is an OR circuit, 10 is a power supply, 11
is earth.
Claims (1)
発生回路2と、前記分圧回路1の出力電圧と前記
基準電圧発生回路2の出力電圧とを比較するコン
パレータ3と、電源10とアース11間に接続さ
れたCR積分回路4と、該CR積分回路4の充電電
荷を放電するダイオード5と、前記コンパレータ
3の出力と前記CR積分回路4の出力の論理和を
とるOR回路6とからなり、前記ダイオード5を
前記コンパレータ3の出力端子に接続することに
より、瞬間的な電源電圧の低下に対しても常に一
定パルス長のリセツト信号を得るようにしたこと
を特徴とするマイクロコンピユータのリセツト回
路。1 A voltage dividing circuit 1 that detects a power supply voltage, a reference voltage generating circuit 2, a comparator 3 that compares the output voltage of the voltage dividing circuit 1 and the output voltage of the reference voltage generating circuit 2, a power source 10, and a ground 11. It consists of a CR integration circuit 4 connected between, a diode 5 that discharges the charge of the CR integration circuit 4, and an OR circuit 6 that takes the logical sum of the output of the comparator 3 and the output of the CR integration circuit 4. A reset circuit for a microcomputer, characterized in that by connecting the diode 5 to the output terminal of the comparator 3, a reset signal of a constant pulse length is always obtained even in the event of a momentary drop in power supply voltage. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8978387A JPS63256015A (en) | 1987-04-14 | 1987-04-14 | Reset circuit for microcomputer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8978387A JPS63256015A (en) | 1987-04-14 | 1987-04-14 | Reset circuit for microcomputer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63256015A JPS63256015A (en) | 1988-10-24 |
JPH0453452B2 true JPH0453452B2 (en) | 1992-08-26 |
Family
ID=13980281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8978387A Granted JPS63256015A (en) | 1987-04-14 | 1987-04-14 | Reset circuit for microcomputer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63256015A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2761687B2 (en) * | 1991-12-19 | 1998-06-04 | 三菱電機株式会社 | Voltage level detection circuit |
JPH05291918A (en) * | 1992-04-07 | 1993-11-05 | Mitsubishi Electric Corp | Hybrid integrated circuit |
US5394104A (en) * | 1992-06-25 | 1995-02-28 | Xilinx, Inc. | Power-on reset circuit including dual sense amplifiers |
-
1987
- 1987-04-14 JP JP8978387A patent/JPS63256015A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63256015A (en) | 1988-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4434403A (en) | Universal reset circuit for digital circuitry | |
US5426776A (en) | Microprocessor watchdog circuit | |
JPS59109955A (en) | Automatic processor restarting circuit | |
US4512019A (en) | Monitoring circuit for resetting malfunctioning electronic components, such as microprocessors | |
JPH0453452B2 (en) | ||
JPS6016129A (en) | Power source resetting circuit | |
JPH01223360A (en) | Voltage monitoring circuit | |
JPH04418Y2 (en) | ||
KR19990024442A (en) | Reset signal generator | |
JPS60258625A (en) | Initial reset circuit | |
JP2717829B2 (en) | Timer device | |
KR920004986Y1 (en) | Watch dog timer w/resetting circuit | |
JPH0334689B2 (en) | ||
KR0175619B1 (en) | Reset circuit for momentary power failure | |
JPH0313794Y2 (en) | ||
JPS5837724A (en) | Reset circuit for microprocessor | |
JPS5824048B2 (en) | directional pulse transmitter | |
SU1474653A1 (en) | Microprocessor activation and restart-under power-down facility | |
JPS6285317A (en) | Resetting circuit | |
JPS5827218A (en) | Generating circuit of power supply decision signal for logical unit | |
JPS5856116A (en) | Resetting circuit | |
JPH069581Y2 (en) | Switching regulator oscillator | |
JPS60113518A (en) | Reset signal generator | |
JPH0317474Y2 (en) | ||
JPS61224019A (en) | Resetting circuit of microprocessor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070826 Year of fee payment: 15 |