JPS59151492A - Method an ddevice for soldering electronic part - Google Patents

Method an ddevice for soldering electronic part

Info

Publication number
JPS59151492A
JPS59151492A JP2376283A JP2376283A JPS59151492A JP S59151492 A JPS59151492 A JP S59151492A JP 2376283 A JP2376283 A JP 2376283A JP 2376283 A JP2376283 A JP 2376283A JP S59151492 A JPS59151492 A JP S59151492A
Authority
JP
Japan
Prior art keywords
solder
soldering
cooling
sample
ddevice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2376283A
Other languages
Japanese (ja)
Inventor
善明 竹内
幸一 藤原
重行 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2376283A priority Critical patent/JPS59151492A/en
Publication of JPS59151492A publication Critical patent/JPS59151492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電子部品をはんだにより接続する方法及びその
際に使用するはんだ付は装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for connecting electronic components by soldering and a soldering device used in the method.

最近のマイクロエレクトロニクスの発展に伴い、電子部
品の実装技術は超小形化、高密度化、高信頼化の要求が
増加している。これに伴って電子部品のはんだ付は方法
及びその装置は種々の改善がなされている。はんだの加
熱溶融には従来の電気(1) ヒータによる方法の他に、レーザ、マイクロ波等の適用
が□試みられているが、工業的には電子部品を電気炉中
で移動させることによシはんだ付けを行っている。しか
し、はんだを融解させた状態で電子部品を移動させる場
合は、はんだ接続部が微細化し、高密度化するに従い、
移動時の振動による位置ずれのため接続部の短絡が生じ
る確率が増加する。
With the recent development of microelectronics, demands for ultra-miniaturization, high density, and high reliability of electronic component mounting technology are increasing. Along with this, various improvements have been made to methods and devices for soldering electronic components. In addition to conventional methods using electricity (1) heaters, attempts have been made to use lasers, microwaves, etc. to heat and melt solder; I am doing soldering. However, when moving electronic components with melted solder, as solder connections become finer and more dense,
The probability of a short circuit occurring at the connection increases due to positional displacement due to vibration during movement.

また、はんだ接続部の加熱後の冷却は徐冷もしくは自然
冷却の方法が取られていた。これは電子部品と配線基板
の熱膨張係数の相違に基づく接続部の残留応力が問題と
され、この残留応力を低減させるためには、できるだけ
徐冷する方が望★しいとされていたからである。しかし
、次世代コンピュータの有力候補の一つであるジョセフ
ソン回路実装にみられるように熱膨張係数の整合の観点
外ら、゛接続するヂッゾと配線基板にいずれもSt基板
を使用した場合には冷却速度に関する問題は解決される
。′ □ 本発明者らは、ジョセフソンチップのフリップ/Q  
) チップが、ンディングを研究し、はんだ接続部を急冷す
ることによシ、自然冷却に比してはんだの伸びが6倍も
向上し、接続−の応力緩和が図られたことによ多接続の
信頼性が著しく向上することを見出した。本発明はこの
ような知見に基づき成されたものであシ、はんだを用い
入電子部品の接続において、接続部のはんだを融解した
後、その位置で急速凝固させることによシミ子部品の接
続を行うことを特徴とし、その目的は高密度で微細なは
んだ接続を高信頼で実竺すると共に、はんだ接続部の強
度を大幅に向上することにある。尚、本発明はチップキ
ャリアのようなセラミック基板どうしを接続する場合に
も適応される。
Further, after heating the solder joints, a slow cooling method or a natural cooling method has been used. This is because residual stress in the connection due to the difference in thermal expansion coefficient between the electronic component and the wiring board has been considered a problem, and in order to reduce this residual stress, it has been considered desirable to cool the component as slowly as possible. However, as seen in Josephson circuit mounting, which is one of the leading candidates for next-generation computers, from the perspective of matching thermal expansion coefficients, if St substrates are used for both the connecting dizzo and the wiring board, The problem with cooling rate is solved. ′ □ The present inventors have developed the Josephson chip flip/Q
) By researching the bonding process and rapidly cooling the solder joints, the elongation of the solder was improved six times compared to natural cooling, and the stress of the connections was alleviated. We found that the reliability of the system was significantly improved. The present invention has been made based on this knowledge, and it is possible to connect shim parts by melting the solder at the connection part and then rapidly solidifying it at that position when connecting electronic parts using solder. The purpose is to achieve high-density, fine solder connections with high reliability, and to significantly improve the strength of the solder connections. Incidentally, the present invention is also applicable to the case of connecting ceramic substrates such as chip carriers.

以下本発明の実施例を図面によシ説明する。第1図は本
発明の実施例であって、図において1ははんだ付は台、
2は冷却用配管、2′は加熱用配管、3は電磁弁、4は
加熱媒体用恒温槽、5は冷却媒体用恒温槽、6ははんだ
付けする電子部品と配線基板である。本実施例でははん
だ付は台1は熱伝導率の高い銅ブロックから成シ、中空
構造として、この内部に加熱及び冷却媒体が配管2,2
′にょシ流出入する構造となっている。加熱及び冷却媒
体には蒸留水を用い、加熱媒体用恒温槽4は70℃に、
冷却媒体用恒温槽5は10℃に保ち、また、試料として
は低融点はんだ(In −Bi −Sns融点60℃)
によるフリッゾチップがンディング試料(はんだ接続部
の形状は50μmφ、30μmhで、4 tta X 
4 mチップの4辺に100 Am間隔で120個の接
続部を有する)を用いた。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention, in which 1 is a soldering stand;
2 is a cooling pipe, 2' is a heating pipe, 3 is a solenoid valve, 4 is a constant temperature bath for a heating medium, 5 is a constant temperature bath for a cooling medium, and 6 is an electronic component and a wiring board to be soldered. In this embodiment, the soldering table 1 is made of a copper block with high thermal conductivity, and has a hollow structure, in which the heating and cooling medium is supplied to the pipes 2 and 2.
It has a structure where water flows in and out. Distilled water is used as the heating and cooling medium, and the constant temperature bath 4 for the heating medium is kept at 70°C.
The constant temperature bath 5 for cooling medium was kept at 10°C, and the sample was low melting point solder (In-Bi-Sns melting point 60°C).
(The shape of the solder connection part is 50 μmφ, 30 μmh, 4 tta
A 4 m chip with 120 connections spaced at 100 Am intervals on four sides was used.

作業は先づ、はんだ付は台1に該試料6を置き、配管2
′を通してはんだ付は台1内に加熱媒体を流通させ、試
料6の温度を70℃±1℃に制御してはんだを融解させ
る。次に、加熱媒体を止め、電磁弁3を切シ換えて配管
2を通してはんだ付は台1内に冷却媒体を流し、試料6
を急冷(冷却速度約20℃/5ee)l、てはんだを凝
固させる。第1表はこの試料を従来の装置で゛ある電気
炉によ多接続した場合(冷却速度約0.1℃/5ee)
と本実施例の装置によった場合の接続特性を比較したも
のである。
For soldering, place the sample 6 on table 1, and connect the pipe 2.
For soldering, a heating medium is passed through the stand 1, and the temperature of the sample 6 is controlled to 70° C.±1° C. to melt the solder. Next, the heating medium is stopped, the solenoid valve 3 is switched on, and the cooling medium is flowed through the pipe 2 into the soldering table 1, and the sample 6
The solder is rapidly cooled (cooling rate: about 20°C/5ee) to solidify the solder. Table 1 shows the case where this sample was connected to a conventional electric furnace (cooling rate of about 0.1°C/5ee).
This is a comparison of the connection characteristics when using the device of this embodiment.

第  1  表 第1表によれば、接続部の導通不良は両装置とも発生し
なかったが、従来の装置によった場合に短絡が2チ発生
した。従来の装置では、はんだが融解した状態でフリッ
ゾチップがンディング試料を移動させるが、これが短絡
の原因と考えられる。
Table 1 According to Table 1, no conduction failure occurred at the connection portion in either device, but two short circuits occurred in the conventional device. In conventional equipment, the Frizzo tip moves the soldering sample while the solder is melted, which is thought to be the cause of the short circuit.

また、接続部の引張シ試験を行ったが、従来の装置では
25チの伸びしか得られなかったのに対して、本実施例
の装置によった場合は100チの伸びが得られた。これ
は本実施例装置によシはんだを急速凝固させることによ
シ、はんだの金属組織が微細になったためである。この
ように接続部はんだの伸びが増加すれば、接続部に外力
が加わった場合の破断を生ずる限界が上シ、接続の信頼
性(5) が向上する。
In addition, a tensile test was conducted on the connected portion, and while the conventional device could only achieve an elongation of 25 inches, the device of this example achieved an elongation of 100 inches. This is because the metal structure of the solder becomes finer by rapidly solidifying the solder using the apparatus of this embodiment. If the elongation of the solder at the connection part is increased in this way, the limit at which breakage occurs when an external force is applied to the connection part is increased, and the reliability of the connection (5) is improved.

次に、本発明の他の実施例を説明する。第2図は本発明
の他の実施例を示し、図において1ははんだ付は台、2
は冷却用配管、5は冷却媒体用恒温槽、6ははんだ付は
試料、7は石英炉芯管、8は加熱用ヒータ、9はヒータ
制御用熱電対、1゜はヒータ用電源及び制御回路である
。本実施例では冷却媒体として恒温槽5により10℃に
保ったシリコンオイルを用い、電気炉によシはんだを融
解した後、ヒータ8を切シ、冷却用配管2(ステンレス
)に冷却媒体であるシリコンオイルを流すことによシ急
冷(冷却速度約10℃/ see ) して、はんだを
凝固させる。
Next, another embodiment of the present invention will be described. FIG. 2 shows another embodiment of the present invention, in which 1 is a stand for soldering, 2 is a stand for soldering;
5 is a cooling pipe, 5 is a constant temperature bath for cooling medium, 6 is a soldering sample, 7 is a quartz furnace tube, 8 is a heater, 9 is a thermocouple for controlling the heater, 1° is a power supply and control circuit for the heater It is. In this embodiment, silicone oil maintained at 10°C in a constant temperature bath 5 is used as the cooling medium, and after the solder is melted in an electric furnace, the heater 8 is turned off, and the cooling medium is placed in the cooling pipe 2 (stainless steel). The solder is rapidly cooled by flowing silicone oil (cooling rate of about 10° C./see) to solidify the solder.

本実施例装置を用い、はんだPb−8n (40:60
wt%)によるチップキャリア試料の接続を行った。
Using the device of this embodiment, solder Pb-8n (40:60
wt%) was used to connect the chip carrier sample.

チップキャリア試料は82端子で端子形状は0.51w
+X 1.02m、端子間隔は1.02簡のものを使用
し、また、チップキャリア及び配線基板はいずれもセラ
ミック製とした。第2表はこの試料を従来の装置(電気
炉)によ多接続した場合と本(6) 実施例の装置によった場合の接続特性を比較したもので
ある。
The chip carrier sample has 82 terminals and the terminal shape is 0.51w.
+ Table 2 compares the connection characteristics when this sample was connected multiple times to a conventional device (electric furnace) and when it was connected to the device of Example (6).

第  2  表 第2表によれば、接続部の導通不良及び短絡は両装置と
も生じなかったが、引張り試験による接続部はんだの伸
び率は、従来の装置では20チであったのに対して本実
施例の装置によった場合は60チに向上している。
Table 2 According to Table 2, no continuity failures or short circuits occurred in the connections in either device, but the elongation rate of the solder in the connections in the tensile test was 20 inches in the conventional device. In the case of the apparatus of this embodiment, the distance is improved to 60 inches.

以上説明したように、本発明によれば、はんだ融解中に
接続部品を移動することがなく、またはんだを急速凝固
させるので、はんだ融解中に部品に振動等の外力が加わ
らず、接続の信頼性が向上すると共に、はんだの急冷に
よシ接綾部の機械的特性が向上する等の利点を有する。
As explained above, according to the present invention, the connected parts are not moved during solder melting, and the solder is rapidly solidified, so external forces such as vibrations are not applied to the parts during solder melting, and the connection is reliable. This has advantages such as improved properties and improved mechanical properties of the welded parts due to rapid cooling of the solder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概略構成図、第2図は本発明
の他の実施例の概略構成図である。 1・・・はんだ付は台、2・・・冷却用配管、2′・・
・加熱用配管、3・・・電磁弁、4・・・加熱媒体用恒
温槽、5・・・冷却媒体用恒温槽、6・・・はんだ付は
電子部品と配線基板、7・・・石英炉芯管、8・・・加
熱用ヒータ、9・・・ヒータ制御用熱電対、10・・・
ヒータ用電源及び制御回路計
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of another embodiment of the invention. 1... Soldering stand, 2... Cooling piping, 2'...
・Heating piping, 3... Solenoid valve, 4... Constant temperature bath for heating medium, 5... Constant temperature bath for cooling medium, 6... Electronic parts and wiring board for soldering, 7... Quartz Furnace core tube, 8... Heater for heating, 9... Thermocouple for heater control, 10...
Heater power supply and control circuit meter

Claims (1)

【特許請求の範囲】[Claims] 1、はんだを用いた電子部品の接続において、接続部の
はんだを融解した後、その位置で急速凝固させることに
より電子部品の接続を行うことを特徴とする電子部品の
はんだ付は方法。    □・ 2.接続部の融解した
はんだを急速凝固させるための冷却装置を具備したこと
を特徴とする電子部品のはんだ付は装置。
1. A method for soldering electronic components using solder, which is characterized in that the solder at the connection part is melted and then rapidly solidified at that position to connect the electronic components. □・ 2. An apparatus for soldering electronic components, characterized by being equipped with a cooling device for rapidly solidifying molten solder at a connection part.
JP2376283A 1983-02-17 1983-02-17 Method an ddevice for soldering electronic part Pending JPS59151492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2376283A JPS59151492A (en) 1983-02-17 1983-02-17 Method an ddevice for soldering electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2376283A JPS59151492A (en) 1983-02-17 1983-02-17 Method an ddevice for soldering electronic part

Publications (1)

Publication Number Publication Date
JPS59151492A true JPS59151492A (en) 1984-08-29

Family

ID=12119343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2376283A Pending JPS59151492A (en) 1983-02-17 1983-02-17 Method an ddevice for soldering electronic part

Country Status (1)

Country Link
JP (1) JPS59151492A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295061A (en) * 1976-02-05 1977-08-10 Nippon Electric Co Bonding method
JPS5319563A (en) * 1976-08-05 1978-02-22 Nippon Aviotronics Kk Method and device for soldering integrated circuit
JPS5486457A (en) * 1977-12-22 1979-07-10 Toshiba Corp Soldering apparatus
JPS5896796A (en) * 1981-12-04 1983-06-08 セイコーエプソン株式会社 Method of bonding electronic part on board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295061A (en) * 1976-02-05 1977-08-10 Nippon Electric Co Bonding method
JPS5319563A (en) * 1976-08-05 1978-02-22 Nippon Aviotronics Kk Method and device for soldering integrated circuit
JPS5486457A (en) * 1977-12-22 1979-07-10 Toshiba Corp Soldering apparatus
JPS5896796A (en) * 1981-12-04 1983-06-08 セイコーエプソン株式会社 Method of bonding electronic part on board

Similar Documents

Publication Publication Date Title
AU661867B2 (en) Plated compliant lead
US3921285A (en) Method for joining microminiature components to a carrying structure
US3588618A (en) Unsoldering method and apparatus using heat-recoverable materials
CA2154409C (en) Connecting member and a connecting method using the same
US20070102490A1 (en) Circuit board,method of mounting surface mounting component on circuit board, and electronic equipment using the same circuit board
US3991297A (en) Electrically heated soldering device
JPH06268015A (en) Integrated circuit
JPH02192876A (en) Heater and joining of member
JPS6054785B2 (en) Method of manufacturing integrated circuit assembly
US5631447A (en) Uses of uniaxially electrically conductive articles
JPH077038A (en) Electronic package
JPH0828583B2 (en) Multilayer printed circuit board, manufacturing method thereof, and ball dispenser
US5359170A (en) Apparatus for bonding external leads of an integrated circuit
JPH0567719A (en) Tape carrier package and high frequency heated soldering apparatus
WO1989007339A1 (en) Uses of uniaxially electrically conductive articles
JPS59151492A (en) Method an ddevice for soldering electronic part
KR100517010B1 (en) The flip chip bonding method using induction heating body in the AC magnetic field and the apparatus which uses the same method
US3418422A (en) Attachment of integrated circuit leads to printed circuit boards
CN100479635C (en) Circuit board, circuit board mounting method, and electronic device using the circuit board
JP2002141658A (en) Method and device for flow soldering
JPH08172114A (en) Board connection method
JP2001217027A (en) Pillar grid disposed connector
JP2000260827A (en) Heating apparatus and method for mounting semiconductor chip
JPH11322455A (en) Ceramics/metal bonded body and its production
JPH10117065A (en) Soldering method for work with bump