JPS59153150A - Optical analytic apparatus of minute amount of component - Google Patents

Optical analytic apparatus of minute amount of component

Info

Publication number
JPS59153150A
JPS59153150A JP2789483A JP2789483A JPS59153150A JP S59153150 A JPS59153150 A JP S59153150A JP 2789483 A JP2789483 A JP 2789483A JP 2789483 A JP2789483 A JP 2789483A JP S59153150 A JPS59153150 A JP S59153150A
Authority
JP
Japan
Prior art keywords
cell
optical fiber
optical system
light
wavelength selection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2789483A
Other languages
Japanese (ja)
Inventor
Toshio Yamamoto
山本 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDEKUSU KK
Original Assignee
MEDEKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEDEKUSU KK filed Critical MEDEKUSU KK
Priority to JP2789483A priority Critical patent/JPS59153150A/en
Publication of JPS59153150A publication Critical patent/JPS59153150A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To attain to miniaturize the titled apparatus by making it possible to freely set the positional relation of a wavelength selecting optical system and a cell while facilitating assembling/adjusting work, by irradiating the cell through an optical fiber. CONSTITUTION:One end part of an optical fiber 14 is secured to the light output part 2a of a wavelength selecting optical system 2 and the other end part thereof is inserted through the piercing orifices of the gasket bodies 12, 12 of a T-shaped joint 10 to be arranged in one end of a cell 7 so as to leave the gap between the inner peripheral wall of said cell 7 and the optical fiber 14. By this mechanism, ultraviolet rays having predetermined wavelenghts outputted from the wavelength selecting optical system 2 are introduced into the cell 7 through the optical fiber 14 to irradiate the specimen liquid supplied into the cell 7 from a liquid supply tube 9. In this case, the width of luminous flux is not restrained in the light output part 2a, the luminous flux has a large diameter as compared with that of the optical fiber 14 and adjusting work becomes extremely easy.

Description

【発明の詳細な説明】 本発明は所定波長の光を試料に照射して成分を分析する
光学的微量成分分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical trace component analyzer that analyzes components by irradiating a sample with light of a predetermined wavelength.

この種の装置としては、例えば液体クロマトグラフィー
用の分析装置として用いられる紫外線けい光光度測定装
置があり、これは一般に次のように構成されている。即
ち、紫外線ランプから放射される紫外線を、フィルター
、回折格子1反射鏡及びスリット等を備えた波長選択光
学系により所定の波長成分に選別すると共に細い光束と
なし、この波゛長選択光学系の光出力部にセルを配置し
てセル中を流れる分析用試料に紫外線を照射するもので
あった。
An example of this type of device is an ultraviolet fluorescence photometry device used as an analysis device for liquid chromatography, which is generally configured as follows. That is, ultraviolet rays emitted from an ultraviolet lamp are sorted into predetermined wavelength components by a wavelength selection optical system equipped with a filter, a diffraction grating 1 reflecting mirror, a slit, etc., and are made into a narrow beam of light. A cell was placed in the light output section, and the sample for analysis flowing through the cell was irradiated with ultraviolet light.

しかしながら、セルは内容積がμlオーダーという極め
て小形に形成されているため、波長選択光学系から出力
される光束をセル中の試料に確実に且つ有効に照射する
には、集光レンズ、ミラー。
However, since the cell is extremely small with an internal volume on the order of microliters, it is necessary to use a condenser lens and a mirror to reliably and effectively irradiate the sample in the cell with the light beam output from the wavelength selection optical system.

スリット等により光束を更に絞り、それらとセルとの位
置合せを厳格にする必要があった。このため、セルは本
来試料供給用及び排出用の管路を備えた比較的複雑な構
造でありながら、波長選択光学系と一体化した形態で構
成せねばならず、組立・調整が容易ではなく、しかも波
長選択用光学系とセルとの間には互いのlIE&上の自
由度が全くないため、装置内に無駄なスペースが生じ易
くひいては装置全体が大形化するという問題があった。
It was necessary to further narrow down the luminous flux using a slit or the like, and to strictly align the luminous flux with the cell. For this reason, although the cell originally has a relatively complex structure with pipes for sample supply and discharge, it must be constructed in a form that is integrated with a wavelength selection optical system, making it difficult to assemble and adjust. Moreover, since there is no degree of freedom in respect of each other between the wavelength selection optical system and the cell, there is a problem in that wasted space is likely to be created within the device, and as a result, the entire device becomes larger.

本発明は上「13事情に鑑みて々されたもので、その目
的は、波長選択光学系からの光をオプ′ティカルファイ
バーを介してセルに照射する構成とすることにより、波
長選択光学系とセルとの位置関係を自由に設定でき、も
って組立・調整の精度が左程厳格に要求され、ず、また
全体の小形化を図ることもできる光学的微量成分分析装
置を提供するにある。
The present invention has been developed in view of the above-mentioned 13 circumstances, and its purpose is to irradiate light from a wavelength selective optical system to a cell via an optical fiber, thereby enabling a wavelength selective optical system to be irradiated to a cell. To provide an optical trace component analyzer in which the positional relationship with a cell can be freely set, the accuracy of assembly and adjustment is not so strictly required, and the overall size can be reduced.

以下本発明を紫外線すい光光度測定装置に適用した第1
実施例につき第1図及び第2図を参照して説明する。1
は光源たる紫外線ランプ、2は波長選択光学系で、この
波長選択光学系2は紫外線ランプ1から放射される紫外
線からフィルター6により不要な波長成分を除き、スリ
ット4を通して凹面回折格子5に照射し、凹面回折格子
5により分光・反射された所定波長の紫外線を光出力部
2aに集光させるものである。一方、6けセルユニット
であり、これは第2図に詳細に示すように、直円筒状の
石英管により形成したセルフを備えている。セフL/7
の一端部にはテフロンチューブ8を介して給液管9が連
結され、この給液管9は例えば図示しない液体クロマト
ブラフイーのカラムの流出側に連結される。10はT形
ジヨイントで、これは管体11の両端部に夫々貫通孔1
2Bを形成した栓体12を螺着すると共に、管体11の
周壁部に排液孔11&を形成して成り、〒方の栓体12
の貫通孔12Bに前記セルフの他端部が液密に嵌着され
、排液孔11aには排液管13が連結されている。14
はオプティカルファイバーで、これの一端部は波長選択
光学系2の光出力部2aに固定され、他端部はT形ジヨ
イント10の各栓体12,12の貫通孔1 ’l a 
、 j Z a内を挿通してセ/L/7の光照射部7a
即ちセルフの他端部内に内周壁との間に隙間を存して配
置されている。これにより、波長選択光学系2から出力
される所定波長の紫外線をオプティカルファイバー14
を通して士ルア内に導入し、給液管9からセル部内に供
給される試料液に照射L7得るようになっている。
The following is a first example in which the present invention is applied to an ultraviolet spectral photometry device.
An example will be described with reference to FIGS. 1 and 2. 1
2 is an ultraviolet lamp as a light source, and 2 is a wavelength selection optical system. This wavelength selection optical system 2 uses a filter 6 to remove unnecessary wavelength components from the ultraviolet rays emitted from the ultraviolet lamp 1, and irradiates the concave diffraction grating 5 through a slit 4. , the ultraviolet rays of a predetermined wavelength that have been separated and reflected by the concave diffraction grating 5 are focused on the light output section 2a. On the other hand, it is a 6-cell unit, and as shown in detail in FIG. 2, it is equipped with a self formed by a right cylindrical quartz tube. Sef L/7
A liquid supply pipe 9 is connected to one end via a Teflon tube 8, and this liquid supply pipe 9 is connected, for example, to the outlet side of a column of a liquid chromatograph (not shown). 10 is a T-shaped joint, which has through holes 1 at both ends of the tube body 11, respectively.
2B is screwed onto the plug body 12, and a drainage hole 11& is formed in the peripheral wall of the tube body 11.
The other end of the self is liquid-tightly fitted into the through hole 12B, and a drain pipe 13 is connected to the drain hole 11a. 14
is an optical fiber, one end of which is fixed to the light output part 2a of the wavelength selection optical system 2, and the other end is connected to the through hole 1'l a of each stopper 12, 12 of the T-shaped joint 10.
, jZ Insert the inside of the light irradiation part 7a of C/L/7
That is, it is arranged within the other end of the self with a gap between it and the inner circumferential wall. As a result, the ultraviolet rays of a predetermined wavelength outputted from the wavelength selection optical system 2 are transferred to the optical fiber 14.
The sample liquid is introduced into the lua through the liquid supply tube 9 and supplied into the cell section from the liquid supply pipe 9 so that the sample liquid is irradiated with light L7.

また、T形ジヨイント10の他方の栓体12の貫通孔1
2aはオプティカルファイバー14を貫通させた状部で
液密に封止され、士ルアからT形ジヨイント10内に流
入した試料液を排液管15側へ流出させるようにしてい
る。15は凹面鏡で、これは反射面がセfv7に沿って
対向するよう配設され、紫外線を照射された試料液から
発生するtすい光を所定方向に反射して集光するもので
ある。
In addition, the through hole 1 of the other stopper 12 of the T-shaped joint 10
2a is a portion through which an optical fiber 14 is passed and is sealed liquid-tightly, so that the sample liquid that has flowed into the T-shaped joint 10 from the luer flows out to the drain pipe 15 side. Reference numeral 15 denotes a concave mirror, which is disposed so that its reflective surfaces face each other along the direction fv7, and reflects and condenses the t-spectral light generated from the sample liquid irradiated with ultraviolet rays in a predetermined direction.

凹面鏡15により反射され或いはセルフ内力)ら直接放
射されたけい光は、凹面鏡15の反対側をこ設けたフィ
ルター16及びスリット17を通って光電子増倍管18
に入射し、けい光の光度ζこ応じた電気信号に変換され
る。尚、19は波長選択光学系2の紫外線の光路内に配
設した/\−フミフーであり、これは波長選択光学系2
の紫外線の一部を反射してスリット20を通して光電子
増倍管21に照射し、紫外線の強度に応じた電気信号を
出力させる。この光電子増倍管21の出力信号は、セル
フ側の光電子増倍管18の出力信号と共番こ例えば差動
増幅器(図示せず)に入力されて紫外線ランデ1の出力
変動をキャンセpし、又は紫外線ランプ1の電源回路(
図示せず)にフィートノ(゛ツクされて紫外線ランプ1
の出力を一定番こする。
The fluorescent light reflected by the concave mirror 15 or directly emitted from the self-internal force passes through a filter 16 and a slit 17 provided on the opposite side of the concave mirror 15 to a photomultiplier tube 18.
and is converted into an electrical signal corresponding to the luminous intensity ζ of the fluorescent light. In addition, 19 is a /\-Fumifu placed in the optical path of the ultraviolet rays of the wavelength selection optical system 2;
A portion of the ultraviolet rays is reflected and irradiated to the photomultiplier tube 21 through the slit 20, and an electric signal corresponding to the intensity of the ultraviolet rays is output. The output signal of this photomultiplier tube 21 is inputted to a differential amplifier (not shown) having the same number as the output signal of the self-side photomultiplier tube 18, for example, and cancels output fluctuations of the ultraviolet radiation 1. Or the power supply circuit of ultraviolet lamp 1 (
Ultraviolet lamp 1
Rub the output for a certain amount of time.

上記構成によれば、オプテイ力ルファイノ<−14の一
端部を波長選択光学系2の光出力部2aiこ固定してお
けば、波長選択光学系2からの紫外線をセフし7の光照
射部7aに確実に導くことができる。ここで、波長選択
光学系2の光出力部2aζこおいては、従来のように、
スリットにより光束幅を制限していないから、光束はオ
プティカルファイバー14の径に比べて大きく、従って
光出力部2aに対スるオプテイ力ルファイノ<−14の
位置精度1d従来に比べて大幅にラフでよく、組立作業
や調整作業が極めて容易になる。しかも、オプティカル
ファイバー14は屈曲可能であるかう、セルユニット6
を波長選択光学系2に対し自由な位置関係にて配置でき
、これにより装置内に無駄なスペースが生じてしまうこ
とを防いで装置全体の小形化を図り得る。更には、従来
のようにスリ・ノドにより光束を絞る構成では、セルを
小形化しようとすれば、それに対応してスリットの開口
幅を−極めて狭くしなければならず、結局位置精度上の
限−界からセルの小形化を十分に図り得ないものであっ
たが、本実施例によればオプティカルソファイノ(−1
4によって位置精度をほとんど考慮せずζζ光束を細く
することができ、従ってこれに応じてセルを小容積化し
て測定の分解能を向上させることができる。
According to the above configuration, if one end of the optical power Rufaino<-14 is fixed to the light output section 2ai of the wavelength selection optical system 2, the ultraviolet rays from the wavelength selection optical system 2 can be removed from the light irradiation section 7a of the wavelength selection optical system 2. can be reliably guided. Here, in the light output section 2aζ of the wavelength selection optical system 2, as in the conventional case,
Since the beam width is not limited by the slit, the beam is larger than the diameter of the optical fiber 14, and therefore the positional accuracy 1d of the optical force applied to the optical output section 2a is significantly rougher than before. This greatly facilitates assembly and adjustment work. Moreover, since the optical fiber 14 is bendable, the cell unit 6
can be arranged in a free positional relationship with respect to the wavelength selection optical system 2, thereby preventing wasted space within the device and making it possible to downsize the entire device. Furthermore, in the conventional configuration in which the luminous flux is focused using a slit-nod, if the cell is to be made smaller, the opening width of the slit must be made extremely narrow, which ultimately limits positional accuracy. However, according to this embodiment, the optical sophino (-1
4, it is possible to narrow the ζζ beam without considering positional accuracy, and accordingly, the volume of the cell can be reduced accordingly to improve the resolution of measurement.

次に本発明を紫外線吸光光度測定装置に適用した第2実
施例につき第5図乃至第5図を参照して説明する。22
は光源たる紫外線ランプ、23は波長選択光学系で、こ
の波長選択光学系23は、紫外線ランプ22から放射さ
れる紫外線を凹面鏡24及び平面鏡25により反射させ
てスリット26を通して回折格子26に照射し、回折格
子26により分光・反射された所定波長の紫外線を凹面
鏡27により反射して光出力部23aに集光させるもの
である。−力、28はセルシュごニラトチあり、これは
第4図に示すように、直円筒状の石英管により形成、し
だセル29の両端部に火攻テフロンチューブ50. 、
30を介して粕・液管31及び排液管32を連結して成
り、給液管31は例えば図示しない液体クロマトグラフ
ィ〜のカラムのfliE 出(1111に連結され、排
液管52は図示しない排液ビンに連結されるものである
。35はオプティカルファイバーで、これは第5図に示
すように例えば4本の単線から構成され、一端δf′側
では各単線を最密に束ねて第1の結束部材34により互
いに固定され、他端部側では各単線を一列に並べて第2
の結束部材55により互いに固定されている。そして、
このオプティカルファイバー63の第10M東部材34
を波長選択光学系23の光出力部23aに配置し、第2
の結束部材65をセル29の光照射部29a即ちセル2
90周壁部の所定部位に密着状態で固定している。こね
により、波長選択光学系23から出力される所定波長の
紫外線をオプティカルファイバー33を通して七/l/
29内に周壁を透過させて照射するものである。36は
光電子増倍管で、これはセル29の光照射部29aとは
反対(111に配設され、オプティカルファイバー63
から七7し29に照射されてセル29内の試料液を透過
した紫外線を受け、これにより試料液の吸光光度が測定
さ:11る。尚、57は波長選択光学系23の紫外縁の
光路的に配設した/X−フミフーで、これは波長選択光
学系23の紫外線の一部を反射してスリット38を通し
て例えば光電子増倍管69に照射し、その紫外線の強度
に応じた眠気信号を出力させる。そして、この出力信号
醤ζより、前記第1実施例と同様にして紫外線ランプ2
2の出力変動をキャンセルしたり、或いはその出力を一
定化するものである。
Next, a second embodiment in which the present invention is applied to an ultraviolet absorption photometry device will be described with reference to FIGS. 22
is an ultraviolet lamp as a light source; 23 is a wavelength selection optical system; this wavelength selection optical system 23 reflects the ultraviolet rays emitted from the ultraviolet lamp 22 by a concave mirror 24 and a plane mirror 25, and irradiates the diffraction grating 26 through a slit 26; The ultraviolet rays of a predetermined wavelength that have been separated and reflected by the diffraction grating 26 are reflected by a concave mirror 27 and focused on the light output section 23a. As shown in FIG. 4, the cell 28 is formed of a right cylindrical quartz tube, and the two ends of the cell 29 are covered with Teflon tubes 50. ,
A lees/liquid pipe 31 and a drain pipe 32 are connected through a pipe 30, and the liquid supply pipe 31 is connected to a fliE outlet (1111) of a column of liquid chromatography (not shown), and the drain pipe 52 is connected to a drain pipe (not shown). 35 is an optical fiber, which is composed of, for example, four single wires as shown in FIG. They are fixed to each other by a binding member 34, and on the other end side, each single wire is lined up in a row and a second
are fixed to each other by binding members 55. and,
The 10M eastern part 34 of this optical fiber 63
is placed in the light output section 23a of the wavelength selection optical system 23, and the second
The binding member 65 is attached to the light irradiation part 29a of the cell 29, that is, the cell 2
90 is tightly fixed to a predetermined portion of the peripheral wall. By kneading, the ultraviolet rays of a predetermined wavelength output from the wavelength selection optical system 23 are passed through the optical fiber 33 to 7/l/
29 is irradiated by passing through the peripheral wall. 36 is a photomultiplier tube, which is disposed opposite to the light irradiation part 29a of the cell 29 (111), and is connected to the optical fiber 63.
The ultraviolet rays irradiated from 77 to 29 and transmitted through the sample liquid in the cell 29 are received, thereby measuring the absorbance of the sample liquid. Note that 57 is an /X-Fumifu located along the optical path of the ultraviolet edge of the wavelength selection optical system 23, which reflects a part of the ultraviolet light from the wavelength selection optical system 23 and passes it through the slit 38 to, for example, a photomultiplier tube 69. The device outputs a drowsiness signal depending on the intensity of the ultraviolet rays. Then, from this output signal ζ, the ultraviolet lamp 2 is
This is to cancel the output fluctuation of 2 or to make the output constant.

上記構成においても、波長選択光学系26の光出力部2
3aでは従来とは異なりスリットによって紫9I線の光
束を絞っていないから、その光束は大きく、従ってその
光出力部23aにオプティカルファイバー35の第1の
結束部材34を固定する際の位置決め精度は従来のもの
程厳格さが要求されず、組立作業や調整作業が極めて容
易になる。
Also in the above configuration, the light output section 2 of the wavelength selection optical system 26
3a, unlike the conventional case, the luminous flux of the violet 9I line is not narrowed down by a slit, so the luminous flux is large, and therefore the positioning accuracy when fixing the first binding member 34 of the optical fiber 35 to the optical fiber 35 to the optical output part 23a is lower than that of the conventional one. It does not require as much rigor as the previous method, making assembly and adjustment work extremely easy.

この様にオプティカルファイバー36の第1の結束部材
34を光出力部23aに対しラフな精度で配置したとし
ても、紫外縁をセル29の光照射部29aに確実に導く
ことができ、しかもスリットを使わすともその光束をオ
プティカルファイバー33の径まで極めて細く絞ること
ができることは勿論である。しかも、その光束はオプテ
ィカルファイバー33を複数本組合わせる等して自由な
形とすることができる。また、紫外線の光束をセル29
と波長選択光学系23との位置決め精度をtlとんど考
慮することなく十分に細く絞ることができるので、これ
に対応してセル29の小容積化を図り、もって測定の分
解能を向上させることができる。更には、セル29を波
長選択光学系23に対し自由な位置関係で配設できるこ
とから、装置全体の小形化も併せて図ることもできる。
In this way, even if the first binding member 34 of the optical fiber 36 is arranged with rough precision with respect to the light output part 23a, the ultraviolet edge can be reliably guided to the light irradiation part 29a of the cell 29, and the slit can be Of course, when used, the light beam can be narrowed down to the diameter of the optical fiber 33. Moreover, the light beam can be formed into any shape by combining a plurality of optical fibers 33 or the like. In addition, the cell 29
Since the positioning accuracy between the wavelength selection optical system 23 and the wavelength selection optical system 23 can be narrowed down sufficiently without considering the tl, the volume of the cell 29 can be reduced accordingly, thereby improving the measurement resolution. I can do it. Furthermore, since the cell 29 can be arranged in a free positional relationship with respect to the wavelength selection optical system 23, it is also possible to downsize the entire device.

尚、本発明は上記し且つ図面に示す実施例に限定される
ものではなく、例えばオプティカルファイバーとしてコ
ア部とクラッド部との屈折率を連続的に変化させたもの
を用いるようにすれば、オプティカルファイバーから照
射される光束を不要に拡散させることなくセルに照射す
ることが可能で、測定の分解能を一層向上させ得、また
セルの形状は円筒形に限らない等、要旨を逸脱しない範
囲内で種々変更して実施することができる。
Note that the present invention is not limited to the embodiments described above and shown in the drawings. For example, if an optical fiber in which the refractive index of the core part and the cladding part is continuously changed is used, the optical fiber can be It is possible to irradiate the cell without unnecessarily diffusing the light beam irradiated from the fiber, which can further improve the resolution of measurement, and the shape of the cell is not limited to a cylindrical shape, within the scope of the main point. It can be implemented with various modifications.

本発明は以上述べたように、オプティカルファイバーを
、一端部が光源側の波長選択光学系の光出力部に臨み、
他端部がセルの光照射部に臨むよう配置したところに特
徴を有し、この結果、波長選択光学系とセルとの位置関
係が全く自由となり、しかもオプティカルファイバーの
一端部を光出力部に対しラフな位置決め精度で配置して
も光束を十分に細くしてセルに確実に導くことができ、
もって組立・調整作業を極めて容易になし得、且つ装置
全体の小形化を図り得るという効果を奏する。
As described above, the present invention provides an optical fiber with one end facing the light output section of the wavelength selection optical system on the light source side,
The feature is that the other end of the optical fiber is arranged so as to face the light irradiation part of the cell, and as a result, the positional relationship between the wavelength selection optical system and the cell can be completely free, and one end of the optical fiber can be used as the light output part. On the other hand, even when placed with rough positioning accuracy, the light beam can be made sufficiently thin and guided to the cell reliably.
As a result, assembly and adjustment work can be made extremely easy, and the entire device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1実施例を示し、第1図
は全体の概略構成、図、第2図はセルユニットの拡大断
面図、第3図乃至第5図は本発明の第2実施例を示し、
第3図は全体の概略構成図、第4図はセルユニットの拡
大断面図、第5図はオプティカルファイバーの斜視図で
ある。 図中、1,22は紫外線ランプ(光源)、2゜23は波
長選択光学系、2a、23&は光出力部、6.28はセ
ルユニット、7.29はセル、7a。 29aは光照射部、14.33はオプティカルファイバ
ー、18,21.56.59は光電子増倍管である。 6     jPl 1 図 第 2 図 jlli3  図
1 and 2 show a first embodiment of the present invention, FIG. 1 is an overall schematic configuration, FIG. 2 is an enlarged sectional view of a cell unit, and FIGS. 3 to 5 are in accordance with the present invention. A second example of
FIG. 3 is a schematic diagram of the overall configuration, FIG. 4 is an enlarged sectional view of the cell unit, and FIG. 5 is a perspective view of the optical fiber. In the figure, 1 and 22 are ultraviolet lamps (light sources), 2.23 are wavelength selection optical systems, 2a, 23& are light output parts, 6.28 are cell units, 7.29 are cells, and 7a. 29a is a light irradiation section, 14.33 is an optical fiber, and 18, 21.56.59 are photomultiplier tubes. 6 jPl 1 Figure 2 Figure jlli3 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、 光源からの所定波長の光をセル内に照射して該セ
ル中の試料成分を分析するものにおいて、オプティカル
ファイバーを、一端部が前記光源側の波長選択光学系の
光出力部に臨み、他端部が前記セルの光照射部に臨むよ
う配置したことを特徴とする光学的微量成分分析装置。
1. In a device that analyzes sample components in a cell by irradiating light of a predetermined wavelength from a light source into the cell, one end of the optical fiber faces the light output section of the wavelength selection optical system on the light source side, An optical trace component analyzer, characterized in that the other end is arranged so as to face the light irradiation part of the cell.
JP2789483A 1983-02-21 1983-02-21 Optical analytic apparatus of minute amount of component Pending JPS59153150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2789483A JPS59153150A (en) 1983-02-21 1983-02-21 Optical analytic apparatus of minute amount of component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2789483A JPS59153150A (en) 1983-02-21 1983-02-21 Optical analytic apparatus of minute amount of component

Publications (1)

Publication Number Publication Date
JPS59153150A true JPS59153150A (en) 1984-09-01

Family

ID=12233590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2789483A Pending JPS59153150A (en) 1983-02-21 1983-02-21 Optical analytic apparatus of minute amount of component

Country Status (1)

Country Link
JP (1) JPS59153150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257045A (en) * 1986-04-30 1987-11-09 Anritsu Corp Ultraviolet ray absorbing type ammonia gas analyser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566140A (en) * 1979-06-28 1981-01-22 Tokyo Optical Co Ltd Spectrophotometer for trace sample
JPS5616848A (en) * 1979-07-19 1981-02-18 Japan Spectroscopic Co Microanalysis unit
JPS57131037A (en) * 1981-02-04 1982-08-13 Shimadzu Corp Tablet elusion/analysis tester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566140A (en) * 1979-06-28 1981-01-22 Tokyo Optical Co Ltd Spectrophotometer for trace sample
JPS5616848A (en) * 1979-07-19 1981-02-18 Japan Spectroscopic Co Microanalysis unit
JPS57131037A (en) * 1981-02-04 1982-08-13 Shimadzu Corp Tablet elusion/analysis tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257045A (en) * 1986-04-30 1987-11-09 Anritsu Corp Ultraviolet ray absorbing type ammonia gas analyser

Similar Documents

Publication Publication Date Title
US5614726A (en) Automated optical alignment system and method using Raman scattering of capillary tube contents
US4225229A (en) Apparatus for measuring cytological properties
EP0762119B1 (en) Photometric flow apparatus for small sample volumes
US5926271A (en) Laser-induced fluorescence detector having a capillary detection cell and method for identifying trace compounds implemented by the same device
US4789989A (en) Solar simulator employing flexible-optics
US5689114A (en) Gas analyzing apparatus
DE59308289D1 (en) SPECTROSCOPIC SYSTEMS FOR ANALYSIS OF SMALL AND SMALLEST SUBSTANCES
JPS617447A (en) Optical guide condensing method and device thereof
US4475813A (en) Divergent light optical systems for liquid chromatography
WO1993011422A1 (en) Capillary flowcell for multiple wavelength detection
EP0422448B1 (en) Apparatus for measuring light absorbance or fluorescence in liquid samples
US3606547A (en) Spectrophotometer
US20050046834A1 (en) Fluorescence detector geometry
JPH0815147A (en) Optical detector for fluid sample
JPS59153150A (en) Optical analytic apparatus of minute amount of component
US4468124A (en) Double beam photometer for measuring fluid samples
EP0529541B1 (en) Double beam detector system for liquid chromatography
JPS59154327A (en) Ultraviolet fluorophotometric instrument
JPH0324441A (en) Method and apparatus for measuring concentration
EP0071645B1 (en) Double beam photometer for measuring fluid samples
JPS58219435A (en) Spectrophotometer with two luminous fluxes
JPS6215439A (en) Flow cell for absorptiometry
JPH02227637A (en) Fluorophotometer
SU1122897A1 (en) Device for measuring coefficient of radiation absorption by transparent medium
JPS59154328A (en) Ultraviolet fluorophotometric instrument