JPS59129723A - Production of high squeezing strength seam welded steel tube - Google Patents

Production of high squeezing strength seam welded steel tube

Info

Publication number
JPS59129723A
JPS59129723A JP340083A JP340083A JPS59129723A JP S59129723 A JPS59129723 A JP S59129723A JP 340083 A JP340083 A JP 340083A JP 340083 A JP340083 A JP 340083A JP S59129723 A JPS59129723 A JP S59129723A
Authority
JP
Japan
Prior art keywords
tube
sizing
finished
welded steel
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP340083A
Other languages
Japanese (ja)
Other versions
JPS6142765B2 (en
Inventor
Hiroshi Murayama
博 村山
Yasushi Yamamoto
康士 山本
Zensaku Chano
茶野 善作
Yasuyuki Kuroda
黒田 泰行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP340083A priority Critical patent/JPS59129723A/en
Publication of JPS59129723A publication Critical patent/JPS59129723A/en
Publication of JPS6142765B2 publication Critical patent/JPS6142765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain an electric welded steel tube having high squeezing strength without heat treatment by sizing the tube at a prescribed total drawing rate in succession to water cooling after seam welding then setting and finishing the tube with Turk's heads. CONSTITUTION:A seam welded steel tube T is fed from the right to the left by pinch roll stands 1, 2, and th weld zone of the tube T is cooled to around room temp., in a cooler 3. The tube T is finished to a specified size by sizing stands 4-7. The sizing in this case is accomplished at 1.0-3.5% total drawing rate and at the total drawing rate in the prior art (about 0.2-0.6%) or above. More specifically, the outside diameter of the tube T is successively reduced and the tube is finished to the roundness having a prescribed outside diameter in the final stand 7. The tube T finished in the stands 4-7 is finished straightforward by Turk's heads 9, 10 whereby the intended high squeezing type electric welded steel tube is obtd.

Description

【発明の詳細な説明】 この発明に圧潰強度の高い電縫鋼管を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an electric resistance welded steel pipe with high crushing strength.

近年、ガス、オイルの油井はますます深くなる傾向にあ
り、高圧潰型油井管の要求・が年々高まっている。電縫
鋼管はシームレス鋼管に比べ寸法精度が高く、細粒組織
であるため強度も高いので高圧潰型油井管に適している
。しかし、電縫鋼管の成形、管を定径、真円に仕上げる
サイジングおよび管を真直に仕上げる矯正の各工程は冷
間で行われるために、管内面に圧縮残留応力が発生する
ことを避けることはできない。この残留応力は電縫鋼管
の圧潰強度を下げるように作用する。残留応力を低減す
るには熱処理すればよいことに従来より知られているが
、熱処理のために多大のコストを要する。また、場合に
よっては熱処理により管の降伏応力が低下し、これによ
って圧潰強度が低下するという問題もある。
In recent years, gas and oil wells have tended to become deeper and deeper, and the demand for high collapse type oil country tubular goods has been increasing year by year. ERW steel pipes have higher dimensional accuracy than seamless steel pipes, and have a fine-grained structure that gives them high strength, making them suitable for highly crushed oil country tubular goods. However, since the forming of ERW steel pipes, the sizing process to make the pipe a constant diameter and perfect circle, and the straightening process to make the pipe straight, it is necessary to avoid the generation of compressive residual stress on the inner surface of the pipe. I can't. This residual stress acts to reduce the crushing strength of the electric resistance welded steel pipe. It has been known for a long time that residual stress can be reduced by heat treatment, but heat treatment requires a large amount of cost. Further, in some cases, the yield stress of the tube decreases due to heat treatment, which causes a problem in that the crushing strength decreases.

この発明に高圧潰型電縫鋼管の製造における上記のよう
な問題を解決するためになさ′れたもので、熱処理を施
すことなく圧潰強度の高い電縫鋼管を製造することがで
きる方法を提供することである。
This invention was made to solve the above-mentioned problems in manufacturing high-pressure crush type ERW steel pipes, and provides a method for manufacturing ERW steel pipes with high crushing strength without heat treatment. It is to be.

この発明の電縫鋼管の製造方法でに、継目溶接後の水冷
に引き続き管を全絞り率(全スタンド合計の絞り率)1
.0〜3.5%でサイジングし、ついで管をタークスヘ
ッドにより矯正して仕上げる。
In the manufacturing method of the ERW steel pipe of this invention, the pipe is water-cooled after seam welding, and then the pipe is processed at a total drawing rate (the drawing rate of the total of all stands) of 1.
.. Sizing at 0-3.5% and then finishing the tube by straightening it with a Turk's head.

ここで、管を仕上けるとは矯正した管を応力除去のため
に熱処理することなく造管加工を終ることを意味してい
る。
Here, finishing the tube means finishing the tube-making process without subjecting the straightened tube to heat treatment for stress relief.

上記のようにサイジングにおいて、全絞り率を従来のも
のの倍以上の1.0〜3.5%とすることにより、サイ
ジング以前の工程で発生した管内面の圧縮残留応力を減
少させることができる。また、矯正においてタークスヘ
ッドを用いることによりほとんど残留応力を発生させる
ことなく矯正を行うことができる。したがって、残留応
力除去のための熱処理を行うことなく圧潰強度の高い電
縫鋼管を得ることができる。また、熱処理の省略によ′
 り高圧潰型電縫鋼管の製造コストを大きく低減するこ
とができる。
As mentioned above, in sizing, by setting the total reduction rate to 1.0 to 3.5%, which is more than twice that of the conventional one, it is possible to reduce the compressive residual stress on the inner surface of the tube generated in the process before sizing. Further, by using a Turk's head during straightening, straightening can be performed without generating almost any residual stress. Therefore, an electric resistance welded steel pipe with high crushing strength can be obtained without performing heat treatment to remove residual stress. Also, by omitting heat treatment,
The manufacturing cost of high crush type ERW steel pipes can be greatly reduced.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

圧潰強度を向上する[は管内面の圧縮残留応力を減少さ
せる必要があり、そのためには管を熱処理することが知
られている。し乃)シ、熱処理を行えば管の降伏強度が
低下し、これに応じて圧潰強度も低下する。
In order to improve the crushing strength, it is necessary to reduce the compressive residual stress on the inner surface of the tube, and it is known to heat-treat the tube for this purpose. However, if heat treatment is performed, the yield strength of the tube will decrease, and the crushing strength will also decrease accordingly.

そこで、この発明では造管工程時に管内面に発生する圧
縮残留応力を小さくし、熱処理を省略するようにしてい
る。
Therefore, in the present invention, the compressive residual stress generated on the inner surface of the pipe during the pipe making process is reduced, and heat treatment is omitted.

この発明でに、サイジング7において上記残留応力の低
下を図るために、今までの常識とは逆に全絞り率を著し
く太きくしている。すなわち、従来のサイジング全校り
率は0.2〜0.6%程度であるが、この発明ではこれ
の倍以上である10〜3.5襲としている。このような
大きな全絞り率でなぜ残留応力が低下する力)は明確で
ないが、大きな全絞り率でサイジングを行うと管内面に
大きな引張応力が加わり、サイジング以前の工程で発生
した圧縮残留応力が減少するものと考えられる。
In this invention, in order to reduce the residual stress in the sizing 7, contrary to conventional wisdom, the total drawing ratio is made significantly large. That is, the conventional total sizing error rate is about 0.2 to 0.6%, but in the present invention, it is set to 10 to 3.5 percent, which is more than double this. It is not clear why the residual stress decreases with such a large total drawing ratio, but when sizing is performed at a large total drawing ratio, a large tensile stress is added to the inner surface of the pipe, and the compressive residual stress generated in the process before sizing is This is expected to decrease.

第1図はザイジング全校り率とサイジング直後の内面圧
縮残留応力との関係を示すグラフの一例である。図中、
符号Aは従来法、また符号Bは本発明の全絞り率の範囲
を示している。図から明ら力1なように全絞り率が大き
くなるに従い残留応力に減少している。
FIG. 1 is an example of a graph showing the relationship between the total proofreading rate of sizing and the internal compressive residual stress immediately after sizing. In the figure,
Symbol A indicates the conventional method, and symbol B indicates the range of the total aperture ratio of the present invention. It is clear from the figure that the residual stress decreases as the total reduction ratio increases, as shown by the force 1.

この発明ではサイジング全校り率を10〜3.5係の範
囲に限定している。下限の10係に実用上必要な圧潰強
度を得るために許容される残留応力の値から決められた
ものである。また、1.0%は  ゝ残留応力におきか
えると15 K輪ノに相轟し、この残留応力は圧潰圧力
40に%dに相当し高圧演鋼管の製造[Hl、0%のサ
イジング絞り率が必要である。上限の3.5%に、第1
図から明らかなように絞り率が犬きぐなると残留応力の
減少率が小さいこと、および管VCo−ル疵が発生し易
くなることを考慮して決められたものである。
In this invention, the total sizing error rate is limited to a range of 10 to 3.5 factors. It is determined from the value of residual stress that is allowable in order to obtain the practically necessary crushing strength at the lower limit of 10. In addition, when 1.0% is replaced with residual stress, it is equivalent to 15K ring, and this residual stress is equivalent to %d in crushing pressure of 40%, which is required for the production of high-pressure steel pipes [Hl, 0% sizing reduction ratio]. is necessary. 3.5% of the upper limit, the first
As is clear from the figure, this was decided taking into consideration that when the drawing ratio is too steep, the rate of reduction in residual stress is small and that pipe VCore flaws are more likely to occur.

上記サイジングに引き続いて矯正が行われる。Straightening is performed subsequent to the above sizing.

従来、矯正は複数のつづみ形ロールを傾斜配置したロー
タリーストレートナ−により行われていた。しかし、こ
の発明ではタークスヘッドに、J:り矯正を行っている
Conventionally, straightening has been carried out using a rotary straightener having a plurality of slanted rolls. However, in this invention, J: correction is performed on the Turk's head.

ロータリーストレートナ−ではロールのオフセットおよ
びクラッシュにより管を真直に矯正するため、大きな残
留応力が発生しゃすい。一方、この発明ではタークスヘ
ッドVC,r、り管を管軸に対して直角方向に曲げて管
を真直にする。したがって、管内周方向の接線応力はほ
とんど1′生しないので、サイジング直後の残留応力を
ほとんどそのま壕保持することとなる。すなわち、内面
圧縮残留応力は矯正の前後でほとんど変らない。
In rotary straighteners, the tube is straightened by roll offset and crush, which tends to generate large residual stress. On the other hand, in the present invention, the Turkshead VC,r pipe is bent in a direction perpendicular to the pipe axis to make the pipe straight. Therefore, the tangential stress in the inner circumferential direction of the pipe hardly occurs, so that the residual stress immediately after sizing is maintained as is. In other words, the internal compressive residual stress remains almost unchanged before and after straightening.

第2図は矯正方法の違いによる残留応力の差異を示す線
図の一例である。この図η)ら明ら力)をように矯正を
ロータリーストレートナ−にまり行うと内面圧縮残留応
力は著しく(約3倍)増大する。
FIG. 2 is an example of a diagram showing differences in residual stress due to different straightening methods. As can be seen from this figure (η), when straightening is performed using a rotary straightener, the internal compressive residual stress increases significantly (approximately three times).

これに対して、タークスヘッドにより矯正を行えば残留
応力はほとんど変化しない。
On the other hand, if correction is performed using a Turk's head, the residual stress will hardly change.

つぎに、この発明の方法を、これを実施する装置と共に
更に具体的に説明する。
Next, the method of the present invention will be explained in more detail along with an apparatus for carrying out the method.

第3図は造管装置の一部を示す側面図である。FIG. 3 is a side view showing a part of the pipe making apparatus.

管T[右から左に送られる。図の右側には省略されてい
るが、アンコイラ−9成形スタンド、継目溶接機などが
配置されている。また、図の左側には走行切断機、面取
機、水圧試験機(いずfl、も図示しない)が配置され
ている。
Tube T [Sent from right to left. Although not shown on the right side of the figure, an uncoiler 9 forming stand, a seam welding machine, etc. are arranged. Further, on the left side of the figure, a traveling cutting machine, a chamfering machine, and a hydraulic testing machine (all not shown) are arranged.

図面に示すように、ピンチロールスタンド1゜2との間
に冷却装置3、サイジングスタンド4゜5.6,7、タ
ークスヘッド9,10および超音波探傷機12が順次配
列されている。
As shown in the drawing, a cooling device 3, sizing stands 4°5, 6, 7, Turk's heads 9, 10, and an ultrasonic flaw detector 12 are arranged in this order between the pinch roll stand 1°2.

ピンチロールスタンド1,2は継目が溶接された管Tに
推力を与え、管Tを右から左に送る。管Tは冷却装置3
において溶接部が室温近くまで冷却される。
The pinch roll stands 1 and 2 apply thrust to the pipe T whose joints are welded, and feed the pipe T from right to left. Pipe T is cooling device 3
The weld is cooled to near room temperature.

ついで、管’14I4台のサイジングスタンド4〜7に
より定径に仕上けられる。各サイジングスタンド4〜7
にオーバルあるいにラウンド孔型を備えた二重圧延機で
、圧延ロール8は各スタンド間で交互に直角に配列され
ている。管Tfi外径を順次圧減され、最終スタンド7
で所定の外径の真円に仕上げられる。
Next, the pipe '14I is finished to a constant diameter using four sizing stands 4 to 7. Each sizing stand 4-7
It is a double rolling mill with oval or round holes, and the rolling rolls 8 are arranged alternately at right angles between the stands. The outer diameter of the tube Tfi is sequentially reduced in pressure, and the final stand 7
It is finished into a perfect circle with a predetermined outer diameter.

サイジングスタンド4〜7で定径に仕上げられた管Tは
タークスヘッド9vl(lcより真直に仕上げ゛られる
The pipe T finished to a constant diameter on sizing stands 4 to 7 is finished straight using a Turk's head 9vl (lc).

各タージスヘッド9,10i、90度づつ間隔をおいて
配置された4個のロール■1により管外径に等しいラン
ランド孔型を形成している。そして、第2のタークスヘ
ッド10のa−ル11の位置(孔型の中心位置〕は固定
されているのに対し、第1のタークスヘッド9のロール
11の位置(孔型の中心位置)に上下および側方(図面
において紙面に直角方向)に移動し、調整可能である。
Each Targis head 9, 10i and four rolls 1 spaced apart by 90 degrees form a runland hole shape equal to the outside diameter of the tube. The position of the roll 11 of the second Turk's head 10 (center position of the groove) is fixed, whereas the position of the roll 11 of the first Turk's head 9 (center position of the groove) is fixed. It can be moved and adjusted vertically and laterally (perpendicular to the plane of the paper in the drawing).

成形装置(図示しない)、サイジングスタンド4〜7が
一旦設備されると、最終サイジングスタンド7の出側に
おける管Tの曲りの方向および大きさは決まってし1つ
。この曲りを打消すようにタークスヘッド9,10によ
り管TVr−曲げを加えるようにすれは管Tを真直に仕
上げることができる。
Once the forming apparatus (not shown) and the sizing stands 4 to 7 are installed, the direction and magnitude of the bend of the tube T at the exit side of the final sizing stand 7 are fixed. By applying bending to the tube TVr by the Turk's heads 9 and 10 to cancel out this bending, the tube T can be finished straight.

所要の曲げの方向および大きさはタークスヘッド9.1
0間の相対位置を調整することによって得られる。
The direction and magnitude of the required bending is as per Turkshead 9.1.
It is obtained by adjusting the relative position between 0 and 0.

ここで、この発明の効果を示す実験例を挙げる。Here, an experimental example showing the effects of this invention will be given.

第1表は管径s )/2II、内厚0.’304“の電
縫鋼管を種々のサイジングおよび矯正条件vCxり製造
したものの圧潰圧力を比較して示している。
Table 1 shows the pipe diameter s)/2II, inner thickness 0. The figure shows a comparison of the crushing pressures of '304'' electric resistance welded steel pipes manufactured under various sizing and straightening conditions vCx.

サイジングおよび矯正条件の相違に限っていえば、少く
とも本発明でに圧潰圧力が10%上昇している。(試料
AとFとの比較)従来法では熱処理が行われるので、圧
潰圧力は530〜590 K9/crl程度である。
As far as differences in sizing and straightening conditions are concerned, the crushing pressure is increased by at least 10% in the present invention. (Comparison of Samples A and F) Since heat treatment is performed in the conventional method, the crushing pressure is about 530 to 590 K9/crl.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイジング全校り率と内面圧縮残留応力との関
係の一例を示すグラフ、第2図は矯正方式と内面圧縮残
留応力との関係の一例を示す線図、および第3図にこの
発明の方法を実施する装置の概略側面図である。 1.2・・・ピンチロール、3・・・冷却装置、4〜7
・・・サイジングスタンド、9.10・−・タークスヘ
ッド、T・・・管。 特許出願人 代理人 弁理士 矢 葺 知 之 。 (は力)1名) 第1 図 磐ンノ2゛金系交゛j−率(’A) ;イ°S 2は1
Fig. 1 is a graph showing an example of the relationship between the total sizing proofing rate and internal compressive residual stress, Fig. 2 is a diagram showing an example of the relationship between the straightening method and internal compressive residual stress, and Fig. 3 is a graph showing an example of the relationship between the correction method and internal compressive residual stress. 1 is a schematic side view of an apparatus for carrying out the method; FIG. 1.2...Pinch roll, 3...Cooling device, 4-7
...Sizing stand, 9.10...Turks head, T...tube. Patent applicant and patent attorney Tomoyuki Yafuki. (is force) 1 person) Figure 1 Iwano 2゛Metal exchange rate ('A); ゛S 2 is 1

Claims (1)

【特許請求の範囲】[Claims] 電縫鋼管の製造において、継目溶接後の水冷に引き続き
管を全絞り率1.0〜3.5%でサイジングし、ついで
管をタークスヘッドにより矯正して仕上(けることを特
徴とする高圧潰型電縫鋼管の製造方法。
In the production of ERW steel pipes, the pipe is water-cooled after seam welding, and then the pipe is sized with a total reduction rate of 1.0 to 3.5%, and then the pipe is straightened and finished using a Turk's head. Manufacturing method of type ERW steel pipe.
JP340083A 1983-01-14 1983-01-14 Production of high squeezing strength seam welded steel tube Granted JPS59129723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP340083A JPS59129723A (en) 1983-01-14 1983-01-14 Production of high squeezing strength seam welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP340083A JPS59129723A (en) 1983-01-14 1983-01-14 Production of high squeezing strength seam welded steel tube

Publications (2)

Publication Number Publication Date
JPS59129723A true JPS59129723A (en) 1984-07-26
JPS6142765B2 JPS6142765B2 (en) 1986-09-24

Family

ID=11556318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP340083A Granted JPS59129723A (en) 1983-01-14 1983-01-14 Production of high squeezing strength seam welded steel tube

Country Status (1)

Country Link
JP (1) JPS59129723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153521A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high squeezing type electric welded tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153521A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high squeezing type electric welded tube
JPS631370B2 (en) * 1983-02-23 1988-01-12 Nippon Steel Corp

Also Published As

Publication number Publication date
JPS6142765B2 (en) 1986-09-24

Similar Documents

Publication Publication Date Title
CN106541253A (en) A kind of production technology of steel pipe
US7934304B2 (en) Method of manufacturing lined tubing
CN106238500A (en) A kind of production technology rolling monolithic finned tube seamless steel pipe
US4260096A (en) Method for reduction and sizing of welded pipes and mill for effecting same
JPS59129723A (en) Production of high squeezing strength seam welded steel tube
JP3004875B2 (en) Elongator rolling method
JPH01245914A (en) Manufacture of metallic pipe excellent in out-of-roundness of outer diameter
JPS603995A (en) Production of large-diameter welded steel pipe
JPS6199503A (en) Manufacture of seamless steel pipe having large diameter
JP2852314B2 (en) Method for manufacturing large-diameter rectangular steel pipe for improving corner R member quality
US2044491A (en) Manufacture of pipe or tubing
JP3470686B2 (en) Rolling method of seamless steel pipe
SU893280A1 (en) Tube production method
RU2791999C1 (en) Method for manufacturing longitudinally electric-welded pipe of large diameter
JPS61115685A (en) Manufacture of seam welded steel tube
RU2084300C1 (en) Line for making precise tubes
JPH1058013A (en) Manufacture of small diameter seamless metallic tube
SU1274890A1 (en) Method of producing straight-seam pipes
JPH06304647A (en) Manufacture of electric resistance welded pipe having satisfactory dimensional accuracy
RU2288052C2 (en) Method for producing conversion tube blank for rolling cold rolled tubes of large- and mean-diameters of titanium base alloys
JPH1080715A (en) Production of steel tube used as it is cold rolled
JP2001300659A (en) Tube expanding method for tube material
JPS62124031A (en) Production of welded pipe
JPS5896820A (en) Production of stainless steel welded pipe
JPH0128645B2 (en)