JPS59153521A - Production of high squeezing type electric welded tube - Google Patents

Production of high squeezing type electric welded tube

Info

Publication number
JPS59153521A
JPS59153521A JP2779483A JP2779483A JPS59153521A JP S59153521 A JPS59153521 A JP S59153521A JP 2779483 A JP2779483 A JP 2779483A JP 2779483 A JP2779483 A JP 2779483A JP S59153521 A JPS59153521 A JP S59153521A
Authority
JP
Japan
Prior art keywords
pipes
sizing
pipe
treatment
drawing rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2779483A
Other languages
Japanese (ja)
Other versions
JPS631370B2 (en
Inventor
Hiroshi Murayama
博 村山
Yasushi Yamamoto
康士 山本
Zensaku Chano
茶野 善作
Yasuyuki Kuroda
黒田 泰行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2779483A priority Critical patent/JPS59153521A/en
Publication of JPS59153521A publication Critical patent/JPS59153521A/en
Publication of JPS631370B2 publication Critical patent/JPS631370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0807Tube treating or manipulating combined with, or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce electric welded tubes having high crushing strength inexpensively after producing pipes by sizing with a high total drawing rate, then subjecting the pipes to heat-treatment at relatively low temp. and for a short time. CONSTITUTION:Residual compressive stress in the inside of pipes generated in stages prior to the sizing stage is reduced in the process for producing electric welded tubes by sizing with >=1.0% total drawing rate for the pipes. After the drawing stage of the pipe, the pipes are heated at 100-250 deg.C and held in this temp. range for 30sec-30min to increase the yield stress of the pipes. By this treatment, the crushing strength of the pipes is remarkably improved. Necessary total drawing rate described above is at least 1.0% for the production of high squeezing steel pipe, but >=ca. 3.5% total drawing rate is undesirable because of generation of roll marks. To perform the heat treatment at higher temp. than the upper limit of the treatment or for a longer holding time than described above are also undesirable because of causing increase of cost in spite of little margin of the yield strength.

Description

【発明の詳細な説明】 この発明は圧潰強度の高い電縫鋼管乞製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electric resistance welded steel pipe having high crushing strength.

近年、ガス、オイルの油井はますます深くなる傾向にあ
り、高圧潰型油井管の要求が年々高まっている。電縫鋼
管はノームレス鋼管に比べ寸法精度が高く、細粒組織で
あるため強度も高いので高圧潰型油井管に適している。
In recent years, gas and oil wells have tended to become deeper and deeper, and the demand for high collapse type oil country tubular goods has been increasing year by year. ERW steel pipes have higher dimensional accuracy than normless steel pipes, and have a fine-grained structure that gives them higher strength, making them suitable for highly crushed oil country tubular goods.

しかし、電縫鋼管の成形、管乞定径、真円に仕」=ける
サイジングおよび管乞真直に仕上げる矯正の各工程は冷
間で行われるために、管内面に圧縮残留応力が発生する
ことを避けることはてきない。
However, since each process of forming ERW steel pipes, determining the diameter of the pipe, sizing the pipe to make it perfectly round, and straightening the pipe to make it straight, compressive residual stress is generated on the inner surface of the pipe. cannot be avoided.

この残留応力は電縫鋼管の圧潰強度を下げるように作用
する。したがって、サイジングおよび矯正工程7省けば
残留応力が低く、圧潰圧力が高くなることは以前よりよ
く知られていた。しかし、これは技術的1c現在不可能
であり、真円度乞保証するためにサイジング工程、また
真直度を保証するために矯正工程は必須である。
This residual stress acts to reduce the crushing strength of the electric resistance welded steel pipe. Therefore, it has been well known for some time that omitting the sizing and straightening steps results in lower residual stress and higher crushing pressure. However, this is technically impossible at present, and a sizing process and a straightening process are essential to ensure roundness and straightness.

」=記残留応力馨低減するには熱処理すればよいことは
従来より知られているが、熱処理によっては管の降伏応
力が低下し、これによって圧潰強度が低下するという問
題もある。
Although it has been known that heat treatment can be used to reduce residual stress, there is also the problem that heat treatment lowers the yield stress of the pipe, thereby reducing its crushing strength.

したがって、高圧潰型油井管乞得るために焼入れ、焼も
どしが可能な高級材を用い、これら熱処理7行わなけれ
ばならず、製造コストが著しく高くなる。
Therefore, in order to obtain a highly crushed OCTG, it is necessary to use high-grade materials that can be quenched and tempered, and to perform these heat treatments 7, which significantly increases manufacturing costs.

この発明は高圧潰型電縫鋼管の製造における上記のよう
な問題乞解決するためになされたもので、圧潰強度の高
い電縫鋼管を安価に製造することができる方法を提供し
ようとするものである。
This invention was made to solve the above-mentioned problems in manufacturing high-pressure crush type ERW steel pipes, and aims to provide a method for manufacturing ERW steel pipes with high crush strength at low cost. be.

この発明では管を全絞り率(全スタンド合唱の絞り率)
1.0係以上でサイジングし、造管後に管乞100〜2
50Cに加熱して30秒〜30分間保持する。
In this invention, the tube has a total squeezing rate (the squeezing rate of all stand choirs)
Sizing at 1.0 or higher, pipe size 100 to 2 after pipe making
Heat to 50C and hold for 30 seconds to 30 minutes.

上記のようにサイジングにおいて、全絞り率?従来のも
のの倍以上の10%以上とすることにより、サイジング
以前の工程で発生した管内面の圧縮残留応力を減少させ
ることができる。また、上記造管後の熱処理により管の
降伏応力2高めることができる。、これらにより管の圧
潰強度は著しく向上する。一方、上記熱処理は低温で、
かつ短時間で行われるので低コストで実施することがで
きる。
In sizing as above, is the total aperture rate? By setting it to 10% or more, which is more than twice that of the conventional one, it is possible to reduce the compressive residual stress on the inner surface of the tube that occurs in the process before sizing. In addition, the yield stress 2 of the pipe can be increased by the heat treatment after pipe forming. , these significantly improve the crushing strength of the tube. On the other hand, the above heat treatment is performed at a low temperature;
Moreover, since it is carried out in a short time, it can be carried out at low cost.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明は今までの常識とは逆にサイジング絞り率乞大
きくして残留応力の低下を図っている。
This invention, contrary to conventional wisdom, aims to reduce residual stress by increasing the sizing reduction ratio.

そして、サイジング絞り率ケ大きくすることにより発生
した加工硬化を、低温短時間熱処理によるひずみ時効に
より有効に利用したものである。
The work hardening generated by increasing the sizing drawing ratio is effectively utilized by strain aging through low-temperature, short-time heat treatment.

通常のザイジング全校り率は02〜0.6φ程度である
のに対してこの発明ではサイジング全校り率乞1.0%
以上としている。大きな絞り率でなせ残留応力が低下す
るかは明確でないが、このような絞シ率ではサイジング
時に管内面に引張応力が発生し、圧潰圧力に悪影響7及
ぼす圧縮残留応力乞減少させる働きがあるものと考えら
れる。
While the normal total sizing rate is about 02 to 0.6φ, in this invention the total sizing rate is only 1.0%.
That's all. Although it is not clear whether large drawing ratios reduce residual stress, such drawing ratios generate tensile stress on the inner surface of the pipe during sizing, which has the effect of reducing compressive residual stress, which has an adverse effect on crushing pressure. it is conceivable that.

第1図はサイジング全校り率とサイジング直後の内面圧
縮残留応力との関係を示すグラフの一例である。図中、
符号Aは従来法、また符号Bは本発明の全校シ率の範囲
2示している。図から明らかなように全絞り率が大きく
なるに従い残留応力は減少している。
FIG. 1 is an example of a graph showing the relationship between the total proofreading rate of sizing and the internal compressive residual stress immediately after sizing. In the figure,
The symbol A indicates the conventional method, and the symbol B indicates the range 2 of the total accuracy rate of the present invention. As is clear from the figure, the residual stress decreases as the total reduction ratio increases.

この発明では前述のようにザイジング全校り率乞1.0
%以上としている。下限の10%は実用土必要な圧潰強
度2得るために許容される残留応力の値から決められた
ものである。また10%は残留応力におきかえると15
kf/mTL2に相当し、この残留応力は圧潰圧力40
 kf/cm2に相当し、高圧漬鋼管の製造には少(と
も10%のサイジング全校シ率が必要である。絞シ率が
35%以」二になるとロール疵等の問題が発生しゃすく
なるため望ましくないが、残留応力の点では制限はない
In this invention, as mentioned above, the entire school rate of Zizing is 1.0.
% or more. The lower limit of 10% was determined from the value of residual stress allowed to obtain the crushing strength 2 required for practical soil. Also, if 10% is replaced with residual stress, it will be 15
This residual stress corresponds to kf/mTL2, and this residual stress has a crushing pressure of 40
kf/cm2, and a reduction ratio of at least 10% is required for the production of high-pressure soaked steel pipes.If the reduction ratio exceeds 35%, problems such as roll defects are likely to occur. However, there is no limit in terms of residual stress.

また、この発明では造管後に低温短時間の熱処理2行う
。高い絞り率によるサイジングによって材料に多数の転
位が発生するが、上記熱処理によりこの転位に固溶窒素
や固溶炭素が固着する。この結果、バウシンガ効果が消
失すると共に降伏強度が著しく止弁する。第2図は本発
明の熱処理乞実施したもの(A)と無実施のもの(B)
との応力−ひずみ線図?示している。図から明らかなよ
うに低温短時間の熱処理2施すことにより降伏強度向上
めることができる。
Further, in the present invention, a low-temperature, short-time heat treatment 2 is performed after pipe formation. A large number of dislocations are generated in the material due to sizing with a high reduction ratio, and solid solution nitrogen and solid solution carbon are fixed to these dislocations by the above heat treatment. As a result, the Baussinger effect disappears and the yield strength significantly stops. Figure 2 shows the heat treatment according to the present invention (A) and the one without heat treatment (B).
Stress-strain diagram with? It shows. As is clear from the figure, yield strength can be improved by performing heat treatment 2 at a low temperature and for a short time.

上記熱処理条件は材料の製法により左右されるのはもち
ろんであるが、サイジング全校9率により温度、時間乞
変更した方が更に効果が著しい。
The above heat treatment conditions naturally depend on the manufacturing method of the material, but the effect is even more remarkable if the temperature and time are varied depending on the overall sizing rate.

実験の結果によると全絞り率10〜35係程度の範囲で
は100〜250Cの温度範囲で30秒〜30分間保描
するのが望ましい。加熱温度が1. OOC未満あるい
は保持時間が30秒未満であると降伏強度向上の効果が
なく、また加熱温度が250′C馨越えるとあるいは保
持時間が30分乞越えると降伏強度の上昇代が小さく、
コスト高となる。
According to the results of experiments, it is desirable to hold the image in a temperature range of 100 to 250 C for 30 seconds to 30 minutes when the total aperture ratio is in the range of 10 to 35 coefficients. The heating temperature is 1. If the OOC is less than 30 seconds or the holding time is less than 30 seconds, there will be no effect of improving the yield strength, and if the heating temperature exceeds 250'C or the holding time exceeds 30 minutes, the increase in yield strength will be small.
The cost will be high.

管の加熱には通常の、たとえば誘導加熱またはガス加熱
炉が用いられる。昇温速度は10〜]、000ty=程
度である。所定温度に保持したのち管は放冷される。
Conventional heating, for example induction heating or gas heating furnaces, is used to heat the tubes. The temperature increase rate is approximately 10~], 000ty=. After maintaining the tube at a predetermined temperature, the tube is allowed to cool.

ここで、この発明の効果を示す実験例を挙げる。Here, an experimental example showing the effects of this invention will be given.

第1表は管径51/27/、肉厚0.3041tの電縫
鋼管(材料はアズロールドタイプ)2種々のサイジング
および熱処理条件により製造したものの圧潰圧力?比較
して示している。残留応力の測定はクランプトン法によ
っている。
Table 1 shows the crushing pressure of two electrically welded steel pipes (as-rolled type) with a diameter of 51/27/ and a wall thickness of 0.3041t manufactured using various sizing and heat treatment conditions. A comparison is shown. Residual stress was measured using the Crampton method.

第1表から明らかなように、この発明の方法によれば電
縫鋼管の圧潰圧力は低温短時間の熱処理7行わないもの
(比較例H)に比べて約20%以上高くなっている。
As is clear from Table 1, according to the method of the present invention, the crushing pressure of the electric resistance welded steel pipe is approximately 20% higher than that of the pipe not subjected to low-temperature, short-time heat treatment 7 (Comparative Example H).

上記熱処理は矯正に引き続きインラインで、あるいは管
を所要長さに切1所したのちオフラインで行うことがで
きる。
The above heat treatment can be performed in-line following straightening, or off-line after cutting the tube to a required length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイジング全校り率と内面圧縮残留応力との関
係の一例ケ示すグラフ、および第2図はこの発明の熱処
理の効果?示す応力−ひすみ曲線である。 特許出願人代理人 弁理士 矢 葺 知 之 (ほか1名)
Figure 1 is a graph showing an example of the relationship between total sizing proofing rate and internal compressive residual stress, and Figure 2 is a graph showing the effect of the heat treatment of this invention? 1 is a stress-strain curve shown in FIG. Patent applicant representative Patent attorney Tomoyuki Yafuki (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 管を全絞り率10%以上でサイジングし、造管後に管乞
100〜250Cに加熱して30秒〜30分間保持する
ことを特徴とする高圧潰型電縫鋼管の製造方法。
A method for producing a high-pressure crush type electric resistance welded steel pipe, which comprises sizing the pipe to a total reduction ratio of 10% or more, heating the pipe to 100 to 250C after pipe forming, and holding the pipe for 30 seconds to 30 minutes.
JP2779483A 1983-02-23 1983-02-23 Production of high squeezing type electric welded tube Granted JPS59153521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2779483A JPS59153521A (en) 1983-02-23 1983-02-23 Production of high squeezing type electric welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2779483A JPS59153521A (en) 1983-02-23 1983-02-23 Production of high squeezing type electric welded tube

Publications (2)

Publication Number Publication Date
JPS59153521A true JPS59153521A (en) 1984-09-01
JPS631370B2 JPS631370B2 (en) 1988-01-12

Family

ID=12230876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2779483A Granted JPS59153521A (en) 1983-02-23 1983-02-23 Production of high squeezing type electric welded tube

Country Status (1)

Country Link
JP (1) JPS59153521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131319A (en) * 1981-02-06 1982-08-14 Nippon Steel Corp Manufacture of high strength seam welded steel pipe for oil well
JPS59129723A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of high squeezing strength seam welded steel tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131319A (en) * 1981-02-06 1982-08-14 Nippon Steel Corp Manufacture of high strength seam welded steel pipe for oil well
JPS59129723A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of high squeezing strength seam welded steel tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance

Also Published As

Publication number Publication date
JPS631370B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
CN101805871B (en) Manufacturing method of expandable casing for oil and gas well
JPH0335362B2 (en)
CN109023120A (en) A kind of shale gas well high-intensity and high-tenacity soldering sleeve and its manufacturing method
SU1087078A3 (en) Method for making section stock from low-alloy dispersion-solidifiyng steels
JPS59153521A (en) Production of high squeezing type electric welded tube
JPH0545651B2 (en)
JPS6144122B2 (en)
JPS6144123B2 (en)
JPH07109008B2 (en) Martensitic stainless steel seamless pipe manufacturing method
JPS63255322A (en) Manufacture of seamless two-phase stainless steel tube
JPH07102321A (en) Production of non-heattreated type resistance welded oil well pipe having tensile strength of 800mpa and above
JPS59177322A (en) Production of high pressure crushing type electric welded steel pipe
JPH093545A (en) Production of large diameter welded steel tube
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPS59129728A (en) Manufacture of seam welded steel pipe with high crushing strength
JPS6024321A (en) Production of electric welded oil well steel pipe having high strength and excellent resistance to souring and crushing
JPH11172336A (en) Production of seamless steel tube
JPS59153519A (en) Manufacture of electric welded steel pipe with high squeezing strength
JPS60187663A (en) Electric welded oil well pipe having low hardness and high yield strength and its production
JPS6082613A (en) Preparation of electric welded tube for upset tubing
JPS589918A (en) Production of sulfide stress corrosion cracking resistant steel material
JPH09279245A (en) Production of chrome-molybdenum seamless steel tube excellent in high temperature strength
JPH0523736A (en) Manufacture of large diameter stainless clad square steel tube
JPH05117749A (en) Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance