JPH01265718A - Schmitt trigger circuit - Google Patents

Schmitt trigger circuit

Info

Publication number
JPH01265718A
JPH01265718A JP63095009A JP9500988A JPH01265718A JP H01265718 A JPH01265718 A JP H01265718A JP 63095009 A JP63095009 A JP 63095009A JP 9500988 A JP9500988 A JP 9500988A JP H01265718 A JPH01265718 A JP H01265718A
Authority
JP
Japan
Prior art keywords
voltage
input signal
circuit
threshold
threshold voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63095009A
Other languages
Japanese (ja)
Inventor
Shintaro Kawaguchi
慎太郎 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63095009A priority Critical patent/JPH01265718A/en
Priority to US07/338,795 priority patent/US5003196A/en
Priority to KR1019890005086A priority patent/KR920003447B1/en
Priority to EP89106948A priority patent/EP0338517A3/en
Publication of JPH01265718A publication Critical patent/JPH01265718A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/26Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
    • H03K3/28Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
    • H03K3/281Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • H03K3/286Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator bistable
    • H03K3/2893Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • H03K5/082Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding with an adaptive threshold

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manipulation Of Pulses (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To eliminate the need for setting a threshold voltage and to prevent malfunction even if an input signal is setting two kinds of threshold voltages automatically in response to the peak level of an input signal. CONSTITUTION:A maximum voltage detection circuit 12 and a minimum voltage detection circuit 13 detect and hold the maximum voltage vMAX and the minimum voltage vMIN of an input signal vin. Then the two kinds of voltages are coupled by resistor to form a high level and a low level threshold voltage vA, vC. Thus, the high level and low level threshold voltages vary with the voltage fluctuation of the input signal vin and both the threshold voltages are controlled always to proper values. Thus, the setting of the threshold voltage is not required and even if the voltage of the input signal is fluctuated, no malfunction takes place.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、入力信号電圧の変動に対する誤動作防止を
図るようにしたシュミツ1〜1〜リガ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a Schmidts 1-1-Riga circuit designed to prevent malfunctions due to fluctuations in input signal voltage.

(従来の技術) 一般に、シュミツト1〜リガ回路はアナログ回路とディ
ジタル回路との間のインターフェースに使用される。す
なわち、シュミットトリガ回路は、回路特有のヒステリ
シス電圧を利用して、緩慢に変化するアナログ電圧を急
峻に変化するディジタル波形に変換する。これにより、
アナログ電圧が持つ雑音と寄生発振信号等が除去される
。このような変換を行なうため、シュミット1へリカ回
路は高レベルと低レベルの2種類の閾値電圧との間にヒ
ステリシス特性を持たせて設計される。従って、シュミ
ットトリガ回路を設計する上で重要な条件は、2種類の
閾値電圧とヒステリシス電圧とを要求される値に設層す
ると同時にそれぞれの再現竹が良いことである。
(Prior Art) Generally, Schmidt 1 to Rigger circuits are used as an interface between analog circuits and digital circuits. That is, the Schmitt trigger circuit converts a slowly changing analog voltage into a rapidly changing digital waveform by using a hysteresis voltage unique to the circuit. This results in
Noise and parasitic oscillation signals of analog voltages are removed. In order to perform such conversion, the Schmitt 1 helical circuit is designed to have hysteresis characteristics between two types of threshold voltages, high level and low level. Therefore, an important condition in designing a Schmitt trigger circuit is to set the two types of threshold voltages and hysteresis voltage to the required values, and at the same time, to ensure good reproduction of each.

第1図(マ従来のシュミツ1−1〜リガ回路の一例を示
す回路図である。図において、71は入力信号vinを
バイアスづる直流電圧源、72.73はそれぞれ上記入
力信号vinを高レベル側の一定の閾値電圧VAもしく
は低レベル側の一定の閾値電圧VCと比較する演算増幅
器、14は電源電圧V。0とアースとの間に複数個の抵
抗が直列接続されて構成され、上記2種類の閾値電圧V
A及びVCを発生でる電圧分割回路、75は上記両演算
増幅器72.73の各出力がセラ1へ入力S及びリセッ
ト人力Rして供給されるセラ1−・リセツ]〜型のRS
Sフリップフロラ回路である。
FIG. 1 is a circuit diagram showing an example of a conventional Schmidts 1-1 to Riga circuit. In the figure, 71 is a DC voltage source that biases the input signal vin, and 72 and 73 are the circuit diagrams that respectively bias the input signal vin to a high level. 14 is a power supply voltage V. It is composed of a plurality of resistors connected in series between 0 and ground, and Type of threshold voltage V
A voltage dividing circuit 75 generates A and VC, and 75 is a cellar 1-/reset type RS in which the respective outputs of the operational amplifiers 72 and 73 are supplied to the cellar 1 as an input S and a reset manual power R.
This is an S-flip Flora circuit.

このような回路において、入力信号vinとして第8図
のタイミングチャー1−に示ずような信号を供給した場
合に、一方の演牌増幅器72は入力信号vinの電圧値
が高レベル側の閾値電圧VAよりも高くなったとぎに゛
1″レベルの信号を出力し、それ以外のとぎは″○″レ
ベルの信号を出力する他方の演締増幅器73は入力信号
7曲の電圧値がイバレベル側の閾値N斤VCよりも低く
なったときに” 1 ”しl\ルの信号を出力し、それ
以外のとぎはパO“レベルの信号を出力する。従って、
フリップフロップ回路75に供給されるセラi・信号S
及びリセット信号Rは第8図に示すように変化する。
In such a circuit, when a signal as shown in timing chart 1- in FIG. 8 is supplied as the input signal vin, one of the rendition amplifiers 72 has a threshold voltage at which the voltage value of the input signal vin is on the high level side. The other performance amplifier 73 outputs a signal at the level "1" when it becomes higher than VA, and outputs a signal at the "○" level at other times. When it becomes lower than the threshold value N VC, a signal of "1" level is outputted, and at other times, a signal of level "0" is outputted. Therefore,
Sera i signal S supplied to flip-flop circuit 75
and the reset signal R changes as shown in FIG.

これらの信号によってフリップフロップ回路75がセラ
]・もしくはりセットされ、入力信号vinがディジタ
ル信号5O(1℃に変換されてフリップフロップ回路7
5から出力される。
These signals set the flip-flop circuit 75 to zero, and the input signal vin is converted to a digital signal 5O (1°C) and output to the flip-flop circuit 75.
Output from 5.

ところで、上記従来のシコミット1〜リガ回路において
、入力信号v11)としてVTRのコン1〜D−ルバル
ス信号の再生出力信号を供給する場合について考えてみ
る。VTRにおけるコントロールパルス信号は、磁気テ
ープに記録する時の記録電流、テープの走行速度、テー
プ自体の特性の違い等により、再生出力信号のレベルが
変!IJ iる。また、その再生出力信号には機械的な
雑音にJ:るノイズ、電源回路からの奇生発振信号やリ
ップル成分、電気回路にJ5ける直流成分の変動、等が
重畳されている。従って、従来てはこのような点を考慮
して上記2種類の閾値電圧VA及びvCのレベルを設定
する必要がある。しかし、第9図のタイミングチャー1
−に示すように、コン[〜ロールパルス信号自体の再生
レベルどノイズの信号レベルが共に大きく、これに対し
て上記雨間1直電圧V△及びVCのレベルが低く設定さ
れているときには、実際にパルスのない期間にセラ1〜
信号Sもしくはリセット信号Rが演粋増幅器72.73
から誤って出力され、変換されたディジタル信号3ou
tには誤判別波形が生じる。他方、第10図のタイミン
グチャートに示ずJ:うに、コン1〜ロールパルス信号
自体の再生レベルとノイズの信号レベルが共に小ざく、
セット信号S及びリセット信号Rが全く発生ゼず、この
場合にもディジタル信号3’ou’tに誤判別波形が生
じる。
By the way, let us consider the case where, in the conventional SICOMIT 1 to RIGA circuit, a reproduced output signal of the CON 1 to D-REV signals of a VTR is supplied as the input signal v11). The level of the playback output signal of the control pulse signal in a VTR varies depending on the recording current when recording on the magnetic tape, the running speed of the tape, the characteristics of the tape itself, etc. IJ iru. In addition, the reproduced output signal is superimposed with mechanical noise, a random oscillation signal and ripple component from the power supply circuit, fluctuations in the DC component in the electric circuit, and the like. Therefore, conventionally, it is necessary to set the levels of the two types of threshold voltages VA and vC in consideration of such points. However, timing chart 1 in Figure 9
- As shown in , when the reproduction level of the control pulse signal itself and the signal level of the noise are both high, and the levels of the above-mentioned direct voltage V△ and VC are set low, the actual Sera 1~ during the period with no pulse.
The signal S or the reset signal R is the arithmetic amplifier 72.73
The digital signal 3ou that was erroneously output and converted from
An erroneous discrimination waveform occurs at t. On the other hand, as shown in the timing chart of FIG. 10, the reproduction level of the control 1~roll pulse signal itself and the signal level of the noise are both small.
The set signal S and reset signal R are not generated at all, and an erroneous discrimination waveform occurs in the digital signal 3'out' in this case as well.

このように従来では、誤判別波形の出力が生じないよう
に2種類の閾値電圧レベルを設定する必要があるが、そ
の設定は非常に困難である。
As described above, conventionally, it is necessary to set two types of threshold voltage levels so as not to output an erroneously determined waveform, but this setting is extremely difficult.

(発明−が解決しようとする課題) このように従来のシュミツj〜1〜リカ回路では閾値電
圧の設定が困禦であり、入ツク信号の電圧が変動すると
誤動作するという問題がある。
(Problems to be Solved by the Invention) As described above, in the conventional Schmidts circuit, it is difficult to set the threshold voltage, and there is a problem that it malfunctions when the voltage of the input signal fluctuates.

この発明は上記のような事情を考慮してなされたもので
あり、その目的は、閾値電圧の設定が不要であり、かつ
入力信号の電圧が変動しても誤動作を起こずことのない
シュミツ[ヘトリガ回路を提供することにある。
This invention was made in consideration of the above circumstances, and its purpose is to create a Schmidts [ An object of the present invention is to provide a hetrigger circuit.

[発明の構成1 (課題を解決するための手段) この発明のシュミツ1〜トリ力回路は、入力信号の最大
型Hを検、」」シ、保持する最大電圧検出手段と、人力
信号の最小電圧を検出し、保持する最小電圧検出手段と
、直列接続された3個以上の抵抗からなり、上記最大電
圧が一端に供給され、上記最小電圧値が他端に供給され
、これら□各抵抗の直列接続点から高レベル側の閾値電
圧並びに低レベル側の閾値電圧を発生ずる閾値電圧発生
手段と、上記入力信号の電圧と上記高レベル側の閾値電
圧とを比較する第1の電圧比較手段と、上記入力信号の
電圧と上記低レベル側の閾値電圧とを比較する第2の電
圧比較手段と、上記第1及び第2の電圧比較手段の出力
に基づいて制御されるフリップフロン1回路とを具備し
たことをVfI92とする。
[Structure 1 of the Invention (Means for Solving the Problems) The Schmidts 1 to Tri-power circuit of the present invention includes a maximum voltage detection means for detecting and holding the maximum type H of the input signal, and a maximum voltage detection means for detecting and holding the maximum type H of the input signal, and It consists of a minimum voltage detection means that detects and holds the voltage, and three or more resistors connected in series.The maximum voltage is supplied to one end, the minimum voltage value is supplied to the other end, and the voltage of each resistor is threshold voltage generating means for generating a high level side threshold voltage and a low level side threshold voltage from the series connection point; and first voltage comparing means for comparing the voltage of the input signal and the above high level side threshold voltage. , a second voltage comparison means for comparing the voltage of the input signal with the low-level threshold voltage, and a flip-flop circuit controlled based on the outputs of the first and second voltage comparison means. This is called VfI92.

(作用) この発明のシュミットトリが回路では、入力信号の最大
電圧と最小電圧とが検出され、これら2種類の電圧を抵
抗結合することによって高レベル側及び低レベル側の閾
値電圧が形成される。このため、高レベル側及び低レベ
ル側の閾値電圧が入力信号の電圧変動に追随して変化し
、両開値電圧が常に最適な値に制御される。
(Operation) In the Schmidt-Tori circuit of the present invention, the maximum voltage and minimum voltage of the input signal are detected, and threshold voltages on the high level side and low level side are formed by resistively coupling these two types of voltages. . Therefore, the threshold voltages on the high level side and the low level side change following the voltage fluctuation of the input signal, and both open value voltages are always controlled to the optimum value.

(実施例) 以下、図面を参照してこの発明を実施例により説明する
。 。
(Examples) Hereinafter, the present invention will be explained by examples with reference to the drawings. .

第1図はこの発明に係るシュミツl−1−リガ回路を、
VTRのコントロールパルス信号の再生出力信号をディ
ジタル変換するための回路に実施した場合の構成を示す
回路図である。直流電圧源11は、VTRのコントロー
ルパルス信号の再生出力信号である入力信号i nを電
圧vBにバイアスするためのものである。この電圧v[
3でバイアスされた入力信号vinは最大電圧検出回路
12及び最小N圧検出回路13に供給されると共に、そ
れぞれコンパレータを構成する演算増幅器14の非反転
入力端子及び演算増幅器15の反転入力端子に供給され
る。
FIG. 1 shows a Schmidts l-1-Riga circuit according to the present invention.
FIG. 2 is a circuit diagram showing a configuration when implemented in a circuit for digitally converting a reproduced output signal of a control pulse signal of a VTR. The DC voltage source 11 is for biasing an input signal in, which is a reproduced output signal of a control pulse signal of a VTR, to a voltage vB. This voltage v[
The input signal vin biased at 3 is supplied to the maximum voltage detection circuit 12 and the minimum N pressure detection circuit 13, and is also supplied to the non-inverting input terminal of the operational amplifier 14 and the inverting input terminal of the operational amplifier 15, which constitute a comparator, respectively. be done.

上記最小N圧検出回路12及び最小電圧検出回路13は
入力信号vinの最大電圧及び最小電圧を検出し、保持
するものであり、両回路の出力端子間には直列接続され
た4個の抵抗16〜19からなる閾値電圧発生回路20
が接続されている。従って、最大電圧検出回路12で検
出、保持された最大電圧VMAXは閾値電圧発生回路2
0内の抵抗16の一端に供給され、最小電圧検出回路1
3で検出、保持された最小電圧VMINは閾値N圧発住
回路20内の抵抗19の一端に供給される。この閾値電
圧発生回路20は、抵抗16と17の直列接続点から高
レベル側の閾値電圧VAを発生し、かつ抵抗18と19
の直列接続点から低レベル側の閾値電圧VCを発生する
The minimum N pressure detection circuit 12 and the minimum voltage detection circuit 13 detect and hold the maximum voltage and minimum voltage of the input signal vin, and four resistors 16 are connected in series between the output terminals of both circuits. Threshold voltage generation circuit 20 consisting of ~19
is connected. Therefore, the maximum voltage VMAX detected and held by the maximum voltage detection circuit 12 is the threshold voltage generation circuit 2.
0 and is supplied to one end of the resistor 16 within the minimum voltage detection circuit 1
The minimum voltage VMIN detected and held at step 3 is supplied to one end of a resistor 19 in the threshold N voltage generating circuit 20. This threshold voltage generation circuit 20 generates a high-level threshold voltage VA from the series connection point of resistors 16 and 17, and
A low-level threshold voltage VC is generated from the series connection point of .

そして、高レベル側の閾値電圧VAは上記演算増幅器1
4の反転入力端子に供給され、低レベル側の閾値電圧v
Cは上記演算増幅器15の非反転入力端子に供給される
。上記両演算増幅器14.15の各出力は、RSSフリ
ップフロラ回路21にセラミル入力S及びリセット人力
Rとして供給され、このフリップフロップ回路21から
は変換されたディジタル信号5Outが出力される。
The threshold voltage VA on the high level side is the operational amplifier 1.
4, the low level side threshold voltage v
C is supplied to the non-inverting input terminal of the operational amplifier 15. The outputs of the operational amplifiers 14 and 15 are supplied to an RSS flip-flop circuit 21 as a ceramic input S and a reset input R, and the flip-flop circuit 21 outputs a converted digital signal 5Out.

なお、上記閾値電圧発生回路20内の4個の抵抗16〜
19は例えば全て同値であっても良く、あるいは必要に
応じて異ならせることもできる。
Note that the four resistors 16 to 16 in the threshold voltage generation circuit 20
19 may all have the same value, for example, or may be different as necessary.

次に上記構成でなる回路の動作を説明する。Next, the operation of the circuit having the above configuration will be explained.

いま、第2図のタイミングチャートに示すように、コン
トロールパルス信号の再生出力信号としての入力信号v
inの正負両極性のパルスのピーク電圧が大ぎい場合、
最大電圧検出回路12で検出、保持される最大電圧vM
AXは高く、最小電圧検出回路13で検出、保持される
最小電圧VIVIINは低くなり、閾値電圧発生回路2
0で発生される高レベル側の閾値電圧vAと低レベル側
のR値電圧VCとの間の電圧、すなわちヒステリシス電
圧は比較的大きくなる。このとき、演算増幅器14の出
力Sは入力信号v曲の電圧が高レベル側の同値電圧VA
よりも高くなれば゛′1゛ルベル、それ以外のときには
″′O″レベルとなり、演算増幅器15の出力Rは入力
信号vinの電圧が低レベル側の閾値電圧VCよりも低
くなれば゛1″レベル、それ以外のときには゛′O″レ
ベルになる。従って、入力信号vinは正しくディジタ
ル信号30utに変換される。
Now, as shown in the timing chart of FIG. 2, the input signal v as the reproduction output signal of the control pulse signal
If the peak voltage of the positive and negative polarity pulses of in is too large,
Maximum voltage vM detected and held by the maximum voltage detection circuit 12
AX is high, the minimum voltage VIVIIN detected and held by the minimum voltage detection circuit 13 is low, and the threshold voltage generation circuit 2
The voltage between the high-level threshold voltage vA generated at 0 and the low-level R value voltage VC, that is, the hysteresis voltage, becomes relatively large. At this time, the output S of the operational amplifier 14 is the equivalent voltage VA at which the voltage of the input signal v is on the high level side.
If the voltage of the input signal vin becomes lower than the threshold voltage VC on the low level side, the output R of the operational amplifier 15 becomes ``1'' level. Otherwise, it becomes ``O'' level. level, otherwise it becomes 'O' level. Therefore, the input signal vin is correctly converted into the digital signal 30ut.

一方、第3図のタイミングチャートに示すように、コン
トロールパルス信号の再生出力信号としての入力信号v
inの正負両極性のパルスのピーク電圧が小さい場合、
最大電圧検出回路12で検出、保持される最大電圧VM
AXは第2図の場合よりは低くなり、最小電圧検出回路
13て検出、保持される最小電圧VMrNは第2図の場
合よりは高くなる。このため、ヒステリシス電圧は第2
図の場合に比べて小さくなる。一般に、コン1〜ロール
パルス信号の再生出力信号の正負両極性のパルスのピー
ク電圧がtJ\さくなるような場合には、ノイズ成分の
信号レベルも相対的に低下する。従って、この場合にも
図示のように入力信号vinが正しいディジタル信号3
outに変換される。
On the other hand, as shown in the timing chart of FIG. 3, the input signal v as the reproduction output signal of the control pulse signal
If the peak voltage of the positive and negative polarity pulses of in is small,
Maximum voltage VM detected and held by maximum voltage detection circuit 12
AX is lower than in the case of FIG. 2, and the minimum voltage VMrN detected and held by the minimum voltage detection circuit 13 is higher than in the case of FIG. Therefore, the hysteresis voltage is
It is smaller than the case shown in the figure. Generally, when the peak voltage of the positive and negative polarity pulses of the reproduced output signals of the control 1 to roll pulse signals decreases tJ\, the signal level of the noise component also decreases relatively. Therefore, in this case as well, the input signal vin is the correct digital signal 3 as shown in the figure.
Converted to out.

このにうに上記実施例回路によれば、入力信号vinの
ピークレベルに応じて2種の閾値電圧の値が自動的に設
定されるので閾値電圧の設定が不要であり、しかも入力
信号vinのピークレベルに応じてヒステリシス電圧を
異ならせるようにしたので、入力信号が変動しても誤動
作を起こす恐れがない。
In this way, according to the above embodiment circuit, two types of threshold voltage values are automatically set according to the peak level of the input signal vin, so there is no need to set the threshold voltage, and moreover, the peak level of the input signal vin Since the hysteresis voltage is varied depending on the level, there is no risk of malfunction even if the input signal fluctuates.

第4図は上記実施例回路の最大電圧検出回路12の具体
的な構成を示す回路図である。この回路は、ベースに入
力信号■団が供給されるn p n l−ランジスタ3
1を介してコンデンサ32を充電制御すると共に、コン
デンサ32を定電流l133の一定電流で放電制御する
ことにj;す、コンデンサ32に入力信号vinの最大
電圧VMAXが生じるようにしだものである。
FIG. 4 is a circuit diagram showing a specific configuration of the maximum voltage detection circuit 12 of the above embodiment circuit. This circuit consists of an n p n l transistor 3 whose base is supplied with an input signal group.
1, the capacitor 32 is charged and discharged using a constant current l133, so that the maximum voltage VMAX of the input signal vin is generated in the capacitor 32.

第5図は上記実施例回路の最小電圧検出回路13の具体
的な構成を示す回路図である。この回路は、定電流源4
1の一定電流でコンデンサ42を充電制御すると共に、
ベースに入力信号vinが供給されるpnp+−ランジ
スタ43を介してこのコンデンサ42を放電制御するこ
とにより、コンデンサ42に入力信号\111)の最小
電圧VMINが生じるようにしたものである。
FIG. 5 is a circuit diagram showing a specific configuration of the minimum voltage detection circuit 13 of the above embodiment circuit. This circuit consists of constant current source 4
While controlling the charging of the capacitor 42 with a constant current of 1,
By controlling the discharge of this capacitor 42 via a pnp+- transistor 43 whose base is supplied with an input signal vin, the minimum voltage VMIN of the input signal \111) is generated in the capacitor 42.

第6図は上記実施例回路のRSフリップ70ツブ回路2
1の具体的な構成を示す回路図である。この回路は入出
力端子間が交差接続された2個の2人力NANDグー1
〜51.52と、前記演算増幅器14゜15の出力S、
Rそれぞれを反転して上記各NANDゲー1へ51.5
2に供給するインバータ53.54とから構成されてい
る。
Figure 6 shows the RS flip 70 tube circuit 2 of the above embodiment circuit.
FIG. 1 is a circuit diagram showing a specific configuration of FIG. This circuit consists of two 2-power NAND circuits with input and output terminals cross-connected.
~51.52 and the output S of the operational amplifier 14°15,
Invert each R and add 51.5 to each NAND game 1 above.
2 and inverters 53 and 54.

なお、この発明は上記の実施例に限定されるものではな
く種々の変形が可能であることはいうまでもない。例え
ばト記実施例回路では、閾値電圧発生回路20が直列接
続された4個の抵抗16〜19で構成される場合につい
て説明したが、これは抵抗17と18の代わりに1個の
抵抗を設けるようにしてもよい。また、最大電圧検出回
路12及び最小電圧検出回路13それぞれも例えばディ
ジタル回路等で構成するようにしてよい。
It goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications can be made. For example, in the example circuit described above, the threshold voltage generation circuit 20 is composed of four resistors 16 to 19 connected in series, but in this case, one resistor is provided in place of the resistors 17 and 18. You can do it like this. Furthermore, each of the maximum voltage detection circuit 12 and the minimum voltage detection circuit 13 may be configured with, for example, a digital circuit.

[発明の効宋コ 以上説明したようにこの発明によれば、閾値電圧の設定
が不要であり、かつ入力信号の電圧が変動しても誤動作
を起こすことのないシュミツ1−トリガ回路が提供でき
る。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide a Schmidts 1-trigger circuit that does not require setting of a threshold voltage and does not malfunction even if the input signal voltage fluctuates. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による構成を示ず回路図、
第2図及び第3図はそれぞれ上記実施例回路の動作を説
明するためのタイミングヂャート、第4図ないし第6図
はそれぞれ上記実施例回路の各部分の一具体例を示す回
路図、第1図は従来の回路図、第8図ないし第10図は
それぞれ従来回路の動作を示ず′タイミングチャー1へ
である。 11・・・直流電圧源、12・・・最大電圧検出回路、
13・・・最小電圧検出回路、14.15・・・演算増
幅器、16へ・19・・・抵抗、20・・・閾値電圧発
生回路、21・・・RSSフリップフロラ回路。 出願人代理人 弁理士 鈴 江 武 彦の    ニ (′w′)ト
FIG. 1 is a circuit diagram showing a configuration according to an embodiment of the present invention;
2 and 3 are timing charts for explaining the operation of the above embodiment circuit, respectively, and FIGS. 4 to 6 are circuit diagrams showing one specific example of each part of the above embodiment circuit, respectively. FIG. 1 is a conventional circuit diagram, and FIGS. 8 to 10 each do not show the operation of the conventional circuit, but are shown in timing chart 1. 11... DC voltage source, 12... Maximum voltage detection circuit,
13... Minimum voltage detection circuit, 14.15... Operational amplifier, 16 to 19... Resistor, 20... Threshold voltage generation circuit, 21... RSS flip Flora circuit. Applicant's representative Patent attorney Takehiko Suzue ('w')

Claims (1)

【特許請求の範囲】  入力信号の最大電圧を検出し、保持する最大電圧検出
手段と、 入力信号の最小電圧を検出し、保持する最小電圧検出手
段と、 直列接続された3個以上の抵抗からなり、上記最大電圧
が一端に供給され、上記最小電圧値が他端に供給され、
これら各抵抗の直列接続点から高レベル側の閾値電圧並
びに低レベル側の閾値電圧を発生する閾値電圧発生手段
と、 上記入力信号の電圧と上記高レベル側の閾値電圧とを比
較する第1の電圧比較手段と、 上記入力信号の電圧と上記低レベル側の閾値電圧とを比
較する第2の電圧比較手段と、 上記第1及び第2の電圧比較手段の出力に基づいて制御
されるフリップフロップ回路とを具備したことを特徴と
するシユミットトリガ回路。
[Claims] Maximum voltage detection means for detecting and holding the maximum voltage of an input signal; Minimum voltage detection means for detecting and holding the minimum voltage of the input signal; and three or more resistors connected in series. and the above maximum voltage is supplied to one end, the above minimum voltage value is supplied to the other end,
threshold voltage generating means for generating a high level threshold voltage and a low level threshold voltage from the series connection point of each of these resistors; voltage comparison means; second voltage comparison means for comparing the voltage of the input signal with the low-level threshold voltage; and a flip-flop controlled based on the outputs of the first and second voltage comparison means. A Schmitt trigger circuit characterized by comprising a circuit.
JP63095009A 1988-04-18 1988-04-18 Schmitt trigger circuit Pending JPH01265718A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63095009A JPH01265718A (en) 1988-04-18 1988-04-18 Schmitt trigger circuit
US07/338,795 US5003196A (en) 1988-04-18 1989-04-17 Wave shaping circuit having a maximum voltage detector and a minimum voltage detector
KR1019890005086A KR920003447B1 (en) 1988-04-18 1989-04-18 Schmittrigger circuit
EP89106948A EP0338517A3 (en) 1988-04-18 1989-04-18 Schmitt trigger circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095009A JPH01265718A (en) 1988-04-18 1988-04-18 Schmitt trigger circuit

Publications (1)

Publication Number Publication Date
JPH01265718A true JPH01265718A (en) 1989-10-23

Family

ID=14125940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095009A Pending JPH01265718A (en) 1988-04-18 1988-04-18 Schmitt trigger circuit

Country Status (4)

Country Link
US (1) US5003196A (en)
EP (1) EP0338517A3 (en)
JP (1) JPH01265718A (en)
KR (1) KR920003447B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282182A (en) * 2006-03-15 2007-10-25 Toyota Central Res & Dev Lab Inc Binarization circuit
JP2009200944A (en) * 2008-02-22 2009-09-03 Oki Semiconductor Co Ltd Hysteresis comparator

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2231673B (en) * 1989-04-18 1993-01-27 Standard Telephones Cables Ltd Direct current meter circuit
NL8902225A (en) * 1989-09-05 1991-04-02 Philips Nv LINKAGE FOR DETECTING IMPULSE, AND VIDEO RECORDER PROVIDING THE LINKING.
JP2724006B2 (en) * 1989-11-16 1998-03-09 オリンパス光学工業株式会社 Binarization circuit
US5241251A (en) * 1990-05-21 1993-08-31 Asahi Kogaku Kogyo Kabushiki Kaisha Drive signal generating device
US5159340A (en) * 1990-08-31 1992-10-27 Hewlett-Packard Company Signal digitizer for bar code readers
GB2253960B (en) * 1991-02-21 1995-02-15 Gen Electric Co Ltd A duo-binary and/or binary data slicer
US5418656A (en) * 1991-11-05 1995-05-23 Sankyo Seiki Mfg. Co., Ltd. Drop-out detecting circuit
US5408694A (en) * 1992-01-28 1995-04-18 National Semiconductor Corporation Receiver squelch circuit with adjustable threshold
JP3159331B2 (en) * 1992-03-31 2001-04-23 ソニー株式会社 Signal input judgment device and comparison circuit
US5304864A (en) * 1992-08-07 1994-04-19 Rockwell International Corporation Analog maximum/minimum selector circuit
DE4227166C1 (en) * 1992-08-17 1993-04-29 Siemens Ag, 8000 Muenchen, De
JPH0677787A (en) * 1992-08-26 1994-03-18 Takayama:Kk Minimum valve circuit
JPH0676090A (en) * 1992-08-26 1994-03-18 Takayama:Kk Maximizing circuit
US5440254A (en) * 1992-10-20 1995-08-08 Exar Corporation Accurate low voltage detect circuit
US5878091A (en) * 1992-11-27 1999-03-02 Motorola, Inc. Apparatus and method for pattern adaptive offset restoration
GB2273834B (en) * 1992-12-22 1997-04-09 Motorola Inc Clock signal conditioning circuit
US5303416A (en) * 1993-01-21 1994-04-12 Motorola, Inc. Method and apparatus for adjusting peak and valley acquisition rates of a signal received by a radio communication device
US5420798A (en) * 1993-09-30 1995-05-30 Macronix International Co., Ltd. Supply voltage detection circuit
WO1995009483A1 (en) * 1993-09-30 1995-04-06 Macronix International Co., Ltd. Improved supply voltage detection circuit
US5416512A (en) * 1993-12-23 1995-05-16 International Business Machines Corporation Automatic threshold level structure for calibrating an inspection tool
US5442313A (en) * 1994-05-27 1995-08-15 The Torrington Company Resolution multiplying circuit
JP3468592B2 (en) * 1994-08-10 2003-11-17 富士通株式会社 Clock signal generation circuit
US5631584A (en) * 1995-09-29 1997-05-20 Dallas Semiconductor Corporation Differential cross coupled peak detector
EP0782263A1 (en) * 1995-12-26 1997-07-02 Motorola, Inc. Edge detector with hysteresis
US5821790A (en) * 1996-04-24 1998-10-13 Paragon Electric Company, Inc. Power line synchronization conditioner
US5949597A (en) * 1996-04-24 1999-09-07 Tandberg Data Storage A/S Method and apparatus for data pulse qualification wherein the amplitude of a preceding pulse of opposite polarity is tracked
GB2313724B (en) * 1996-05-30 2000-06-28 Motorola Inc Voltage detector circuit
DE19702303A1 (en) * 1997-01-23 1998-07-30 Philips Patentverwaltung Circuit arrangement for generating an output signal
US6104225A (en) * 1997-04-21 2000-08-15 Fujitsu Limited Semiconductor device using complementary clock and signal input state detection circuit used for the same
JPH11345447A (en) * 1998-03-30 1999-12-14 Mitsubishi Electric Corp Viss signal detecting circuit
GB2336958B (en) * 1998-05-01 2003-04-23 Sgs Thomson Microelectronics Comparators
US6788792B1 (en) * 1998-06-26 2004-09-07 Yamaha Corporation Device for amplitude adjustment and rectification made with MOS technology
JP2000068747A (en) * 1998-08-20 2000-03-03 Sony Corp Wave detecting circuit
FR2786631A1 (en) * 1998-11-30 2000-06-02 Thomson Multimedia Sa METHOD FOR CONVERTING AN ANALOGUE SIGNAL TO A RECTANGULAR SIGNAL AND DEVICE FOR IMPLEMENTING SAID METHOD
FR2806855B1 (en) * 2000-03-21 2002-06-21 St Microelectronics Sa AMPLITUDE MODULATED ALTERNATIVE SIGNAL DEMODULATOR
FR2835119B1 (en) * 2002-01-24 2005-03-18 St Microelectronics Sa DYNAMIC LARGE DEMODULATOR FOR NON-CONTACT CHIP CARDS OR LABELS
US7535262B2 (en) * 2004-10-19 2009-05-19 International Rectifier Corporation High voltage level shifting by capacitive coupling
JP2006129073A (en) * 2004-10-28 2006-05-18 Sanyo Electric Co Ltd Hysteresis comparator and reset signal generating circuit using the same
TWI262371B (en) * 2004-11-23 2006-09-21 Niko Semiconductor Co Ltd PMW equipment with a power saving mode controlled by an output voltage feedback retardation circuit
CN1787350B (en) * 2004-12-09 2010-05-05 尼克森微电子股份有限公司 Pulsewidth modulator having electricity saving mode
JP2009529823A (en) 2006-03-10 2009-08-20 エヌエックスピー ビー ヴィ Pulse shaping circuit for crystal oscillator
JP4887928B2 (en) * 2006-06-21 2012-02-29 株式会社デンソー Receiving device for vehicle communication system
DE602007010249D1 (en) * 2007-05-18 2010-12-16 St Microelectronics Sa Digitizer for a digital receiving system
US8415993B1 (en) * 2011-10-26 2013-04-09 Sand 9, Inc. Power-on reset circuit and method
KR20130135588A (en) * 2012-06-01 2013-12-11 에스케이하이닉스 주식회사 Power tracking circuit and semiconductor apparatus including the same
US11863189B2 (en) * 2021-03-05 2024-01-02 Taiwan Semiconductor Manufacturing Company, Ltd. Input buffer circuit
CN116800229A (en) * 2022-03-17 2023-09-22 澜起电子科技(上海)有限公司 Burr removing circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128919A (en) * 1979-03-28 1980-10-06 Hitachi Denshi Ltd Waveform shaping unit
JPS56115023A (en) * 1980-02-16 1981-09-10 Nec Corp Automatic threshold level controlling circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512010A (en) * 1967-09-25 1970-05-12 Sybron Corp Switching circuit with hysteresis
US4245192A (en) * 1978-10-19 1981-01-13 Lockheed Corporation Periodicity verification circuit
US4613770A (en) * 1980-09-29 1986-09-23 Consolidated Investments And Development Corp. Voltage monitoring circuit
JPS57142027A (en) * 1981-02-27 1982-09-02 Ricoh Co Ltd Pulse generating circuit
US4399414A (en) * 1981-06-16 1983-08-16 Bird David A Low-noise pulse conditioner
JPS59193617A (en) * 1983-04-15 1984-11-02 Matsushita Electric Works Ltd Digital signal receiving circuit
US4613769A (en) * 1984-08-13 1986-09-23 National Semiconductor Corporation Direct current coupled peak to peak detector circuit
US4631737A (en) * 1984-12-06 1986-12-23 Motorola, Inc. Self biasing direct coupled data limiter
JPS62130013A (en) * 1985-12-02 1987-06-12 Matsushita Electric Ind Co Ltd Delay device
KR910009557B1 (en) * 1987-03-31 1991-11-21 미쓰비시 뎅끼 가부시끼가이샤 Synchronizing signal processing circuit
GB8716144D0 (en) * 1987-07-09 1987-08-12 British Aerospace Comparator circuits
US4959558A (en) * 1988-03-31 1990-09-25 U.S. Philips Corporation Circuit arrangement for detecting cross-over by an alternating voltage of a fixed reference voltage level
US4926442A (en) * 1988-06-17 1990-05-15 International Business Machines Corporation CMOS signal threshold detector
US4891535A (en) * 1988-12-20 1990-01-02 Tektronix, Inc. Single supply ECL to CMOS converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128919A (en) * 1979-03-28 1980-10-06 Hitachi Denshi Ltd Waveform shaping unit
JPS56115023A (en) * 1980-02-16 1981-09-10 Nec Corp Automatic threshold level controlling circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282182A (en) * 2006-03-15 2007-10-25 Toyota Central Res & Dev Lab Inc Binarization circuit
JP2009200944A (en) * 2008-02-22 2009-09-03 Oki Semiconductor Co Ltd Hysteresis comparator

Also Published As

Publication number Publication date
KR920003447B1 (en) 1992-05-01
KR890016758A (en) 1989-11-30
EP0338517A3 (en) 1990-03-14
US5003196A (en) 1991-03-26
EP0338517A2 (en) 1989-10-25

Similar Documents

Publication Publication Date Title
JPH01265718A (en) Schmitt trigger circuit
JPH0332026B2 (en)
JPS58500864A (en) Noise blanker circuits used in electronic ignition systems or similar
US6104199A (en) Magnetic-head short-circuit detector
US5652836A (en) CPU reset circuit
EP0582289B1 (en) Transistor circuit for holding peak/bottom level of signal
US4499386A (en) Trigger circuit
JPS59221026A (en) Receiving circuit of digital signal
JPH0332113Y2 (en)
JP3270221B2 (en) Optical signal receiving circuit
JPH0583007B2 (en)
JPS59193617A (en) Digital signal receiving circuit
JPH0349168B2 (en)
KR0120585B1 (en) Sp/lp mode detection circuit
JP2603355B2 (en) Integrated circuit device
JPH0358614A (en) Semiconductor device
JPH0749421Y2 (en) Peak detection circuit
SU1041984A1 (en) Voltage difference converter
JPS6118462Y2 (en)
JPH0349167B2 (en)
JPH0467365B2 (en)
JPS63193377A (en) Amplitude detecting system
JPH042963B2 (en)
JPS59100615A (en) Waveform shaping circuit
JPH0563526A (en) Comparator