JPS59154313A - Apparatus for measuring distance and slanting angle - Google Patents

Apparatus for measuring distance and slanting angle

Info

Publication number
JPS59154313A
JPS59154313A JP2857783A JP2857783A JPS59154313A JP S59154313 A JPS59154313 A JP S59154313A JP 2857783 A JP2857783 A JP 2857783A JP 2857783 A JP2857783 A JP 2857783A JP S59154313 A JPS59154313 A JP S59154313A
Authority
JP
Japan
Prior art keywords
measured
distance
lense
image
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2857783A
Other languages
Japanese (ja)
Other versions
JPH0139041B2 (en
Inventor
Atsushi Yoshikawa
淳 吉川
Tsutomu Kamiyama
勉 上山
Shinichi Nagata
永田 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2857783A priority Critical patent/JPS59154313A/en
Publication of JPS59154313A publication Critical patent/JPS59154313A/en
Publication of JPH0139041B2 publication Critical patent/JPH0139041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To obtain the sufficiently high precision of the titled apparatus by providing the light source irradiating the beam and the lense condensing the reflected beam and detecting the shifting of image-forming positions of optical system, etc. obtaining the divided beams for two directions. CONSTITUTION:The beam emitted from the light sources S1, S2 have the spot diameters of about from several 10 to several 100mumphi at reflecting surfaces R1, R2. The lense L is arranged so that an optical axis is made to coincide with a reflected beam. A beam splitter 2 for dividing is provided at b1 distance from the lense L between the lense L and two-dimensional position sensor 1. In the position measurement, e.g. the spot image of the surface R1 is condensed by the lense L and is formed images at a position P2 of a one-dimensional sensor 3 as the reflected light of the splitter 2. In such a way, the sufficiently high precision measurement can be performed by detecting the shift of these image-forming positions.

Description

【発明の詳細な説明】 本発明は、半導体集積回路のチップ等、微小面積の板体
の位置および平行度を測定するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the position and parallelism of a plate having a minute area, such as a semiconductor integrated circuit chip.

半導体集積回路(IC,LSIなど、以ド単にICと略
記する)は、一般にセラミック等のマウント用台に半導
体チップをろう令1けして実装される。
2. Description of the Related Art Semiconductor integrated circuits (IC, LSI, etc., hereinafter simply abbreviated as IC) are generally mounted by mounting a semiconductor chip on a mounting base made of ceramic or the like.

近年、イメージ七ン→ノー用ICなどのように、光感知
素子を複数配列したICが多く製造され、半導体チップ
をマウント用台にろうイ」けする時の平行度を、厳密に
制御する必要が生じてきている。
In recent years, many ICs with multiple arrays of photo-sensing elements have been manufactured, such as image 7-→no ICs, and it is necessary to strictly control the parallelism when mounting semiconductor chips on a mounting stand. is occurring.

1だ、たとえば、CCD(電荷結合デフ4イス)素子を
用いた固体撮像装置にあっては、CCDチップは5×5
朋程度の微−小面積の板体をなI−2でいるうえ、チッ
プの表面的10 tt程に離間するフィルタをチップと
平行に貼付けるため、貼イ・1け前の準備段階において
、数10mm離れた位置に、前もつ・て配置するための
2軸方向制御用の計測系が、貼合せ装置には不可欠であ
る。
1. For example, in a solid-state imaging device using a CCD (charge-coupled differential) element, the CCD chip is 5 x 5.
In addition to using a plate with a micro-area as small as my size, and in order to attach the filter parallel to the chip, which is about 10 mm apart from the surface of the chip, in the preparation stage before pasting, A measurement system for two-axis direction control, which is placed several tens of millimeters away from the front, is essential for the laminating apparatus.

従来、ICのチップ等微小面積で、かつ表面に数ミクロ
ン程度の凹凸が形成された板体について、その板体の平
行度や、基準点からの距離、を測定する場合、傾き測定
と距離測定とを同時に行なうことのできる計測手段がな
かつ/ヒ。
Conventionally, inclination measurement and distance measurement have been used to measure the parallelism of a plate such as an IC chip and its surface with irregularities of several microns and the distance from a reference point. There is no measurement method that can perform both at the same time.

1−またがって、従来は、距離測定と傾き測定とは別個
の装置で、順次行なう以外に方法がなかった。
1. Conventionally, the only way to measure distance and inclination was to use separate devices and perform them sequentially.

しかし、傾き測定に従来から使用されているオーj・コ
リメータでは、被測定面が鏡面反射できることが不可欠
であるために、表面が凹凸を有する場合、精rlが低下
する。
However, in the OJ collimator conventionally used for measuring inclination, it is essential that the surface to be measured be able to reflect specularly, so if the surface has irregularities, the accuracy rl decreases.

また、距離測定は、被測定面にスボツI・ビームを照射
l−て、その反射光を集束させて位置セッサーで読取る
ことができるが、被測定面の平行度が保/ヒれていない
場合には、正しい測定ができない。
In addition, distance measurement can be performed by irradiating the surface to be measured with a sub-I beam and converging the reflected light and reading it with a position sensor, but if the parallelism of the surface to be measured is not maintained. cannot make accurate measurements.

このように、従来の距離と傾きとを別個に測定するやり
方は、実際には精度が低下するだけではなく、実用的に
も、測定の手間がかかるという欠点があった3、 本発明は、−に記の点に鑑みなされたもので、微小面積
の板体について、基準面からの距離および法線傾きを同
時に測定でき、かつ被測定面に非接触で、精度の高い距
離および傾斜角測定装置を提供することを目的と1〜て
いる。
As described above, the conventional method of measuring distance and inclination separately has the drawback that not only the accuracy actually decreases, but also the measurement is time-consuming in practical terms3. - It was developed in consideration of the points mentioned above, and it is possible to simultaneously measure the distance from the reference surface and the normal slope of a plate with a small area, and to measure the distance and slope angle with high accuracy without contacting the surface to be measured. The purpose is to provide equipment.

以下、本発明の一実施例について説明する。An embodiment of the present invention will be described below.

光源(S)は、ことえば、発光ダイオード、レーザダイ
オード、ガスレーザー等の集光性の高いビームを発生し
つるものである。
The light source (S) is, for example, a light emitting diode, a laser diode, a gas laser, or the like that generates a highly focused beam.

反射面(ltl)、(R12)は、ブ辷とえは、一方が
1Cチツプ等の被測定面であり、他方が仮想された基準
面である。
One of the reflective surfaces (ltl) and (R12) is a surface to be measured such as a 1C chip, and the other is an imaginary reference surface.

光源(S)からのビームは、反射面(R12)、(rt
+)において、例えば数10乃至数10011m1程度
のスポット径を有している、。
The beam from the light source (S) is reflected by the reflecting surface (R12), (rt
+) has a spot diameter of, for example, several tens to several tens of millimeters.

レンズ(L)は、仮想の基準面である反射面(R1)か
ら距離aの位置で、反射ビームと光軸を一致させて配置
された凸レンズであるが、2枚以りの合成光学系を用い
ることもできる。、 このレンズ(L)の焦点面には、すなわち1//ズ(L
)の焦点距離fの位置には、縦横に複数の光電変換素子
を規則的に配列してなるエリヤイメージセンサ、又はそ
れと同等の、2次元位置センサ(1)が、その中心をレ
ンズ(L)の光軸と一致させるようにして配置されてい
る。
The lens (L) is a convex lens placed at a distance a from the reflective surface (R1), which is a virtual reference surface, with its optical axis aligned with the reflected beam. It can also be used. , in the focal plane of this lens (L), that is, 1//zu (L
), an area image sensor (1) consisting of a plurality of photoelectric conversion elements regularly arranged vertically and horizontally, or a two-dimensional position sensor (1) equivalent thereto, is located at the focal length f of the lens (L). The optical axis of the lens is aligned with the optical axis of the lens.

レンズ(L)と2次元位置センサ(1)との間には、分
割用ビームスプリッタ(2)が、レンズ(L)よりす。
A splitting beam splitter (2) is provided between the lens (L) and the two-dimensional position sensor (1).

の距離に設けられ、分割された光軸上で基準反射面(R
3)が結像する面(分割スプリッタ(2)からR2の1
次元位置センサ(3)が配置されている。
The reference reflecting surface (R
3) is imaged on the surface (1 of R2 from the splitter (2)
A dimensional position sensor (3) is arranged.

この1次元位置センサ(3)は、複数の光電変換素子を
直線的に配列したリニアイメージセ/す又はそれと同等
のものであって、両セ/す(li+31は、スポット光
が照°射された位置を、感応素子の位置に応じて検知し
うるものである。
This one-dimensional position sensor (3) is a linear image cell in which a plurality of photoelectric conversion elements are linearly arranged or something equivalent thereto, and both cells (li+31) are irradiated with spot light. The position of the sensor can be detected depending on the position of the sensing element.

このように構成される本発明の装置では、1次元位置セ
ンサ(3)によって、反射面(a+)(R,2)間の距
離を、寸だ同時に、2次元位置センサ(1)によって、
反射面(R1)(R2)間の平行度を測定できる。
In the device of the present invention configured in this way, the one-dimensional position sensor (3) measures the distance between the reflecting surfaces (a+) (R, 2) at the same time, and the two-dimensional position sensor (1)
The parallelism between the reflective surfaces (R1) and (R2) can be measured.

すなわち、位置測定では、基準面をなす反射面(亀)の
スポット像が、レンズ(j)で集光されて、分割用ビー
ムスプリッタ、(2)の反射光として、1次元位置セン
サ(3)のP2位置に結像する。
That is, in position measurement, a spot image of a reflective surface (tortoise) that forms a reference surface is focused by a lens (j), and is sent to a one-dimensional position sensor (3) as reflected light from a splitting beam splitter (2). The image is formed at the P2 position.

一方、被測定面(R2)にスポット像が形成されると、
それは、同様に、レンズ(T、)、分割用ビ′−ムスプ
リツタ(2)を経て、1次元位置上/′+1−(310
P2′位置に結像さ゛れる。
On the other hand, when a spot image is formed on the surface to be measured (R2),
Similarly, it passes through the lens (T, ) and the splitting beam splitter (2), and is then transferred to the one-dimensional position /'+1-(310
The image is formed at the P2' position.

したがって、まず初めに、基準面(R1)からの光を測
って、1次元位置センサ(3)のP2位置を定めておき
、次に、被測定面(R2)を基準面(貼)の近傍に持っ
て来て光を与えると、1次元位置上ノ→t−(3)のP
2′位置に結息させることができる。
Therefore, first, measure the light from the reference surface (R1) to determine the P2 position of the one-dimensional position sensor (3), and then move the surface to be measured (R2) near the reference surface (sticker). If you bring it to the top and give it light, the one-dimensional position above → t-(3) P
It can be tied to the 2' position.

この関係を利用することにより、反射面(R+)を基準
として、被測定面の反射面(R2)との間の距離を算出
することができる。
By using this relationship, the distance between the reflective surface (R2) and the surface to be measured can be calculated using the reflective surface (R+) as a reference.

すなわち、(R1)と(n、□)の距離をd、(P2)
と(P2’)の距離をX2.光源の基準反射物(R1)
への入射角をαとし、説明の便のために、(a’+)(
R2)部を拡大して示した第2図に基づいて関係式を導
く。
In other words, the distance between (R1) and (n, □) is d, (P2)
Let the distance between and (P2') be X2. Reference reflector of light source (R1)
Let α be the angle of incidence on (a'+)(
A relational expression is derived based on FIG. 2, which shows the R2) part enlarged.

b、1〜l)2 ここで、この光学系の倍率をm (= −)とおくと、 ここで、1月、αは与えられた値であり、後述する測定
方法でθを求めるとともに、X2の距離を1次元セッサ
(3)で測定することにより、CIすなわち、基準位置
から被測定物のおかれた位置までの距離を求めることが
できる。
b, 1 to l)2 Here, if the magnification of this optical system is m (= -), then January and α are the given values, and θ is determined by the measurement method described later, By measuring the distance X2 with the one-dimensional sensor (3), CI, that is, the distance from the reference position to the position where the object to be measured is placed can be determined.

次に、傾き(θ)測定について説明する。Next, the slope (θ) measurement will be explained.

光源(S) Kより出た光線(概略の平行光線)は反射
面(R+)(R2)を経過し、レンズ(L)の焦点(す
なわちレンズ(I、)より距#Ifの位置)に配置され
た゛2次元位置センサfilに焦点を結ぶ。
The light rays (approximately parallel rays) emitted from the light source (S) K pass through the reflective surface (R+) (R2) and are placed at the focal point of the lens (L) (i.e., at a distance #If from the lens (I)). The focus is on the two-dimensional position sensor fil.

基準反射面(R,)を経過した光線による結像点を、2
次元位置センサ11)面の原点(Pi)とすれば、被測
定面である反射面(R2)からの結像点は、反射面(R
1)(R2)が平行な場合には、PIで一致し、反射面
(R2)が傾いているときには、傾斜角と傾き方向に応
じて、入力点が2次元位置セン−5(j)上で、たてよ
こにずれたP、′に生じる。7 このP1′の位置は、
反射面(R2)が第1図及び第2図に示すようにθだけ
傾いていると、レンズ(L)に入射する光線の傾きは2
θとなり、P 1P (’ =X H’−’ f ta
n 2θとなる1、故に、すθを求めることができる。
The image formation point of the ray that passed through the reference reflective surface (R,) is 2
Assuming that the origin (Pi) of the dimensional position sensor 11) surface is the imaging point from the reflective surface (R2), which is the surface to be measured, the reflective surface (R
1) When (R2) is parallel, they match at PI, and when the reflecting surface (R2) is tilted, the input point is on the two-dimensional position sensor 5 (j) depending on the tilt angle and direction. Therefore, P,' which is shifted vertically and horizontally occurs. 7 The position of this P1' is
If the reflective surface (R2) is tilted by θ as shown in Figures 1 and 2, the tilt of the light rays incident on the lens (L) is 2.
θ, P 1P (' = X H'-' f ta
1 which becomes n 2θ, therefore, Sθ can be found.

したがって、捷ず初めに、基準反射面(rt +)に光
を当て、2次元セッサー(1)の位置(PI)を定め、
次に、被測定物(R2)に光を当て、位置(P白を検知
する。
Therefore, first, shine light on the reference reflective surface (rt +), determine the position (PI) of the two-dimensional sensor (1),
Next, the object to be measured (R2) is irradiated with light and the position (P white) is detected.

このように、レンズ(L)の後方に分割用ビームスシリ
ツタ(2)を配置して、1次元位置上ノサ(3]ト2次
元位置センザ(1)とで、同時に基準面に対しての距離
と傾きを測定することができる。
In this way, the splitting beam sinter (2) is placed behind the lens (L), and the one-dimensional position sensor (3) and the two-dimensional position sensor (1) are used to simultaneously measure the position relative to the reference plane. Distance and slope can be measured.

上記実施例では、レンズ(I7)と分割用ビームス−i
 IJフッタ2)とからなる光学系によって反射ビーム
を集光し、2方向の分割ビームを得るようにしているが
、レンズ(L)を、複数枚の合成レンズ系として焦点距
離を短かくすることにより、装置寸法をコンパクトなも
のとできる。
In the above embodiment, the lens (I7) and the beam splitting i
The reflected beam is focused by an optical system consisting of an IJ footer 2) to obtain split beams in two directions, but the lens (L) can be made into a composite lens system of multiple lenses to shorten the focal length. Therefore, the device size can be made compact.

′−!た、ビーム検知手段としては、1次元位置セ/→
ノ(3)、2次元位置センす(1)ともに、連続出力の
アナログセンサ以外にも、イメージセンサなどで構成す
ることができる。
′-! In addition, as a beam detection means, one-dimensional position sensor/→
Both (3) and the two-dimensional position sensor (1) can be constructed from an image sensor or the like in addition to a continuous output analog sensor.

捷だ、センサ(1)(3)は、必ずしもそれぞれ2次元
1次元のものに限定される必要はない1、すなわち、セ
ッサ(3)l/71:2次元のものを使用し、セッサ(
1)には、被測定の反射面(R2)が、図を用いて説明
したもの ・のように、一方向にのみ傾いているという
ものであれば、1次元のものを使用してもよい。(一般
には、二方向に傾いているので2次元のセッサが必要で
ある)。
However, sensors (1) and (3) are not necessarily limited to two and one dimensional ones, respectively.
For 1), a one-dimensional surface may be used as long as the reflective surface (R2) to be measured is tilted in only one direction, as shown in the diagram. . (Generally, a two-dimensional setter is required since it is tilted in two directions).

さらに、他の実施例として、第6図に示すように、反射
面(a’+)(R2)を下方に持ってきて、反射ミラー
(M)で一旦反射させてからし/ズQ、)を通じ、その
他は、前述の説明と同じようにして、距離と傾斜度を同
時に測定することもできる。
Furthermore, as another example, as shown in FIG. Otherwise, distance and slope can be measured simultaneously in the same manner as described above.

ただし、この場合、aの距離は、基準反射面(川)から
反射ミラー(M)と、このミラー(M)からレンズ(L
)までの距1離を合せたものにしである。
However, in this case, the distance a is from the reference reflecting surface (river) to the reflecting mirror (M), and from this mirror (M) to the lens (L).
) is the sum of the distances of 1 distance.

以上述べたように、本発明によれば、基準になる反射面
(R,I)と被測定面(R2)間の平行度と、その間の
距離を、同時にかつ精度よく測定しつる。
As described above, according to the present invention, the parallelism between the reference reflecting surface (R, I) and the surface to be measured (R2) and the distance therebetween can be simultaneously and accurately measured.

したがって、被測定面として微小面積の反射面を有する
ICチップを、セラミック等の智つント用台にろうイτ
Jけする場合、本発明装置を用いることにより、充分に
高い精度が得られる。しかも、測定は、被測定面と非接
触で行なえ、装置自体も極めてコンパクトに構成できる
Therefore, an IC chip having a reflective surface of a minute area as a surface to be measured is mounted on a chip stand made of ceramic or the like.
In the case of J-keying, sufficiently high accuracy can be obtained by using the apparatus of the present invention. Moreover, the measurement can be performed without contacting the surface to be measured, and the apparatus itself can be configured extremely compactly.

半導体製造工程では、測定対象物が微小面積であること
が多く、また他6検査装置、アライメント用の顕微境、
搬送機構、固定機構などによって寸法制約が大きいので
、本発明装置による制御及び測定は、極めて大きなメリ
ットを有するものである4、
In the semiconductor manufacturing process, the object to be measured is often of a small area, and six other inspection devices, a microscopic environment for alignment,
Since there are large size restrictions due to the transport mechanism, fixing mechanism, etc., control and measurement using the device of the present invention has extremely large advantages4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す構成説明図、第2図
は、反射面(RIXI”(2)部を拡大した模式図、第
3図は、本発明の他の実施例を示す構成説明図である。 (Sl)(S2)光源     (n、+)(R2)反
射面(M)ハーフミラ−(L)レンズ (1)2次元位置セッザ   (2)分割用ビートスプ
リッタ(3)1次元位置セン」J 手続補正凋;(自発) 昭和58年4月lユ日 特許庁長官 若杉 和犬 殿 1、事件の表示 昭和58年特許願第28577号 2、発明の名称 距離および傾斜角測定装置 3、補正をする者 事件との関係  特許出願人 5、補正命令の日付   自 発 6、補正により増加する発明の数  なし73−
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, FIG. 2 is an enlarged schematic diagram of the reflective surface (RIXI" (2) part, and FIG. 3 is a diagram showing another embodiment of the present invention. (Sl) (S2) Light source (n, +) (R2) Reflective surface (M) Half mirror (L) Lens (1) Two-dimensional position sezza (2) Beat splitter for division (3) 1-Dimensional Position Sen''J Procedural Amendment; (Voluntary) April 1980 l Japan Patent Office Commissioner Kazuinu Wakasugi 1. Indication of the Case 1985 Patent Application No. 28577 2. Name of the Invention Distance and Inclination Angle Measuring device 3, relationship with the case of the person making the amendment Patent applicant 5, date of amendment order Voluntary 6, number of inventions increased by amendment None 73-

Claims (1)

【特許請求の範囲】[Claims] (1)基準面および被測定面にビームを照射する光源と
、被測定面より反射されるビ・−ムを集光するレンズと
、2方向の分割ビームを得る光学系と、分割ビームの一
方の光軸の結像位置にあって、被測定面の反射ビームと
基準面の反射ビームとの結像位置のずれを検知すること
により、基準面と被測定面の距離を測定する第1のビー
ム検知手段と、分割ビームの他方の光軸の焦点位置にあ
って、被測定面が基準面との間でなす傾斜角を検知する
第2のビーム検知手段とを具備することを特徴とする距
離および傾斜角測定装置
(1) A light source that irradiates a beam onto the reference surface and the surface to be measured, a lens that focuses the beam reflected from the surface to be measured, an optical system that obtains split beams in two directions, and one of the split beams. The distance between the reference surface and the surface to be measured is measured by detecting the deviation of the image formation position between the reflected beam from the surface to be measured and the reflected beam from the reference surface. It is characterized by comprising a beam detection means and a second beam detection means located at the focal position of the other optical axis of the split beam and detecting the inclination angle formed between the surface to be measured and the reference surface. Distance and slope measuring device
JP2857783A 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle Granted JPS59154313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2857783A JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2857783A JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Publications (2)

Publication Number Publication Date
JPS59154313A true JPS59154313A (en) 1984-09-03
JPH0139041B2 JPH0139041B2 (en) 1989-08-17

Family

ID=12252453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2857783A Granted JPS59154313A (en) 1983-02-24 1983-02-24 Apparatus for measuring distance and slanting angle

Country Status (1)

Country Link
JP (1) JPS59154313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271803A (en) * 1985-09-26 1987-04-02 Yokogawa Electric Corp Displacement transducer
JPS6275303A (en) * 1985-09-30 1987-04-07 Yokogawa Electric Corp Displacement convertor
JPH01138403A (en) * 1987-11-25 1989-05-31 Konica Corp Displacement and inclination measuring instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824647B2 (en) * 2007-08-06 2011-11-30 株式会社神戸製鋼所 Flatness measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271803A (en) * 1985-09-26 1987-04-02 Yokogawa Electric Corp Displacement transducer
JPS6275303A (en) * 1985-09-30 1987-04-07 Yokogawa Electric Corp Displacement convertor
JPH01138403A (en) * 1987-11-25 1989-05-31 Konica Corp Displacement and inclination measuring instrument

Also Published As

Publication number Publication date
JPH0139041B2 (en) 1989-08-17

Similar Documents

Publication Publication Date Title
US6879403B2 (en) Three dimensional scanning camera
US5633721A (en) Surface position detection apparatus
US7723657B2 (en) Focus detection apparatus having extended detection range
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
CN100535767C (en) Focusing leveling measuring method and device
US6721047B2 (en) Method and apparatus for inspecting defects of a specimen
TWI665444B (en) Defect inspection device and method
JP2013137295A (en) Rotational misalignment measuring device of bonded substrate, rotational misalignment measuring method of bonded substrate, and method of manufacturing bonded substrate
CN102087483B (en) Optical system for focal plane detection in projection lithography
CN101622525A (en) Observation device, inspection device and inspection method
CN101663588A (en) Distortion measurement imaging system
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
TW201211500A (en) System of 2D code detection and thickness measurement for glass substrate, and method of the same
JP2012164801A (en) Inspection apparatus and inspection method
US7649621B2 (en) Optical inclinometer
JP2015108582A (en) Three-dimensional measurement method and device
JPS61111402A (en) Position detector
JPH06167322A (en) Inspecting apparatus for stereoscopic appearance of electrode
JPS59154313A (en) Apparatus for measuring distance and slanting angle
TWI358529B (en) Shape measuring apparatus, shape measuring method,
JPS59154314A (en) Apparatus for measuring distance and slanting angle
JP2005140673A (en) Aspherical eccentricity measuring device and aspherical eccentricity measuring method
JP5240980B2 (en) Three-dimensional measuring device and inspection device
KR101507950B1 (en) apparatus for examining pattern image of semiconductor wafer
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects