JPS59154793A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPS59154793A
JPS59154793A JP58028006A JP2800683A JPS59154793A JP S59154793 A JPS59154793 A JP S59154793A JP 58028006 A JP58028006 A JP 58028006A JP 2800683 A JP2800683 A JP 2800683A JP S59154793 A JPS59154793 A JP S59154793A
Authority
JP
Japan
Prior art keywords
layer
thin film
amorphous
voltage
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028006A
Other languages
Japanese (ja)
Inventor
布村 恵史
小山 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58028006A priority Critical patent/JPS59154793A/en
Publication of JPS59154793A publication Critical patent/JPS59154793A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は薄膜EL素子に関する。[Detailed description of the invention] The present invention relates to a thin film EL device.

薄膜EL素子はZnS:Mn薄膜等の光学的に活性な発
光層に電圧を印加し発光を得るものである。
A thin film EL element emits light by applying a voltage to an optically active light emitting layer such as a ZnS:Mn thin film.

薄膜EL素子の特質として透明薄膜の面発光であり視認
性に優れている。また薄膜プロセスで製造される全固体
デバイスであり表示パネルとして軽量、極薄型、機械的
衝撃に強い特長があり、ホトリングラフ技術により容易
に高解像度化が可能である。また発光輝度が高く、印加
電圧に対して発光輝度が臨界電圧以上で急激に立上る特
性を示すために表示パネルとして時分割駆動性に優れて
いる。これらの特長から薄膜EL累子はドツトマトリッ
クス型の平面ディスプレーとして注目され情報端末等の
表示装置として期待されている。
A characteristic of the thin film EL element is that it emits light from a surface of a transparent thin film and has excellent visibility. In addition, it is an all-solid-state device manufactured using a thin film process, and as a display panel, it is lightweight, extremely thin, and resistant to mechanical shock, and it can easily achieve high resolution using photoringraph technology. In addition, the luminance is high, and the luminance rises rapidly with respect to the applied voltage at a threshold voltage or higher, so it is excellent in time-division drivability as a display panel. Because of these features, thin film EL panels have attracted attention as dot matrix type flat displays and are expected to be used as display devices for information terminals and the like.

薄膜EL素子は発光層の両側に電極を形成し、直流電圧
で発光するDC型と、発光層と電祢間に電気絶縁層を設
置し、交番電圧で発光するAC型がある。現在のところ
、発光電圧は高いが発光輝度、信頼付の点でAC型が優
れている。
There are two types of thin-film EL devices: a DC type in which electrodes are formed on both sides of a light emitting layer and emits light using a direct current voltage, and an AC type in which an electrical insulating layer is provided between the light emitting layer and the electrode and light is emitted by an alternating voltage. At present, the AC type is superior in light emission brightness and reliability, although the light emission voltage is high.

第1図は従来のAC型EL素子の一例の断面図である。FIG. 1 is a sectional view of an example of a conventional AC type EL element.

このEL素子は二重絶縁型と言われるAC型EL素子で
ある。透明ガラス基板上にインジウム錫酸化物(以下I
TOという)等の透明電極2゜Y20R* Ta205
* S ia N4等の第1絶縁層3゜ZnS  やz
nSe  等を母体としMr?イオンやTb F s等
の希土類フッ化物等を付活した発光層4゜第1絶縁層と
同じ材料か、あるいは異なった絶縁体で形成された第2
絶縁層5.背面電極6からなる基本構造であり透明箱7
(全と背面電俊間に交番電圧全印加することにより電場
発光させうる。
This EL element is an AC type EL element called double insulation type. Indium tin oxide (hereinafter referred to as I) was deposited on a transparent glass substrate.
Transparent electrode 2゜Y20R* Ta205 such as TO)
* First insulating layer 3° such as S ia N4 or ZnS
Mr? A light emitting layer activated with ions or rare earth fluorides such as TbFs, etc. A second insulating layer made of the same material as the first insulating layer or a different insulating layer.
Insulating layer 5. The basic structure consists of a back electrode 6 and a transparent box 7
(Electroluminescence can be caused by applying an alternating voltage between the electrode and the back electrode.

このようなEL素子においては基本特性である輝度の向
上と低電圧駆動化が重要である。これらの特性向上のた
めに、構成材料、成膜及び熱処理プロセスの最適化、各
層の膜厚の最適化が検討されている。例えば絶縁層を湧
くするか、 PbT10s等の高誘電本の絶縁層の採用
は発光層に印加される実効的な電圧の増大をもたらし、
発光に必要な外部電圧を低下させうる。しかし逆に前者
の場合ではEL素子が破壊しやすく寿命等において信頼
性の欠如をもたらす、また後者の場合でも成膜の再現性
に困難があるとともにEL素子の容t1゛が増大するた
めに高速駆動には適していない等の欠点會有している。
In such an EL element, it is important to improve the basic characteristics of brightness and drive at a low voltage. In order to improve these characteristics, optimization of constituent materials, film formation and heat treatment processes, and optimization of the film thickness of each layer are being considered. For example, forming an insulating layer or employing a high dielectric insulating layer such as PbT10s results in an increase in the effective voltage applied to the emissive layer.
The external voltage required for light emission can be reduced. However, in the former case, the EL element is easily destroyed, resulting in a lack of reliability over its lifetime, and in the latter case, there is also difficulty in reproducibility of the film formation, and the capacitance t1 of the EL element increases, resulting in a high speed. It has disadvantages such as not being suitable for driving.

また発光層−1〃゛体についてはバンドギャップに対応
してZn5eの方がZnSより低電圧で発光を開始する
ことが知られているが、飽和輝度が低い欠点を有してい
る。更に、発光中心に関しても現在多用されているMn
2+を越える特性のものは得られていない。
Regarding the light-emitting layer-1, it is known that Zn5e starts emitting light at a lower voltage than ZnS depending on the band gap, but it has a drawback of low saturation luminance. Furthermore, regarding the luminescent center, Mn, which is currently widely used,
No properties exceeding 2+ have been obtained.

以上のように発光輝度、信頼性を犠牲にすることなく駆
動電圧を低くすることには大きな困難性かあ9%現在の
ところ150〜200■程度の駆動電圧が必要である。
As described above, it is very difficult to lower the driving voltage without sacrificing the luminance and reliability.At present, a driving voltage of about 150 to 200 cm is required.

このように動作1E圧が筒いことは表示装置として不可
欠である駆動回路のIC化に大きな障害となるという欠
点があった。
Such a high operating 1E pressure has the disadvantage of being a major obstacle to the implementation of an IC drive circuit, which is essential for a display device.

本発明の目的は、上記欠点を除去し、駆動電圧を低くす
ることができ、しかも品輝度である薄膜EL素子全提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, to provide a thin film EL element that can be driven at a low voltage and has high brightness.

本発明によれば、透明基板と、該透明基板の一生面に設
けられた透明電極と、該透明電極に対向して設けられた
背面′電極と、前記透明電極と背面電栖との間に設けら
れた発光層及び絶縁層と、前記発光層と絶縁膜との間に
設けられた非晶質半導体の界面層とを含むことを特徴と
する薄膜EL素子が得られる。
According to the present invention, there is provided a transparent substrate, a transparent electrode provided on the entire surface of the transparent substrate, a back electrode provided opposite to the transparent electrode, and a space between the transparent electrode and the back electrode. A thin film EL device is obtained, which includes a light emitting layer and an insulating layer, and an interface layer of an amorphous semiconductor provided between the light emitting layer and the insulating film.

前記非晶質半導体として非晶質Slまたは非晶%Six
C1−x  を用いる。
The amorphous semiconductor is amorphous Sl or amorphous %Six
C1-x is used.

次に、本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

第2図は本発明の一実施例の断面図である。FIG. 2 is a sectional view of one embodiment of the present invention.

透明なガラス基板1の上に透明電極2として■TO蒸層
膜を0.02μm の厚さに設け、その上に第1絶縁層
3として反応性スパッタ法によりSi3N4膜を0,2
5μmの厚さに形成する。第1の界面層7をスパッタ法
で設ける。これについては後述する。第1の界面層7の
上に発光層4としてMnを0.5モル%含むZnS:M
neo、6 μmの厚さに形成する。この上に第2の界
面層8′f:設ける。こ−れについても後述する。第2
の界面層8の上に第2絶縁膜5としてSi3N4を0.
25μmの厚さに蒸着し、その上に背面電極6をAt蒸
着膜で形成する。
A TO vaporized film with a thickness of 0.02 μm is provided as a transparent electrode 2 on a transparent glass substrate 1, and a Si3N4 film of 0.2 μm is deposited thereon as a first insulating layer 3 by reactive sputtering.
It is formed to a thickness of 5 μm. A first interface layer 7 is provided by sputtering. This will be discussed later. ZnS:M containing 0.5 mol% Mn as a light-emitting layer 4 on the first interface layer 7
Neo, formed to a thickness of 6 μm. A second interface layer 8'f is provided on this. This will also be discussed later. Second
Si3N4 is deposited on the interface layer 8 as the second insulating film 5.
This is deposited to a thickness of 25 μm, and the back electrode 6 is formed thereon using an At deposited film.

前述の第1及び第2の界面層7,8は、2棟類の材料に
ついて試別を作成した、即ち(1)非晶質S1を約6O
Aの厚さにスパッタして作った試別、(2)非晶質5i
Cffi約150Aの厚さにスノくツタした作った試料
の2種類である。特に、非晶質Siを界面層としたEL
素子は、絶縁層もSi をターゲットとしており、スパ
ッタリングガスkN2−Ar混合ガス及びAr−H2混
合ガスを切替えてスノ(ツタ室から取出すことなく連続
的に成膜した。
The aforementioned first and second interfacial layers 7 and 8 were prepared using two types of materials, namely (1) amorphous S1 of about 6O
Trial made by sputtering to thickness A, (2) Amorphous 5i
There are two types of specimens made with snow ivy to a thickness of about 150A. In particular, EL with amorphous Si as an interface layer
In the device, the insulating layer also targeted Si, and the film was continuously formed by switching the sputtering gas kN2-Ar mixed gas and Ar-H2 mixed gas without taking it out from the ivy chamber.

第3図は第2肉に示す一実施例の印加電圧−発光輝度の
関係を示す特性曲線図である。
FIG. 3 is a characteristic curve diagram showing the relationship between applied voltage and luminance of one embodiment shown in the second example.

図でAは前記の界面層を設けていない従来のEL累子、
B、Cはそれぞれ第1及び第2の界面層として非晶質S
i及び非晶質sic −を用いたEL累子である。輝度
測定は5 k Hzの正弦波を用いて行−)た。第3図
から明らかなように、界面層を設けたEL素子B、Cは
界面層のない従来のEL素子Aに対して印加電圧を低く
しても従来と同等もしくはそれ以上の発光輝度が得られ
る。このように界面隅金設けることにより駆動電圧の低
圧化と輝度向上が実現できる。
In the figure, A is a conventional EL transducer without the above-mentioned interface layer.
B and C are amorphous S as the first and second interfacial layers, respectively.
This is an EL crystal using i and amorphous sic-. Luminance measurements were performed using a 5 kHz sine wave. As is clear from Fig. 3, EL elements B and C provided with an interface layer can achieve luminance equal to or higher than that of the conventional EL element A, even when the applied voltage is lower than that of the conventional EL element A without an interface layer. It will be done. By providing the interfacial corner metal in this way, it is possible to lower the driving voltage and improve the brightness.

上記実施例では界面層全発光層の両側に設けたが、片側
のみに設けても良い。特に背面側に設ける場合には光吸
収による損失が小さくなる利点と、発光層の熱処理に伴
う拡散の悪影響を回避できる利点がある。また、上記実
施例は二重絶縁型のEL累子で説明したが、本発明は片
側絶縁型EL素子に対しても適用できることはもちろん
である。
In the above embodiment, the interface layer was provided on both sides of the entire light emitting layer, but it may be provided only on one side. Particularly when it is provided on the back side, there are advantages of reducing loss due to light absorption and of avoiding the adverse effects of diffusion caused by heat treatment of the light emitting layer. Further, although the above embodiment has been explained using a double insulation type EL element, it goes without saying that the present invention can also be applied to a single side insulation type EL element.

ZnS:Mn等の電場発光の原理は次のように考えられ
ている。発光層に印加された高電場により伝導電子が加
速され熱電子になる。十分なエネルギー(Mn励起では
2.2eV以上)を得た熱電子が発光中心に衝突し、発
光中心の価電子を基底状態から励起状態へ直接励起する
。励起状態から基底状態への回復時に発光を生ずる。
The principle of electroluminescence in ZnS:Mn, etc. is considered as follows. A high electric field applied to the light-emitting layer accelerates conduction electrons and turns them into thermoelectrons. Thermionic electrons that have obtained sufficient energy (2.2 eV or more for Mn excitation) collide with the luminescent center and directly excite the valence electrons of the luminescent center from the ground state to the excited state. Light emission occurs when the excited state returns to the ground state.

このような励起過程のほかに熱電子の起源となる伝導電
子の創出過程も特にAC型EL素子では重吸である。A
C型EL累子は絶縁層で囲まれておp1外部から面接電
子金供和できない、従って伝導電子は絶縁層との界面に
できる界面準位にトラップされている電子や螢光体内部
の浅いトラップから高電場によりトンネル効果で伝導帯
に注入されると考えられている。本発明の界面層は低い
電場で多量の伝導電子を発光層に供給することに寄与し
ているものと思われる。即ち非晶質半導体の界面層は界
面層と発光層及び界面層と絶縁層の界、面に多量の界面
準位を形成するとともに非晶a半導体には多針のトラッ
プ準位が存在する。これらの準位に捕捉された多量の電
子がよジ低い外部電圧印加で多針に発光層に注入さね結
果として薄膜EL素子の低電圧化、高輝度化をもたらす
ものと思われる。
In addition to such an excitation process, the process of creating conduction electrons, which is the origin of thermoelectrons, is particularly important in AC type EL elements. A
The C-type EL crystal is surrounded by an insulating layer and cannot accept surface electron gold from the outside of p1.Therefore, conduction electrons are electrons trapped in the interface level formed at the interface with the insulating layer or shallow electrons inside the phosphor. It is thought that the trap is injected into the conduction band by a tunnel effect due to a high electric field. It is believed that the interfacial layer of the present invention contributes to supplying a large amount of conduction electrons to the light emitting layer at a low electric field. That is, the interface layer of the amorphous semiconductor forms a large amount of interface levels at the interface and plane between the interface layer and the light-emitting layer, and between the interface layer and the insulating layer, and the amorphous a-semiconductor has many trap levels. It is thought that a large amount of electrons captured in these levels are injected into the light emitting layer in multiple directions by applying a very low external voltage, resulting in lower voltage and higher brightness of the thin film EL element.

本発明の界面層としては容易に成膜可能であり、安定性
及び透明度の点で非晶質Si及び非晶質の5ixCt−
x  (0,1(x (1)  が望ましい。これらの
材料は透明ではないが界面層としては数分子層から数1
00A以下の膜厚で効果金示すために光吸収金上廻る改
善効果があり有効性を損なうものではない。
The interfacial layer of the present invention can be easily formed into a film, and from the viewpoint of stability and transparency, amorphous Si and amorphous 5ixCt-
x (0,1(x (1)) is desirable.These materials are not transparent, but as an interfacial layer, the
Since the effect is exhibited at a film thickness of 00A or less, the effect of improving light absorption is more than that of gold, and the effectiveness is not impaired.

以上詳細に駈、明したように、本発明によれば、駆動電
圧の低圧化と、面輝度化とが計れる薄膜EL素子が得ら
れるのでその効果は太きb0
As explained in detail above, according to the present invention, it is possible to obtain a thin film EL element that can reduce the driving voltage and increase the surface brightness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAC型EL素子の一例の断面図、第2図
は本発明の一実施例の断面図、第3図は第2図に示す一
実M例の印加電圧−輝度の関係を示す特性曲線図である
。 l・・・・・・透明ガラス基板、2・・・・・・透明電
接、3・・・・・・第1絶綻、島、4・・・・・・発光
層、5・・・・・・第2絶縁層、6・・・・・・背面′
i1¥極、7・・・・・・第1界面層、8・・・・・・
第2界面層。 躬 1図 第7図 第 3m
Fig. 1 is a cross-sectional view of an example of a conventional AC type EL element, Fig. 2 is a cross-sectional view of an embodiment of the present invention, and Fig. 3 is the relationship between applied voltage and luminance of the actual M example shown in Fig. 2. FIG. l...Transparent glass substrate, 2...Transparent electrical contact, 3...First breakdown, island, 4...Light emitting layer, 5... . . . second insulating layer, 6 . . . back side'
i1\pole, 7...first interface layer, 8...
Second interfacial layer. Figure 1 Figure 7 Figure 3m

Claims (2)

【特許請求の範囲】[Claims] (1)透明基板と、該透明基板の一生面に設けられた透
明電極と、該透明電極に対向して設けられた背面電極と
前記透明電極と背面電極との開に設けられた発光層及び
絶縁層と、前記発光層と絶縁膜との間に設けられた非晶
質半導体の界面層とを含むことを特徴とする薄膜EL素
子。
(1) a transparent substrate, a transparent electrode provided on the entire surface of the transparent substrate, a back electrode provided opposite to the transparent electrode, and a light emitting layer provided between the transparent electrode and the back electrode; A thin film EL device comprising an insulating layer and an amorphous semiconductor interface layer provided between the light emitting layer and the insulating film.
(2)前記非晶質半導体として非晶質Si  または非
晶質SiえC□−Xを用いる特許請求範囲第(1)項記
載の薄膜EL素子。
(2) The thin film EL device according to claim (1), in which amorphous Si or amorphous SiC-X is used as the amorphous semiconductor.
JP58028006A 1983-02-22 1983-02-22 Thin film el element Pending JPS59154793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028006A JPS59154793A (en) 1983-02-22 1983-02-22 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028006A JPS59154793A (en) 1983-02-22 1983-02-22 Thin film el element

Publications (1)

Publication Number Publication Date
JPS59154793A true JPS59154793A (en) 1984-09-03

Family

ID=12236694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028006A Pending JPS59154793A (en) 1983-02-22 1983-02-22 Thin film el element

Country Status (1)

Country Link
JP (1) JPS59154793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175593A (en) * 1983-03-25 1984-10-04 松下電器産業株式会社 Electroluminescent display unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175593A (en) * 1983-03-25 1984-10-04 松下電器産業株式会社 Electroluminescent display unit
JPH0516158B2 (en) * 1983-03-25 1993-03-03 Matsushita Electric Ind Co Ltd

Similar Documents

Publication Publication Date Title
US5291098A (en) Light emitting device
JPS59154793A (en) Thin film el element
JPS6323640B2 (en)
JPS59154794A (en) Thin film el element
JPS5829880A (en) Electric field luminescent element
JPS5991697A (en) Thin film el element
JPS6089098A (en) Electrode structure of thin film el element
JPS60160594A (en) Thin film el element
JPS59175593A (en) Electroluminescent display unit
JPS6124192A (en) Thin film electroluminescent element
JPS6035496A (en) El panel
JPH0824071B2 (en) Thin film electroluminescent device
JPS61271780A (en) Thin film el element
JPS63181296A (en) Method of forming dielectric film
JPS63128592A (en) Electroluminescence panel
JPS6314833B2 (en)
JPS62115691A (en) Manufacture of electroluminescence panel
JPS62147693A (en) Thin film el device
JPS6050577A (en) Thin film electroluminescence panel
JPS6012696A (en) Thin film electroluminescent element
JPS6196696A (en) Manufacture of thin film el element
JPS63186292A (en) Thin film el display device
JPS60131797A (en) Electroluminescent element
JPS62222597A (en) Electroluminescence panel
JPS63128593A (en) Electroluminescence panel