JPS5915006B2 - fluid mixing device - Google Patents

fluid mixing device

Info

Publication number
JPS5915006B2
JPS5915006B2 JP55023599A JP2359980A JPS5915006B2 JP S5915006 B2 JPS5915006 B2 JP S5915006B2 JP 55023599 A JP55023599 A JP 55023599A JP 2359980 A JP2359980 A JP 2359980A JP S5915006 B2 JPS5915006 B2 JP S5915006B2
Authority
JP
Japan
Prior art keywords
fluid
main pipe
wake
nozzle
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023599A
Other languages
Japanese (ja)
Other versions
JPS56118727A (en
Inventor
道雄 田中
清司 森田
敏 秋山
和人 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP55023599A priority Critical patent/JPS5915006B2/en
Publication of JPS56118727A publication Critical patent/JPS56118727A/en
Publication of JPS5915006B2 publication Critical patent/JPS5915006B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • B01F25/31322Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • B01F25/31331Perforated, multi-opening, with a plurality of holes

Description

【発明の詳細な説明】 この発明は、たとえば排ガスの脱硝を行なうために、排
ガスにアンモニアを混入させるのに用いられる流体混合
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid mixing device used to mix ammonia into exhaust gas, for example, in order to denitrate the exhaust gas.

従来、一の流体が流れる流体管路の中に、他の流体を噴
出させる噴出ノズルを配設した流体混合装置が知られて
いるが、この装置は、噴出した上記他の流体自身が乱流
となつて拡散する、いわゆる噴流拡散のみを利用するも
のなので、混合に要する時間が長くなり、したがつて、
流体管路が長大になつて装置が大形化する欠点がある。
Conventionally, a fluid mixing device is known in which a jet nozzle for spouting another fluid is disposed in a fluid pipe line through which one fluid flows, but this device is designed to prevent the spouted other fluid from flowing into a turbulent flow. Because it uses only so-called jet diffusion, the time required for mixing is longer.
There is a disadvantage that the fluid pipe line becomes long and the device becomes large.

また、噴流拡散を利用するためには、上記他の流体の噴
出速度を上記一の流体の速度に比較して大きくしなけれ
ばならないので、ポンプを含む噴出機構が大形化する欠
点もある。この発明は上記従来の欠点を解消するために
なされたもので、上記従来の噴出ノズルに相当する噴出
管を、母管とノズルとから構成して、ノズルの噴出口を
母管の後渡領域内に設定し、この後流の乱れを積極的に
利用することにより、流体の混合を急速に行なわせて、
装置の小形化を図ることを目的とする。
Furthermore, in order to utilize jet diffusion, the ejection speed of the other fluid must be made larger than the speed of the first fluid, which also has the disadvantage of increasing the size of the ejection mechanism including the pump. The present invention has been made to solve the above-mentioned conventional drawbacks, and consists of an ejection pipe corresponding to the above-mentioned conventional ejection nozzle consisting of a main pipe and a nozzle, so that the ejection opening of the nozzle is connected to the downstream area of the main pipe. By setting the temperature within
The purpose is to downsize the device.

以下、この発明の実施例を図面にしたがつて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、11は流体管路で、この流体管路11
の中を一つの流体、たとえばボイラーの排ガスが矢印1
2で示す方向へ流れる。
In FIG. 1, reference numeral 11 denotes a fluid pipe, and this fluid pipe 11
A fluid, such as boiler exhaust gas, is flowing through the arrow 1.
It flows in the direction shown by 2.

上記流体管路11の中には、他の流体、たとえばアンモ
ニアガスを噴出する噴出器13が配設されており、この
噴出器13は、上記一の流体の流れ方向12と直交する
方向14に沿つて配置された母管15と、この母管15
の後面に取り付けられた母管15の後述する後渡領域内
に噴出口16を有するノズルITとからなる。上記他の
流体は矢印18で示す方向から母管15へ供給され、ノ
ズル17から矢印19で示す方向・\噴出される。上記
流体管路11の後端には、脱硝作用を行なう反応器のよ
うな処理装置20が設置されている。上記流体管路11
は、第2図に示すように、その横断面形状が一辺の長さ
Bの正方形であり、この管路11内に、等間隔1で複数
個の母管15が立設され、各母管15に、やはり等間隔
eで複数個のノズル17が取り付けられている。
An ejector 13 for ejecting another fluid, such as ammonia gas, is disposed in the fluid pipe line 11, and the ejector 13 is directed in a direction 14 perpendicular to the flow direction 12 of the first fluid. A main pipe 15 arranged along the main pipe 15
It consists of a nozzle IT having a spout 16 in a trailing region (to be described later) of a main pipe 15 attached to the rear surface. The other fluids mentioned above are supplied to the main pipe 15 in the direction shown by arrow 18 and are ejected from the nozzle 17 in the direction shown by arrow 19. At the rear end of the fluid pipe 11, a processing device 20 such as a reactor for denitrification is installed. The fluid pipe line 11
As shown in FIG. 2, its cross-sectional shape is a square with a side length B, and within this conduit 11, a plurality of main pipes 15 are erected at equal intervals 1, and each main pipe 15, a plurality of nozzles 17 are also attached at equal intervals e.

この例では[=eとなつている。上記母管15は、第3
図に示すように、円管からなり、やはり円管からなるノ
ズル17が上記母管15に溶接されている。
In this example, [=e. The main pipe 15 is the third
As shown in the figure, a nozzle 17 made of a circular tube is welded to the main tube 15.

上記ノズル17の噴出口16は、母管15の後流領域2
1の内部に位置しているわけであるが、この後流領域2
1をここではつぎのように定義する。後流の中は流れが
非定常であるが、時間的平均の速度分布をとると第3図
のようになる。
The spout 16 of the nozzle 17 is connected to the wake area 2 of the main pipe 15.
1, but this wake area 2
1 is defined here as follows. Although the flow in the wake is unsteady, the temporal average velocity distribution is as shown in Figure 3.

ここで、uは後流内部の速度、U(X)は周囲の定常流
の速度、△uは上記両速度の差U。O−uに等しい速度
欠損、△Umaxは後流の中心線22上で生じる最大速
度欠損、yは上記中心線22からの距離をそれぞれ示す
。上記速度欠損Δuが上記最大速度欠損△Umaxの1
/2となる幅bは後流の半値幅と呼ばれ、通常、これが
後流の幅を表す代表値とされる。ここでは、上記半値幅
bの2倍をもつて後流の幅と定義する。すなわち、−b
〆yイbなる領域を後流領域21と定義する。つぎに、
ノズル17の噴出口16を母管15の後流領域21内に
設定したことにより、上記噴出口16から噴出される他
の流体と、上記一の流体との混合が急速に行なわれる事
実を、第5図および第6図に示した測定結果を用いて説
明する。
Here, u is the velocity inside the wake, U(X) is the velocity of the surrounding steady flow, and Δu is the difference U between the above two velocities. The velocity deficit is equal to O-u, ΔUmax is the maximum velocity deficit occurring on the center line 22 of the wake, and y is the distance from said center line 22, respectively. The speed deficit Δu is 1 of the maximum speed deficit ΔUmax
The width b, which is /2, is called the half-width of the wake, and is usually taken as a representative value representing the width of the wake. Here, the wake width is defined as twice the half width b. That is, -b
The region yb is defined as the wake region 21. next,
The fact that by setting the ejection port 16 of the nozzle 17 within the wake region 21 of the main pipe 15, the other fluid ejected from the ejection port 16 and the above-mentioned one fluid are rapidly mixed. This will be explained using the measurement results shown in FIGS. 5 and 6.

まず、第4図に示すように、ノズル17の内径をd、噴
出された他の流体の温度をC1この噴流の中心線22上
で生じる最大濃度をCmaxl噴出口16での濃度をC
O、上記中心線22に沿つての噴出口16からの距離を
X1、上記中心線22からの距離をyとする。さらに、
上記濃度Cが上記最大濃度Cmaxの1/2となる幅f
を濃度分布の半値幅と定義し、この半値幅fの下流に向
つての変化を第5図に、最大濃度Cmaxの下流に向つ
ての変化を第6図にそれぞれ示す。両図において、Gは
この実施例の測定結果を示し、Hは噴流の乱流拡散の理
論計算式から算出した計算値で、前述した従来例に相当
するものを示す。第5図は上記半値幅fが下流に向つて
従来より急激に拡大していることを示し、第6図は上記
最大濃度Cmaxが下流に向つて従来より急激に低下す
ることを示している。このことは、噴出された他の流体
が、周囲を流れる一の流体と急激に混合されるという事
実を表わしている。q また、第3図で示した後流領域21は、母管15の下流
の限られた部分に存在するだけであり、しかも、乱れた
後流による混合促進作用は下流に行くにしたがつて減退
するから、この発明の流体混合装置を有効に機能させる
には、母管15およびノズル17の形状と配置が一定の
関係を満たさなければならないと考えられる。
First, as shown in FIG. 4, the inner diameter of the nozzle 17 is d, the temperature of the other ejected fluid is C1, the maximum concentration occurring on the center line 22 of this jet is Cmaxl, and the concentration at the jet nozzle 16 is Cmax.
O, the distance from the jet port 16 along the center line 22 is X1, and the distance from the center line 22 is y. moreover,
Width f where the density C is 1/2 of the maximum density Cmax
is defined as the half-width of the concentration distribution, and FIG. 5 shows a downstream change in the half-width f, and FIG. 6 shows a downstream change in the maximum concentration Cmax. In both figures, G indicates the measurement result of this example, and H indicates a calculated value calculated from a theoretical calculation formula for turbulent diffusion of a jet flow, which corresponds to the conventional example described above. FIG. 5 shows that the half-width f increases more rapidly toward the downstream than before, and FIG. 6 shows that the maximum concentration Cmax decreases more rapidly toward the downstream than before. This represents the fact that the other ejected fluid is rapidly mixed with one fluid flowing around it. q Furthermore, the wake region 21 shown in FIG. 3 exists only in a limited portion downstream of the main pipe 15, and furthermore, the mixing promotion effect due to the turbulent wake becomes more and more downstream. Therefore, in order for the fluid mixing device of the present invention to function effectively, it is considered that the shape and arrangement of the main pipe 15 and the nozzle 17 must satisfy a certain relationship.

そこで発明者らが実験を行なつて調べた結果、母管15
の外径D、母管15の設定間隔[、およびノズル17の
長さlが、つぎの関係式を満たすよう設定されるのが望
ましいと判明した。まず、上記(1)式でD/t≧0.
2とした理由を述べる。
Therefore, the inventors conducted an experiment and found that the main pipe 15
It has been found that it is desirable that the outer diameter D of the main tube 15, the set interval of the main pipe 15, and the length l of the nozzle 17 be set so as to satisfy the following relational expression. First, in the above equation (1), D/t≧0.
I will explain the reason why I chose 2.

第3図で示した後流領域21は、母管15の下流の限ら
れた部分に存在するだけであるから、母管15の外径D
に比べて、第2図の母管15の設定間隔tが大き過ぎる
と、流体管路11内の全体に後流が広がらなくなり、そ
の結果、この後流による混合作用が上記全体に及ばなく
なる。
Since the wake region 21 shown in FIG. 3 exists only in a limited downstream part of the main pipe 15, the outer diameter D of the main pipe 15
Compared to this, if the set interval t of the main tube 15 in FIG. 2 is too large, the wake will not spread throughout the fluid conduit 11, and as a result, the mixing effect of this wake will not reach the entire area.

第7図に、噴出された他の流体の濃度の半値幅fを測定
した結果を示す。この測定はノズル17の長さlを3種
類変えて行なわれており、G1はl/D=0、G2はl
/D−1.17、G3はl/D=3.28の場合をそれ
ぞれ示す。また一点鎖線Jは母管15の後流の半値巾b
を示す。上記第7図の曲線G1〜G3により示されてい
るように、他の流体の噴流は、ノズル17から噴出され
た直後は、噴流の勢いがあるから緩やかにその幅を拡大
するが、その後しばらくの間は急激な拡大を示し、さら
にその後再び緩やかな拡大に変わる。
FIG. 7 shows the results of measuring the half width f of the concentration of other ejected fluids. This measurement was carried out with three different lengths l of the nozzle 17, G1 was l/D=0, G2 was l
/D-1.17 and G3 respectively show the case of l/D=3.28. In addition, the dashed line J is the half width b of the wake of the main pipe 15.
shows. As shown by the curves G1 to G3 in FIG. 7 above, immediately after the jet of other fluid is ejected from the nozzle 17, the width of the jet gradually expands due to the force of the jet, but after that, for a while. It shows a rapid expansion for a period of time, and then changes to a gradual expansion again.

これは、噴流が後流の中に一杯拡がるまでは急激な拡大
をするが、一杯に広がつた後は、後流の幅2bの拡大に
つれて拡大するだけとなるためである。したがつて、速
やかに混合を行なわせるには、噴流の急激な拡大が完了
するまでに、隣接する噴流同志が重なり合うか、または
、噴流が流体管路11(第2図参照)の内壁に達するよ
うにしなければならない。噴流が後流中に一杯拡がつた
ときの噴流の幅は、種々の実験からほぼ5Dであること
が判明している。これから、第2図の母管15の設定間
隔tを、t≦5D すなわち、 とすれば、速やかな混合が保証される。
This is because the jet expands rapidly until it fully expands into the wake, but after it fully expands, it only expands as the width 2b of the wake increases. Therefore, in order to achieve rapid mixing, it is necessary for adjacent jets to overlap or for the jet to reach the inner wall of the fluid conduit 11 (see Figure 2) before the rapid expansion of the jet is completed. You must do so. It has been found from various experiments that the width of the jet when it is fully expanded into the wake is approximately 5D. From now on, if the set interval t of the main pipe 15 in FIG. 2 is set to t≦5D, that is, rapid mixing is guaranteed.

つぎに、上記(1)式でD/ ZO.6とした理由をS
t= 3述べる。
Next, using the above equation (1), D/ZO. The reason why it was set as 6 is S.
State t=3.

D/tが大きいと、第2図の母管15による流体管路1
1の閉塞が大となり、この流体管路11の圧力損失が増
加して、この流体管路11に一の流体を流すための送風
機やポンプの所要動力が増加する。
When D/t is large, the fluid pipe line 1 by the main pipe 15 in FIG.
The blockage of fluid pipe 1 increases, pressure loss in fluid pipe line 11 increases, and the power required for a blower or a pump to flow fluid in fluid pipe line 11 increases.

この様子を第8図に示す。同図において、縦軸の圧力損
失係数は、母管15の上流側と下流側の圧力差、すなわ
ち圧力損失△Pを、上記一の流体の動圧σUZ/2で除
したものである。この第8図から明らかなように、D/
1が0.6以上になると、圧力損失係数が急増する。し
たがつて、とするのが望ましい。
This situation is shown in FIG. In the figure, the pressure loss coefficient on the vertical axis is the pressure difference between the upstream side and the downstream side of the main pipe 15, that is, the pressure loss ΔP, divided by the dynamic pressure σUZ/2 of the one fluid. As is clear from this Figure 8, D/
When 1 becomes 0.6 or more, the pressure loss coefficient increases rapidly. Therefore, it is desirable to

つぎに、上記(2)式が成立する理由を述べる。Next, the reason why the above formula (2) holds true will be described.

後流の混合作用の強さは、第3図に示した最大速度欠損
△Umaxに比例する。一方、この最大速度欠損△Um
axは、一般に、1イ?に比例して下流へ行くにしたが
い減少する。この減少の様子を第9図に示す。ここで上
記Xは、母管15の中心23から下流へ向つての距離で
ある。同図は、母管15が円管であつて、かつ、レイノ
ルズ数Re=UOOD/vが、この種流体混合装置の通
常の範囲である103〜4×105の範囲に入つている
場合における理論計算値を示している。なお、上記νは
一の流体の動粘性係数を示す。この第9図によれば、△
Umax/UOOは、x/D=5で約0.5、x/D−
10で約0.3、x/D−20で約0.2へと減少して
いることがわかる。したがつて、この減少に伴ない、後
流の混合作用の強さも減少する。このことは、ノズル1
7の長さlをあまり長くすると、混合作用が極端に低下
してしまうことを意味する。この混合作用の極端な低下
を避けるには、l/Dを種々変更した実験の結果、/U
;::v とする必要があることが判明した。
The strength of the mixing action of the wake is proportional to the maximum velocity deficit ΔUmax shown in FIG. On the other hand, this maximum speed deficit △Um
Ax is generally 1? It decreases in proportion to the downstream direction. The state of this decrease is shown in FIG. Here, the above-mentioned X is the distance from the center 23 of the main pipe 15 toward the downstream. The figure shows a theoretical example where the main tube 15 is a circular tube and the Reynolds number Re=UOOD/v is in the range of 103 to 4×105, which is the normal range for this type of fluid mixing device. Calculated values are shown. Note that ν represents the kinematic viscosity coefficient of one fluid. According to this Figure 9, △
Umax/UOO is approximately 0.5 at x/D=5, x/D-
It can be seen that it decreases from about 0.3 at x/D-20 to about 0.2 at x/D-20. Therefore, with this decrease, the strength of the mixing effect of the wake also decreases. This means that nozzle 1
If the length l of 7 is made too long, this means that the mixing effect will be extremely reduced. In order to avoid this extreme drop in mixing effect, /U
;::v It turned out that it was necessary.

上述のように、この発明によれば流体の混合が急速に行
なわれるから、第1図に示す混合に必要な流体管路11
の所要表さLが小さくなる。
As described above, according to the present invention, the fluids are mixed rapidly, so that the fluid pipe line 11 necessary for mixing shown in FIG.
The required expression L becomes smaller.

実際にこの長さLを調べる実験を行なつたところ、つぎ
のような結果が得られた。すなわち、第10図に示すよ
うに、ノズル17の噴出口16から噴流の中心線22に
沿つての下流への距離をX1、噴流の濃度をC1噴流と
直交する断面上での平均濃度をC、濃度分布の最大幅を
2△Cとすると、第11図に示すような測定結果が得ら
れた。
When an experiment was actually conducted to investigate this length L, the following results were obtained. That is, as shown in FIG. 10, the distance downstream from the jet nozzle 16 of the nozzle 17 along the center line 22 of the jet is X1, the concentration of the jet is C1, and the average concentration on the cross section perpendicular to the jet is C. Assuming that the maximum width of the concentration distribution is 2ΔC, the measurement results shown in FIG. 11 were obtained.

この測定において、母管15の設定間隔t、ノズル17
の取付間隔e、母管15の外径D、およびノλル17の
長さlの間の関係は、t=ElD/t=0.46、l/
D−3とした。第11図の横軸は上記距離X1を上記設
定間隔tで無次元化したものを、縦軸は上記最大幅の半
分である△Cと上記平均濃度Cとの比をそれぞれ示す。
縦軸の△C/cは混合が促進されるにしたがつて小さく
なり、終局的にはゼロになつて一様な混合流れとなる。
実用上、△C/σ−0.05〜0.01になれば一様に
混合されたとみなせるので、第11図より、混合に必要
な距離はX1/t=5〜7であることがわかる。したが
つて、上記流体管路11の所要長さLは、となる。
In this measurement, the set interval t of the main pipe 15, the nozzle 17
The relationship between the installation interval e, the outer diameter D of the main pipe 15, and the length l of the groove 17 is t=ElD/t=0.46, l/
It was designated as D-3. The horizontal axis of FIG. 11 represents the distance X1 made dimensionless by the set interval t, and the vertical axis represents the ratio of ΔC, which is half of the maximum width, to the average density C.
ΔC/c on the vertical axis becomes smaller as mixing is promoted, and eventually reaches zero, resulting in a uniform mixed flow.
Practically speaking, if ΔC/σ -0.05 to 0.01, it can be considered to be uniformly mixed, so from Figure 11 it can be seen that the distance required for mixing is X1/t = 5 to 7. . Therefore, the required length L of the fluid conduit 11 is as follows.

上記所要長さLは、ノズル17が1本である場合には、
設定間隔t(−e)を第2勝の管路幅Bと置き換えて、
となる。
The above required length L is, when there is one nozzle 17,
Replace the set interval t(-e) with the second winning pipe width B,
becomes.

ノズル17を多数配置して設定間隔tを小さくすれば、
上記所要長さLは小さくなる。
If a large number of nozzles 17 are arranged and the set interval t is made small,
The above required length L becomes smaller.

なお、流体管路11の断面が矩形でないとき、上記(4
)式の管路幅Bは、管路断面積をAとして、仮想的にB
]▲Kg表わされる。また、この発明は母管15の後流
の乱れを利用して混合するから、ノズル17から噴出す
る他の流体の噴出速度は、従来におけるような噴流拡散
を利用する場合に比べて、非常に小さくてよいので、送
風機やポンプを含む噴出機構が小形化される効果もある
Note that when the cross section of the fluid pipe line 11 is not rectangular, the above (4)
) formula, the pipe width B is virtually calculated by assuming that the pipe cross-sectional area is A.
] ▲ Represented in Kg. In addition, since this invention uses the turbulence of the wake of the main pipe 15 to mix, the ejection speed of other fluids ejected from the nozzle 17 is much higher than when using jet diffusion as in the past. Since it can be small, there is also the effect that the blowing mechanism including the blower and pump can be made smaller.

なお、上記第1図〜第11図に示した実施例では、母管
15として円管を用いたが、後流領域21を拡大したり
、後流領域21の中の乱れを強くするために、第12図
に示すような矩形管や、第13図に示すようなひれ25
を付けた円管を用いてもよく、その場合には、母管15
における流れと直交する方向の幅が、上記実施例の円管
の外径Dに相当する。
In the embodiments shown in FIGS. 1 to 11 above, a circular pipe was used as the main pipe 15, but in order to enlarge the wake region 21 or strengthen the turbulence in the wake region 21, , a rectangular tube as shown in FIG. 12, or a fin 25 as shown in FIG.
A circular tube with a main tube 15 may be used.
The width in the direction perpendicular to the flow corresponds to the outer diameter D of the circular tube in the above embodiment.

以上説明したように、この発明によれば混合に必要な流
体管路の所要長さが短くなるので、流体管路が短縮され
るうえに、流体の噴出機構も小形化されるので、流体混
合装置全体が非常に小形化される。
As explained above, according to the present invention, the required length of the fluid pipe line required for mixing is shortened, so the fluid pipe line is shortened, and the fluid ejection mechanism is also downsized, so the fluid mixing The entire device is made very small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す縦断面図、第2図は
第1図の2−2線に沿つた断面図、第3図は第1図の3
−3線に沿つた拡大断面図、第4図は噴流の濃度分布を
示す模式図、第5図は噴流の半値幅の下流へ向つての変
化を示す特性図、第6図は噴流の最大濃度の下流へ向つ
ての変化を示す特性図、第7図は噴流の濃度の半値幅の
下流へ向つての変化をノズルの長さをパラメータとして
示す特性図、第8図は母管の設定間隔に対する流体管路
の圧力損失を示す特性図、第9図は最大速度欠損の下流
へ向つての変化を示す特性図である、第10図は複数の
噴流による濃度分布を示す模式図、第11図は第10図
の濃度分布の最大幅の下流へ向つての変化を示す特性図
、第12図は母管の変形例を示す断面図、第13図は母
管の他の変形例を示す断面図である。 11・・・・・・流体管路、12・・・・・・流れ方向
、13・・・・・・噴出器、14・・・・・・直交する
方向、15・・・・・・母管、16・・・・・・噴出口
、17・・・・・・ノズル。
1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. 3 is a sectional view taken along line 2-2 in FIG.
Figure 4 is a schematic diagram showing the concentration distribution of the jet, Figure 5 is a characteristic diagram showing the change in the half-width of the jet toward the downstream, and Figure 6 is the maximum of the jet. A characteristic diagram showing the change in concentration toward the downstream. Figure 7 is a characteristic diagram showing the change in the half width of the jet concentration toward the downstream using the length of the nozzle as a parameter. Figure 8 is the setting of the main pipe. FIG. 9 is a characteristic diagram showing the pressure loss of the fluid pipe line with respect to the spacing. FIG. 9 is a characteristic diagram showing the change in the maximum velocity deficit toward the downstream. FIG. Fig. 11 is a characteristic diagram showing the change in the maximum width of the concentration distribution in Fig. 10 toward the downstream, Fig. 12 is a sectional view showing a modification of the main pipe, and Fig. 13 is a diagram showing another modification of the main pipe. FIG. 11...Fluid pipe line, 12...Flow direction, 13...Ejector, 14...Orthogonal direction, 15...Mother Pipe, 16... spout, 17... nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 一の流体が流れる流体管路の中に、他の流体を噴出
する噴出器を配設し、この噴出器は上記一の流体の流れ
方向と直交する方向に沿つて配置された母管と、この母
管の後面に取り付けられて母管の後流領域内に噴出口を
有するノズルとからなる流体混合装置。
1. An ejector that ejects another fluid is disposed in a fluid pipeline through which one fluid flows, and this ejector is connected to a main pipe arranged along a direction perpendicular to the flow direction of the first fluid. , a nozzle attached to the rear surface of the main pipe and having a spout in the wake region of the main pipe.
JP55023599A 1980-02-26 1980-02-26 fluid mixing device Expired JPS5915006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55023599A JPS5915006B2 (en) 1980-02-26 1980-02-26 fluid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55023599A JPS5915006B2 (en) 1980-02-26 1980-02-26 fluid mixing device

Publications (2)

Publication Number Publication Date
JPS56118727A JPS56118727A (en) 1981-09-17
JPS5915006B2 true JPS5915006B2 (en) 1984-04-07

Family

ID=12115057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55023599A Expired JPS5915006B2 (en) 1980-02-26 1980-02-26 fluid mixing device

Country Status (1)

Country Link
JP (1) JPS5915006B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117745U (en) * 1983-01-31 1984-08-08 石川島播磨重工業株式会社 Hopper stirring device for concrete pump
JPS60132624A (en) * 1983-12-20 1985-07-15 Babcock Hitachi Kk Ammonia injection apparatus
JPS61138529A (en) * 1984-12-10 1986-06-26 Idemitsu Petrochem Co Ltd Production of emulsified solution for sizing
US7383850B2 (en) 2005-01-18 2008-06-10 Peerless Mfg. Co. Reagent injection grid
CN117282227B (en) * 2023-11-23 2024-02-13 中国华能集团清洁能源技术研究院有限公司 Low-temperature flue gas adsorption tower with flue gas mixing function and low-temperature flue gas adsorption system

Also Published As

Publication number Publication date
JPS56118727A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
JP3122320B2 (en) Gas-liquid dissolution mixing equipment
JPS60227820A (en) Rapid inline mixer of two fluids
JP2004069061A (en) Vortex generator for controlling back wash
WO1995025929A1 (en) Sootblower nozzle
JP2670492B2 (en) Gas-liquid dissolving and mixing equipment
CN105570598A (en) Pipe rectifying device
JPS5915006B2 (en) fluid mixing device
US7249614B2 (en) Structure and method for improving flow uniformity and reducing turbulence
US6644355B1 (en) Diffusing corner for fluid flow
Sullerey et al. Performance comparison of straight and curved diffusers
US5362150A (en) Fluid mixer
JP3207684B2 (en) Ammonia gas injection device
JPH0521620B2 (en)
CN100378408C (en) Flow spreading mechanism
JPH0510831Y2 (en)
JPH0448811Y2 (en)
JPS5916121Y2 (en) fluid mixing device
JPS63116032A (en) Jet mixer with by-pass device
CA1116509A (en) Venturi scrubber
JP2003003515A (en) Booster for pneumatic pumping and method for arranging the same
JPH0538408A (en) Gas-liquid separation apparatus
JP2802820B2 (en) Method and apparatus for suppressing turbulence by self-generating swirling flow
RU2666683C2 (en) Cast ejector
EP0227680A1 (en) Fluid flow device.
RU2002128C1 (en) Method and device for converting continuum flow