JPH05117749A - Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance - Google Patents

Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance

Info

Publication number
JPH05117749A
JPH05117749A JP30846691A JP30846691A JPH05117749A JP H05117749 A JPH05117749 A JP H05117749A JP 30846691 A JP30846691 A JP 30846691A JP 30846691 A JP30846691 A JP 30846691A JP H05117749 A JPH05117749 A JP H05117749A
Authority
JP
Japan
Prior art keywords
cooling
corrosion cracking
stainless steel
cracking resistance
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30846691A
Other languages
Japanese (ja)
Inventor
Tetsuo Shimizu
哲雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30846691A priority Critical patent/JPH05117749A/en
Publication of JPH05117749A publication Critical patent/JPH05117749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the martensitic stainless steel seamless pipe having excel lent low-temp. toughness and stress corrosion cracking resistance by Mannes mann process. CONSTITUTION:The reduction ratio expressed by a reduction of area in a 600 to 1000 deg.C temp. range is given in a 13 to 90% range and the steel is cooled at 2 to 30 deg.C/sec cooling rate in a temp. range down to 400 to 500 deg.C right after the end of the final hot finish rolling to form the martensitic structure; thereafter, the steel is subjected to a tempering treatment in the final hot finish rolling stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温靱性および耐応力
腐食割れ性に優れたマルテンサイト系ステンレス継目無
鋼管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a martensitic stainless seamless steel pipe having excellent low temperature toughness and stress corrosion cracking resistance.

【0002】[0002]

【従来の技術】SUS420鋼種で代表されるマルテン
サイト系ステンレス鋼は、CO2 を含む腐食環境下で優
れた耐食性を示すことから、油井管等の材料として多用
されている。従来から、鉄鋼材料の靱性を劣化させずに
高強度を得る方法として、焼入れ、焼き戻し処理が広く
利用されている。この方法は、熱間圧延または鍛造によ
って成形され冷却中にオ−ステナイト・フェライト変態
を生じて主としてフェライト・パ−ライト組織からなる
材料を再び変態を生じて全てがオ−ステナイトとなる温
度域まで再加熱し、次に、この温度域からフェライト・
パ−ライトおよびベイナイト変態がほとんど生じない速
度で冷却することにより、その大部分をマルテンサイト
からなる組織とする。最後にオ−ステナイト変態を生ず
ることのない温度領域(Ac1 点以下)に加熱してマル
テンサイト中に存在している多数の転位を消失させると
ともに多量に固溶しているCを微細炭化物として析出さ
せる工程からなる。
2. Description of the Related Art Martensitic stainless steel represented by SUS420 steel type is widely used as a material for oil country tubular goods and the like because it exhibits excellent corrosion resistance in a corrosive environment containing CO 2 . Conventionally, quenching and tempering treatments have been widely used as a method for obtaining high strength without deteriorating the toughness of steel materials. In this method, austenite-ferrite transformation occurs during cooling that is formed by hot rolling or forging, and a material mainly composed of ferrite-pearlite structure is transformed again to a temperature range where all are austenite. Reheat, then ferrite from this temperature range
By cooling at a rate at which pearlite and bainite transformation hardly occur, the structure is made of martensite for the most part. Finally, by heating to a temperature range where Ac-ustenite transformation does not occur (Ac 1 point or less), many dislocations existing in martensite are eliminated and a large amount of solid-soluted C is used as a fine carbide. It consists of a precipitation step.

【0003】しかし、SUS420鋼種で代表されるマ
ルテンサイト系ステンレス鋼は、フェライト・パ−ライ
ト変態が起こりにくいため、オ−ステナイト化加熱後の
空冷によって全てがマルテンサイト組織となる。そのた
め、従来は圧延加工終了後にオ−ステナイト化温度まで
加熱し、空冷によって室温まで冷却後、再びAc1 点以
下の温度まで加熱して焼き戻しをする熱処理が実施され
ていた。近年になってアラスカや北海地区等の寒冷地域
での石油や天然ガス開発が活発になりつつあり、これら
の油井用鋼管には耐食性に優れたマルテンサイト系ステ
ンレス鋼管で、高強度の、例えば降伏応力67kg/m
2 以上でありながら、厳しい低温靱性、例えばシャル
ピ−試験の−40℃での吸収エネルギ−(以下vE-40
と略す)が4kg・m以上が要求されている。しかしな
がら従来の熱処理法では、これら高強度材ではvE-40
が1kg・m未満しか満足できなかったため、これらの
厳しい低温靱性に対する要求をみたすことはできなかっ
た。
However, since the martensitic stainless steel represented by the SUS420 steel type is less likely to undergo ferrite-pearlite transformation, the martensitic structure is entirely formed by air cooling after the austenitizing heating. For this reason, conventionally, a heat treatment has been performed in which after the rolling process is finished, the temperature is raised to the austenitizing temperature, cooled to room temperature by air cooling, and then again heated to a temperature of Ac 1 point or lower to temper. In recent years, the development of oil and natural gas in cold regions such as Alaska and the North Sea region has become active.These steel pipes for oil wells are martensitic stainless steel pipes with excellent corrosion resistance. Stress 67kg / m
m 2 or more, but severe low temperature toughness, for example, absorbed energy at −40 ° C. in Charpy test − (hereinafter vE −40
Abbreviated) is required to be 4 kg · m or more. However, with the conventional heat treatment method, vE- 40
Was less than 1 kg · m, it was not possible to meet these strict requirements for low temperature toughness.

【0004】一方、オ−ステナイト化後の冷却過程での
粗大な炭化物の析出を冷却速度を大きくして抑制すれ
ば、靱性が向上することがしられている。この種の鋼に
オ−ステナイト化後の冷却過程で水冷による強冷却を施
すと、マルテンサイト変態時の内部応力によって割れを
生ずるため、例えば特開平3−75308号公報にはマ
ルテンサイト変態開始温度までは強冷却、その後は空冷
以上とすることによって焼き割れを回避し、かつ、棒状
の粗大な炭化物の析出を抑制して靱性と耐応力腐食割れ
性を向上する方法が開示されている。しかし、この方法
では、従来法よりも靱性は向上するもののvE-40 が3
kg・m程度のものしか得られず、依然として前記の要
求を満たすことはできなかった。
On the other hand, it is known that toughness can be improved by increasing the cooling rate to suppress the precipitation of coarse carbides in the cooling process after austenitization. When this type of steel is subjected to strong cooling by water cooling in the cooling process after austenitizing, cracks are generated due to internal stress during the martensitic transformation, and therefore, for example, JP-A-3-75308 discloses a martensitic transformation starting temperature. It is disclosed a method of avoiding quench cracking and suppressing precipitation of coarse rod-shaped carbides to improve toughness and stress corrosion cracking resistance by performing strong cooling up to and then air cooling. However, this method improves the toughness more than the conventional method, but vE- 40 is 3
Only those of about kg · m were obtained, and the above requirements could not be satisfied.

【0005】発明者は、完全にオ−ステナイト化された
状態からの冷却途中における低温オ−ステナイト域でフ
ェライト・パ−ライト変態が生じない時間内にある一定
量以上の加工を与えて室温まで冷却して全部の組織をマ
ルテンサイトとした後、Ac 1 点以下の温度範囲で適正
な焼き戻し処理を施すことによって、前述の通常熱処理
材およびオ−ステナイト化後の強冷却熱処理材と比較し
て、焼き戻し軟化抵抗が大きくなり、同時に焼き戻し時
に析出する炭化物が著しく微細になり低温靱性と耐応力
腐食割れ性を改善し得ることを見いだした。
The inventor has found that it is completely austenitized.
In the low temperature austenite region during cooling from the state.
Cerato-pearlite transformation within a certain period of time that does not occur
Give more than the amount of processing, cool to room temperature, and
After making rutensite, Ac 1Suitable in the temperature range below the point
The normal heat treatment described above
In comparison with the material and the heat-treated material with strong cooling after austenitization,
, The tempering softening resistance increases, and at the same time during tempering
The carbides precipitated in the steel become extremely fine and the low temperature toughness and stress resistance
It was found that the corrosion cracking property can be improved.

【0006】すなわち、特開昭63−238217号公
報に開示されているように、最終熱間仕上げ工程におい
て650〜1000℃の温度範囲で断面減少率を13〜
90%とする加工を与え、室温まで冷却してマルテンサ
イト組織とした後、T(20+logt)(但しT:゜
K、t:時間)で定義される焼き戻しパラメ−タを20
500〜21600の範囲とする焼き戻し処理を施すこ
とを特徴とする方法を提案した。本方法によれば、最終
熱間仕上げ加工工程での断面減少率が60%程度であれ
ばvE-40 が20kg・m程度と低温靱性が著しく改善
されるものの、低温オ−ステナイト域での加工量が少な
いと靱性改善効果が少なく、例えば断面減少率が20%
程度であるとvE-40 が3kg・m程度までしか改善さ
れず、一部の製品サイズでは前記の要求を満たすことが
できないという問題点があった。
That is, as disclosed in Japanese Patent Laid-Open No. 63-238217, in the final hot finishing step, the cross-section reduction rate is 13 to 30 in the temperature range of 650 to 1000.degree.
After processing to 90% and cooling to room temperature to obtain a martensitic structure, a tempering parameter defined by T (20 + logt) (however, T: ° K, t: hour) is set to 20.
A method characterized by performing a tempering treatment in the range of 500 to 21600 was proposed. According to this method, if the cross-sectional reduction rate in the final hot finishing step is about 60%, vE- 40 is about 20 kg · m and the low temperature toughness is remarkably improved, but processing in the low temperature austenite region is performed. If the amount is small, the toughness improving effect is small, and for example, the area reduction rate is 20%.
However, there is a problem that vE- 40 is improved only up to about 3 kg · m, and the above requirement cannot be satisfied with some product sizes.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上のよう
な問題点を解決するためになされたもので、マンネスマ
ン方式による継目無鋼管の製造において、最終熱間仕上
げ加工工程における低温オ−ステナイト域での加工量が
少なくても、低温靱性および耐応力腐食割れ性の著しく
優れたマルテンサイト系ステンレス継目無鋼管の製造方
法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and in the production of seamless steel pipe by the Mannesmann method, low temperature austenite in the final hot finishing step. An object of the present invention is to provide a method for producing a martensitic stainless seamless steel pipe having excellent low-temperature toughness and stress corrosion cracking resistance, even if the amount of work in the region is small.

【0008】[0008]

【課題を解決するための手段】本発明者は、マルテンサ
イト系ステンレス鋼の低温オ−ステナイト域での加工量
および冷却速度と低温靱性との関係を詳細に検討した結
果、以下のような知見を得た。すなわち、 部分的な
再結晶による混粒が存在した場合、 歪みが残留した
粒界へ冷却過程で粗大炭化物が析出した場合、には低加
工材で低温靱性の改善効果が減少することを確認したの
である。さらに最終熱間仕上げ加工工程直後から所定の
温度範囲までを所定範囲の冷却速度を維持することによ
り、これら部分的な再結晶および粒界への粗大炭化物の
析出を抑制し得ることを見いだし、この知見にもとずい
て本発明をなすに至った。
Means for Solving the Problems As a result of a detailed study on the relationship between the low temperature toughness and the working amount and cooling rate of martensitic stainless steel in the low temperature austenite region, the present inventors have found the following findings. Got In other words, it was confirmed that in the presence of mixed grains due to partial recrystallization, and in the case where coarse carbides were precipitated in the grain boundaries where strain remained in the cooling process, the effect of improving low temperature toughness was reduced in low workability materials. Of. Further, it has been found that by maintaining a cooling rate within a predetermined range from immediately after the final hot finishing step to a predetermined temperature range, it is possible to suppress partial recrystallization and precipitation of coarse carbides at grain boundaries. The present invention has been completed based on the findings.

【0009】すなわち本発明は、最終熱間仕上げ圧延工
程において650〜1000℃の温度範囲で、断面減少
率で表される加工量を13〜90%の範囲で与え、最終
熱間仕上げ圧延工程の終了直後から400〜500℃ま
での温度範囲を2〜30℃/secの冷却速度で冷却し
てマルテンサイト組織とした後、焼き戻し処理をするこ
とを特徴とするマンネスマン方式による低温靱性および
耐応力腐食割れ性に優れたマルテンサイト系ステンレス
継目無鋼管の製造方法である。
That is, according to the present invention, in the final hot finish rolling step, the processing amount represented by the cross-section reduction rate is given in the range of 650 to 1000 ° C. in the range of 13 to 90%. Immediately after completion, the temperature range from 400 to 500 ° C. is cooled at a cooling rate of 2 to 30 ° C./sec to form a martensite structure, and then tempered, which is characterized by low temperature toughness and stress resistance by a Mannesmann method. This is a method for producing a martensitic stainless steel pipe having excellent corrosion cracking resistance.

【0010】[0010]

【作用】以下本発明における加工条件、冷却条件等の限
定理由についてその作用とともに詳細に説明する。 (最終熱間仕上げ圧延条件)最終熱間仕上げ圧延工程の
温度を650〜1000℃の範囲としたのは以下の理由
による。最終熱間仕上げ圧延工程の温度が1000℃を超え
るときには加工後速やかに再結晶を生じ、圧延終了後に
歪みが残留せず、最終製品の熱処理による低温靱性の改
善効果が全く得られないからであり、650℃未満の時
には材料の変形抵抗が高くなりすぎ、圧延工具の著しい
損傷が生じるからである。
The reasons for limiting the processing conditions, cooling conditions and the like in the present invention will be described in detail below along with their effects. (Final hot finish rolling condition) The temperature of the final hot finish rolling step was set in the range of 650 to 1000 ° C for the following reason. This is because when the temperature of the final hot finish rolling process exceeds 1000 ° C, recrystallization occurs promptly after processing, no strain remains after the end of rolling, and the effect of improving the low temperature toughness by heat treatment of the final product cannot be obtained at all. When the temperature is lower than 650 ° C., the deformation resistance of the material becomes too high and the rolling tool is significantly damaged.

【0011】最終熱間仕上げ圧延工程における加工量と
して断面減少率を13%以上、90%以下としたのは以下の
理由による。断面減少率が13%未満の場合には、低温オ
ーステナイト域での加工の効果がなく、焼き戻し軟化抵
抗の増大、焼き戻し時に析出する炭化物の著しい微細化
が期待できず、低温靱性と耐応力腐食割れ性の改善がで
きない。一方、断面減少率が90%を超える時には、加工
量が多いこと及び圧延中の温度低下により圧延に要する
動力が著しく増大して圧延が困難になるとともに、圧延
工具の損耗が著しくなるためである。ここで、加工量
は、加工前の鋼管の断面積をA0 、加工後の鋼管の断面
積をAとしたときの断面減少率であり、次式で表され
る。 加工量=〔(A0 −A)/A0 〕×100%
The reason why the area reduction rate is set to 13% or more and 90% or less as the processing amount in the final hot finish rolling step is as follows. When the cross-sectional reduction rate is less than 13%, there is no effect of working in the low temperature austenite region, it is not possible to expect an increase in temper softening resistance, and significant refinement of carbides that precipitate during tempering, and low temperature toughness and stress resistance Corrosion cracking cannot be improved. On the other hand, when the cross-section reduction rate exceeds 90%, the amount of processing is large and the temperature decrease during rolling significantly increases the power required for rolling, making it difficult to perform rolling, and causing significant wear of the rolling tool. .. Here, the working amount is a cross-sectional reduction rate when the cross-sectional area of the steel pipe before working is A 0 and the cross-sectional area of the steel pipe after working is A, and is expressed by the following equation. Processing amount = [(A 0 −A) / A 0 ] × 100%

【0012】(冷却条件)最終熱間仕上げ圧延工程の終
了直後から400 〜500 ℃までを急冷却するとしたのは以
下の理由による。冷却開始を最終熱間仕上げ圧延工程の
終了直後としたのは、冷却開始までに時間があると部分
的な再結晶及び粗大化した炭化物の析出を開始するから
である。一方、冷却終了温度を400 〜500 ℃としたの
は、400 ℃を下回ると部分的な再結晶、および粒界への
炭化物の析出は起きなくなり、低温靱性の劣化防止効果
に寄与しないだけでなく、マルテンサイト変態が開始す
るため冷却速度が速いと変態応力により割れを生じ、50
0 ℃を上回ると冷却停止後に部分的な再結晶、および粒
界への炭化物の析出が発生し、低温靱性が劣化するから
である。
(Cooling conditions) The reason why the material is rapidly cooled to 400 to 500 ° C. immediately after the final hot finish rolling step is finished is as follows. The reason why the cooling was started immediately after the end of the final hot finish rolling step is that if there is a time before the start of cooling, partial recrystallization and precipitation of coarsened carbide will start. On the other hand, the cooling end temperature was set to 400 to 500 ° C because if it is lower than 400 ° C, partial recrystallization and precipitation of carbides at grain boundaries do not occur, which not only contributes to the effect of preventing deterioration of low temperature toughness. , The martensite transformation starts, so if the cooling rate is high, cracking occurs due to transformation stress.
This is because if the temperature exceeds 0 ° C., partial recrystallization and precipitation of carbides at grain boundaries occur after cooling is stopped, and the low temperature toughness deteriorates.

【0013】冷却速度を2 〜30℃/secと規定したのは以
下の理由による。表1に示す成分の素材を用いてマンネ
スマン−マンドレルミル方式により表2に示す圧延条件
No.1とNo.2で最終熱間仕上げ圧延を行なった
後、圧延終了直後から種々の冷却速度で400℃まで冷
却した。その後、YSが 63kg/mm2 程度になるように、
750 ℃にて60分保持する焼き戻し処理をし、製品よりL
方向フルサイズシャルピー試験片を採取し、vE-40
調査した。比較のため、表2に示す圧延条件No.2で
圧延をした後、室温まで通常の空冷をし、再び1000℃に
30分保持した後、種々の冷却速度で400 ℃まで冷却
し、同じくYSが 63kg/mm2 程度になるように 690℃に
て60分保持する焼き戻し処理を実施し、(圧延条件
3)L方向フルサイズシャルピー試験によるvE-40
調査した。
The cooling rate is defined as 2 to 30 ° C./sec for the following reason. Using the materials of the components shown in Table 1, the rolling condition No. 1 shown in Table 2 was obtained by the Mannesmann-mandrel mill method. 1 and No. After the final hot finish rolling in No. 2, immediately after the completion of rolling, it was cooled to 400 ° C. at various cooling rates. After that, adjust YS to 63kg / mm 2 .
After tempering at 750 ° C for 60 minutes, L
Oriented full size Charpy specimens were taken and investigated for vE- 40 . For comparison, rolling condition Nos. Shown in Table 2 are used. After rolling at 2, then normal air cooling to room temperature, holding again at 1000 ° C for 30 minutes, and then cooling to 400 ° C at various cooling rates, again at 690 ° C so that YS is about 63 kg / mm 2. Then, a tempering treatment of holding for 60 minutes was carried out (rolling condition 3), and vE- 40 was investigated by an L-direction full size Charpy test.

【0014】仕上げ圧延後、および焼入れ熱処理後の冷
却速度とvE-40との関係を図1に示す。この調査によ
れば、仕上げ圧延時の断面減少率が小さくても、仕上げ
圧延直後から400 ℃までの冷却速度が 2℃/sec以上であ
れば、vE-40 は10kg・m以上となることが分か
る。これは、冷却速度が 2℃/sec未満では部分的な再結
晶が発生して混粒となり、さらに歪みが残留した粒界へ
粗大化した炭化物が析出するため、仕上げ圧延時の加工
量が少ないときには、加工熱処理の効果よりも、これら
混粒、および粒界への粗大炭化物の析出による低温靱性
の劣化が大きくなるためである。したがって、冷却速度
の下限は 2℃/secとする。一方 30 ℃/secを超えると部
分的な再結晶の防止と、粒界への粗大化した炭化物の析
出抑制効果が飽和し、かえって冷却時の温度制御が困難
となり、鋼管の内外面で温度むらを生じるため上限を 3
0 ℃/secとする。
The relationship between the cooling rate and vE- 40 after finish rolling and after quenching heat treatment is shown in FIG. According to this investigation, even if the cross-section reduction rate during finish rolling is small, vE- 40 can be 10 kg · m or more if the cooling rate from immediately after finish rolling to 400 ° C is 2 ° C / sec or more. I understand. This is because when the cooling rate is less than 2 ° C / sec, partial recrystallization occurs to form mixed grains, and coarse carbides precipitate at grain boundaries where strain remains, so the amount of work during finish rolling is small. This is because the deterioration of the low temperature toughness due to precipitation of these mixed grains and coarse carbides at grain boundaries becomes larger than the effect of thermomechanical treatment. Therefore, the lower limit of the cooling rate is 2 ℃ / sec. On the other hand, if it exceeds 30 ° C / sec, partial recrystallization is prevented and the effect of suppressing the precipitation of coarse carbides at the grain boundaries is saturated, rather temperature control during cooling becomes difficult, and temperature unevenness on the inner and outer surfaces of the steel pipe becomes difficult. Upper limit is 3 because
0 ° C / sec.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【実施例】表1に示す組成の外径175mmの素材ビレ
ットを1200℃に加熱後、マンネスマンピアサーにて中空
素管に穿孔圧延、マンドレルミルにより延伸圧延を実施
し、表3に示す条件で再加熱後、ストレッチレデューサ
ーにて種々の製品サイズに仕上げ圧延を行なった。圧延
後の冷却は、ミスト水冷および通常の空冷で行ない、冷
却速度の変更はミスト水量の制御により行なった。圧延
後の管をYSが 63kg/mm2 程度になるように650 〜800
℃の温度範囲で焼き戻し熱処理を実施し、-40 ℃でのL
方向フルサイズシャルピー試験による吸収エネルギー、
および NACE-TM0177-90 に規定される Method B(NACE s
tandard bent beam test)SSC試験による Sc 値を求め
た。
EXAMPLE A material billet having an outer diameter of 175 mm having the composition shown in Table 1 was heated to 1200 ° C., then hollow hollow pipes were perforated and rolled by a Mannesmann piercer, and stretched and rolled by a mandrel mill. After heating, finish rolling was performed with a stretch reducer into various product sizes. Cooling after rolling was performed by mist water cooling and normal air cooling, and the cooling rate was changed by controlling the amount of mist water. 650-800 so that YS of rolled tube is about 63kg / mm 2.
After tempering heat treatment in the temperature range of ℃, L at -40 ℃
Energy absorbed by directional full size Charpy test,
And NACE-TM0177-90 Method B (NACE s
Sc value by SSC test was calculated.

【0019】熱間圧延、熱処理等の条件が本発明の条件
の範囲外である比較例1(鋼種番号10〜15)では、
いずれもvE-40 が低い値であるか、あるいは焼き割れ
発生等のトラブルを生じ、目的とする低温靱性および耐
応力腐食割れ性の向上は達成できなかった。なお、表3
で(* )を付した数値は、本発明の加工および熱処理条
件の範囲外のものである。また、従来法による通常の仕
上げ圧延後、1000℃に加熱した後に 30 分保持し、空冷
によって室温まで冷却後、焼き戻し処理をする比較例2
(鋼種番号16〜20)と比べても、本発明法による実
施例の方が低温靱性及び耐応力腐食割れ性が著しく向上
していることが明らかである。
In Comparative Example 1 (steel grade numbers 10 to 15) in which the conditions such as hot rolling and heat treatment are out of the range of the present invention,
In either case, vE- 40 was a low value, or troubles such as occurrence of quench cracking occurred, and the intended improvements in low temperature toughness and stress corrosion cracking resistance could not be achieved. Table 3
The numerical value marked with ( * ) is outside the range of the processing and heat treatment conditions of the present invention. In addition, Comparative Example 2 in which after the usual finish rolling by the conventional method, after heating to 1000 ° C., holding for 30 minutes, cooling to room temperature by air cooling, and tempering treatment
It is clear that the low temperature toughness and the stress corrosion cracking resistance are remarkably improved in the examples according to the method of the present invention as compared with (Steel type Nos. 16 to 20).

【0020】[0020]

【発明の効果】以上のように、本発明によればマルテン
サイト系ステンレス継目無鋼管の低温靱性と耐応力腐食
割れ性を著しく向上させることができる。
As described above, according to the present invention, the low temperature toughness and the stress corrosion cracking resistance of the martensitic stainless seamless steel pipe can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例、比較例1および比較例2における焼き
入れ熱処理後の冷却速度と−40℃におけるシャルピ−
衝撃試験の吸収エネルギ−との関係を示すグラフであ
る。
FIG. 1 is a cooling rate after quenching heat treatment in Examples, Comparative Examples 1 and 2, and Charpy at −40 ° C.
It is a graph which shows the relationship with the absorbed energy of an impact test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最終熱間仕上げ圧延工程において650
〜1000℃の温度範囲で、断面減少率で表される加工
量を13〜90%の範囲で与え、最終熱間仕上げ圧延工
程の終了直後から400〜500℃までの温度範囲を2
〜30℃/secの冷却速度で冷却してマルテンサイト
組織とした後、焼き戻し処理をすることを特徴とするマ
ンネスマン方式による低温靱性および耐応力腐食割れ性
に優れたマルテンサイト系ステンレス継目無鋼管の製造
方法。
1. A final hot finish rolling step of 650
In the temperature range of 1000 ° C to 1000 ° C, the processing amount represented by the cross-section reduction rate is given in the range of 13% to 90%, and the temperature range from 400 to 500 ° C immediately after the end of the final hot finish rolling step is 2
A martensitic stainless steel seamless pipe excellent in low-temperature toughness and stress corrosion cracking resistance by the Mannesmann method, characterized by performing a tempering treatment after cooling to a martensitic structure at a cooling rate of -30 ° C / sec Manufacturing method.
JP30846691A 1991-10-28 1991-10-28 Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance Pending JPH05117749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30846691A JPH05117749A (en) 1991-10-28 1991-10-28 Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30846691A JPH05117749A (en) 1991-10-28 1991-10-28 Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPH05117749A true JPH05117749A (en) 1993-05-14

Family

ID=17981365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30846691A Pending JPH05117749A (en) 1991-10-28 1991-10-28 Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH05117749A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811698A1 (en) * 1996-06-05 1997-12-10 Sumitomo Metal Industries, Ltd. Method of cooling a steel pipe
JP2002348610A (en) * 2001-05-22 2002-12-04 Sumitomo Metal Ind Ltd Method for manufacturing martensitic stainless steel tube
US9194413B2 (en) 2008-09-22 2015-11-24 Robert Bosch Gmbh Fixing device and method for fixing in an opening in a wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811698A1 (en) * 1996-06-05 1997-12-10 Sumitomo Metal Industries, Ltd. Method of cooling a steel pipe
JP2002348610A (en) * 2001-05-22 2002-12-04 Sumitomo Metal Ind Ltd Method for manufacturing martensitic stainless steel tube
US9194413B2 (en) 2008-09-22 2015-11-24 Robert Bosch Gmbh Fixing device and method for fixing in an opening in a wall

Similar Documents

Publication Publication Date Title
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH04231414A (en) Production of highly corrosion resistant oil well pipe
JP2007196237A (en) Method for producing seamless steel tube for machine structural component
JPS63238217A (en) Production of seamless steel pipe of martensitic stainless steel having excellent low-temperature toughness and stress corrosion cracking resistance
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH05117749A (en) Production of martensitic stainless steel seamless pipe having excellent low-temperature toughness and stress corrosion cracking resistance
JP3680764B2 (en) Method for producing martensitic stainless steel pipe
JPH02213416A (en) Production of steel bar with high ductility
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPH11310822A (en) Production of high strength martensitic stainless steel tube excellent in low temperature toughness
JPH07109008B2 (en) Martensitic stainless steel seamless pipe manufacturing method
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPS6137333B2 (en)
JP2705284B2 (en) Manufacturing method of high strength seamless steel pipe
JPH01123029A (en) Production of seamless stainless steel pipe
JPH0250915A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPH07102321A (en) Production of non-heattreated type resistance welded oil well pipe having tensile strength of 800mpa and above
JPH07109522A (en) Production of seamless tube of martensitic stainless steel
JPH0734126A (en) Production of low-alloy seamless steel pipe for finely grained structure
JPS63241117A (en) Manufacture of seamless stainless steel tube
JPH0250913A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance