JP2670492B2 - Gas-liquid dissolving and mixing equipment - Google Patents

Gas-liquid dissolving and mixing equipment

Info

Publication number
JP2670492B2
JP2670492B2 JP5234173A JP23417393A JP2670492B2 JP 2670492 B2 JP2670492 B2 JP 2670492B2 JP 5234173 A JP5234173 A JP 5234173A JP 23417393 A JP23417393 A JP 23417393A JP 2670492 B2 JP2670492 B2 JP 2670492B2
Authority
JP
Japan
Prior art keywords
gas
liquid
mixing
cross
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5234173A
Other languages
Japanese (ja)
Other versions
JPH0760088A (en
Inventor
勝幸 町谷
公雄 平沢
登紀男 堀
雅一 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Corp filed Critical Idec Corp
Priority to JP5234173A priority Critical patent/JP2670492B2/en
Priority to CN93114861A priority patent/CN1049845C/en
Priority to KR1019930024053A priority patent/KR0173996B1/en
Publication of JPH0760088A publication Critical patent/JPH0760088A/en
Application granted granted Critical
Publication of JP2670492B2 publication Critical patent/JP2670492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、液体中に気体を混合
分散させたり、気体を効率よく液体に溶解させるための
気液溶解混合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-liquid dissolving and mixing apparatus for mixing and dispersing a gas in a liquid and efficiently dissolving the gas in the liquid.

【0002】[0002]

【従来の技術】本願出願人の特願平4−148769号
等による従来の気液溶解混合装置は、図7に示すよう
に、液体中に気体を混合する混合器10を有し、この混
合器10の流入部13に液体管路の先端部が取り付けら
れている。混合器10内には、図7に示すように、絞り
部であるのど部12が中央部に設けられたベンチュリ管
状の流路14が形成されている。このベンチュリ管状の
流路14の下流側には、テーパ状に滑らかに形成された
広がり部16が設けられ、のど部12からわずかに下流
側の広がり部16のテーパ面には、気体を流路14中に
混合させるための気体流入口18が形成されている。そ
して、広がり部16の下流側には、気体流入口18から
流入した気体と流路中の液体とを混合する図示しない混
合部が設けられている。
2. Description of the Related Art A conventional gas-liquid dissolving / mixing apparatus disclosed in Japanese Patent Application No. 4-148769 of the present applicant has a mixer 10 for mixing a gas into a liquid as shown in FIG. The tip of the liquid conduit is attached to the inflow portion 13 of the container 10. Inside the mixer 10, as shown in FIG. 7, a venturi-shaped flow path 14 is formed in which a throat portion 12 which is a throttle portion is provided in the central portion. On the downstream side of the venturi-shaped flow path 14, there is provided a widened portion 16 that is smoothly formed in a tapered shape, and a gas is flowed on the tapered surface of the widened portion 16 slightly downstream from the throat portion 12. A gas inlet 18 for mixing in 14 is formed. A mixing portion (not shown) that mixes the gas flowing from the gas inlet 18 with the liquid in the flow path is provided on the downstream side of the spreading portion 16.

【0003】[0003]

【発明が解決しようとする課題】上記従来の装置では、
気体流入口18が、広がり部16のテーパ面に形成され
ているため、気体流入口18の形成箇所の広がり部16
の断面積のうち、のど部12側断面積と混合部側断面積
とが異なったものになり気体の吸引流入が不安定になる
という問題があった。また、混合部での加圧は、混合部
側断面の断面積に依存し、断面積が大きくなると加圧が
低くなる傾向にあり、逆に、吸引気体量は、のど部12
側の断面の断面積に依存し断面積が大きいと多くなる傾
向があるため、気体を高加圧で高吸引することが難しか
った。さらに、混合部が大容量化すればするほど、全体
の液流量に対する気体流量の割合が小さくなる。そのた
め、混合部を大容量化した際に気体が吸引不足となり、
気体吸引量が体積比で20%以上で高加圧下に維持した
場合、気液混合流の流量は、40リットル/min前後
が限界だった。
In the above-mentioned conventional apparatus,
Since the gas inlet port 18 is formed on the tapered surface of the expanding portion 16, the expanding portion 16 at the location where the gas inlet port 18 is formed.
There was a problem that the throat 12 side cross-sectional area and the mixing section side cross-sectional area of the cross-sectional area became different from each other and the suction and inflow of gas became unstable. Further, the pressurization in the mixing section depends on the cross-sectional area of the cross section on the mixing section side, and when the cross-sectional area increases, the pressurization tends to decrease.
It depends on the cross-sectional area of the cross section on the side, and the larger the cross-sectional area, the larger the cross-sectional area. Furthermore, the larger the volume of the mixing section, the smaller the ratio of the gas flow rate to the total liquid flow rate. Therefore, when the volume of the mixing section is increased, the gas becomes insufficient to suck,
When the amount of gas suction was 20% or more in volume ratio and maintained under high pressure, the flow rate of the gas-liquid mixed flow was limited to around 40 liters / min.

【0004】さらに、従来の方式では、混合器10の製
作の際に、広がり部16に正確なテーパを形成し、広が
り部16の正確な位置に気体流入口18用の穴を開ける
必要があるため、その加工が非常に難しいものであっ
た。
Further, in the conventional method, when the mixer 10 is manufactured, it is necessary to form an accurate taper on the expanded portion 16 and to make a hole for the gas inlet 18 at an accurate position of the expanded portion 16. Therefore, the processing was very difficult.

【0005】この発明は、上記従来技術の問題点に鑑み
て成されたもので、簡単な構成で、効率よく気体と液体
との混合が可能であり、安定に大量の気液混合流を得る
ことができる気液溶解混合装置を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems of the prior art. It is possible to efficiently mix a gas and a liquid with a simple structure and stably obtain a large amount of gas-liquid mixed flow. An object of the present invention is to provide a gas-liquid dissolving and mixing device that can be used.

【0006】[0006]

【課題を解決するための手段】この発明は、流路に設け
られたベンチュリ管やオリフィス等の絞り部と、この絞
り部に続いて下流側に設けられ液体流路方向に断面積の
等しい気体流入部を設け、この気体流入部に外部から気
体を流入させる気体流入口を形成し、上記気体流入部の
下流側に流路を徐々に広げた広がり部を設け、上記広が
り部の下流に流路中の液体と上記気体流入部の気体圧力
より高い静圧下で加圧混合する混合部と、この混合部の
出口側に設けられたノズルとを備え、上記気体流入部の
断面積は上記混合部の断面積より小さく、このノズルの
ノズル孔の断面積の総和を、上記混合部の断面積よりも
小さく且つ上記気体流入部での上記液体の静圧が上記気
体流入口から流入する気体の圧力より低くなるように設
定した気液溶解混合装置である。さらに、上記気体流入
部の上記液体の流れ方向の長さは、上記絞り部から出た
上記液体が広がって壁面に当たるまでの長さ以下に設定
されているさらに、上記気体流入部と、上記ノズル口
の断面積の総和の関係は、S が気体流入部の断面積、
はノズル口の断面積の総和、P は気体流入部の総
圧、δPは気体流入部からノズル口までの圧力損失、P
はノズル口の出口の静圧、P が気体流入口から流入
する気体の圧力とすると、P は流体力学上の連続の式
及びベルヌーイの定理と連続の式による以下の式 =(1−S 2 B /S 2 A )P +(δP+P )S 2 B /S 2 A によって与えられる気体流入部での液体の静圧であり、 とP が、P <P を満たすものである
The present invention is directed to a throttle portion such as a Venturi tube or an orifice provided in a flow passage, and a gas provided downstream of the throttle portion and having a uniform cross-sectional area in the liquid flow passage direction. An inflow portion is provided, a gas inflow port for inflowing gas from the outside is formed in the gas inflow portion, and a widened portion that gradually widens the flow path is provided on the downstream side of the gas inflow portion and flows downstream of the widened portion. Liquid pressure in the channel and gas pressure at the gas inlet
A mixing section for pressurizing and mixing under a higher static pressure and a nozzle provided on the outlet side of the mixing section are provided , and the gas inflow section
The cross-sectional area is smaller than that of the mixing part,
The total cross-sectional area of the nozzle hole is
The static pressure of the liquid at the gas inlet is small and
Set it so that it is lower than the pressure of the gas flowing from the body inlet.
It is a fixed gas-liquid dissolution mixing device. In addition, the gas inflow
The length of the part in the flow direction of the liquid comes out from the throttle part.
Set below the length until the above liquid spreads and hits the wall surface
Have been . Furthermore, the gas inflow part and the nozzle port
Relationship of the sum of the cross-sectional area of the cross-sectional area of S A is the gas inlet portion,
S B is the sum of the cross-sectional areas of the nozzle port, P 1 is the total of the gas inflow part
Pressure, δP is the pressure loss from the gas inlet to the nozzle port, P
B is the static pressure at the outlet of the nozzle, and P G is flowing in from the gas inlet
P A is a continuum of fluid dynamics
And follows the Bernoulli's theorem by continuity equation equation P A = (1-S 2 B / S 2 A) P 1 + (δP + P B) of the liquid at the gas inflow portion provided by S 2 B / S 2 A Static pressure, P A and P G satisfy P A <P G

【0007】[0007]

【作用】この発明の気液溶解混合装置は、ベンチュリ管
ののど部等の絞り部のわずか下流側の負圧部から気体を
液体の流れの中に流入させ、流れが遅くなり静圧が増大
する混合部で流入した気体を液体中に加圧溶解させ、そ
の後、出口のノズルによって、上記気液混合流を加速さ
せて再び静圧を低くし、溶解した気体を微小気泡として
液体中から析出させるものである。さらに、流入する気
体の条件によりノズルを気液混合流が通過する際に、流
れの乱れにより混合した気泡をせん断し細分化して微小
気泡を発生させるようにしたものである。特に、気体流
入口が流路方向に断面積が一定の気体流入部に形成さ
れ、安定に効率よく気体が液体中に吸引されるものであ
る。
In the gas-liquid dissolving and mixing apparatus of the present invention, the gas is introduced into the liquid flow from the negative pressure portion slightly downstream of the throttle portion such as the throat portion of the Venturi tube, and the flow becomes slow and the static pressure increases. The gas flowing in the mixing section is dissolved under pressure in the liquid, and then the gas-liquid mixed flow is accelerated by the nozzle at the outlet to lower the static pressure again, and the dissolved gas is precipitated from the liquid as fine bubbles. It is what makes me. In addition, the inflow
When the gas-liquid mixed flow passes through the nozzle depending on the body condition,
Due to the turbulence, the mixed bubbles are sheared and subdivided into minute pieces.
It is designed to generate bubbles. In particular, the gas inflow port is formed in the gas inflow part having a constant cross-sectional area in the flow path direction, and the gas is sucked into the liquid stably and efficiently.

【0008】[0008]

【実施例】以下この発明の気液溶解混合装置の実施例に
ついて図面に基づいて説明する。図1、図2はこの発明
の第一実施例を示すもので、図1に示すように、この実
施例の気液溶解混合装置は、液体中に気体を混合する混
合器20を有し、この混合器20の入口部23に図示し
ない液体管路の先端部が取り付けられている。混合器2
0内には、図1に示すように、絞り部であるのど部22
が中央部に設けられたベンチュリ管状の流路24が形成
されている。このベンチュリ管状の流路24の下流側に
は、のど部22よりわずかに内径が大きい円筒状の気体
流入部27が形成され、この気体流入部27の下流側
に、滑らかにテーパ状に広がった広がり部26が形成さ
れている。そして、この気体流入部27には、気体を流
路24中に混合させるための気体流入口28が形成され
ている。気体流入口28には、所定の気体を導く図示し
ない気体流入管路の先端部が接続されている。ここで、
のど部22から噴出してきた液体の流れは、のど部22
を通過後の後コーン状に拡大するため、気体流入部27
の長さには制限がある。即ち、のど部22から流れが所
定の角度で広がり、その流れが気体流入部27の壁面に
当たるまでの長さが最大値であると言える。実験的に
は、のど部22と気体流入部27との段差aと平行部の
流さbの関係は、次の式、 b<9.5a を満たすものであれば安定して気体を吸引することが判
明している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a gas-liquid dissolving and mixing apparatus of the present invention will be described below with reference to the drawings. 1 and 2 show a first embodiment of the present invention. As shown in FIG. 1, the gas-liquid dissolving and mixing apparatus of this embodiment has a mixer 20 for mixing a gas into a liquid, At the inlet 23 of the mixer 20, a tip end of a liquid conduit (not shown) is attached. Mixer 2
As shown in FIG. 1, the inside of 0 is a throat portion 22 which is a throttle portion.
A venturi-shaped flow path 24 having a central part is formed. A cylindrical gas inflow portion 27 having an inner diameter slightly larger than that of the throat portion 22 is formed on the downstream side of the venturi-shaped flow path 24, and is smoothly tapered in a downstream side of the gas inflow portion 27. A widened portion 26 is formed. The gas inflow portion 27 is formed with a gas inflow port 28 for mixing the gas into the flow path 24. The gas inlet 28 is connected to the tip of a gas inflow conduit (not shown) that guides a predetermined gas. here,
The flow of liquid ejected from the throat portion 22 is
After passing through the gas, the gas inflow part 27
Is limited in length. That is, it can be said that the length of the flow from the throat portion 22 spreading at a predetermined angle and reaching the wall surface of the gas inlet portion 27 is the maximum value. Experimentally, the relationship between the level difference a between the throat portion 22 and the gas inflow portion 27 and the flow rate b in the parallel portion should satisfy the following equation: b <9.5a Is known.

【0009】広がり部26の下流側には、気体流入口2
8から流入した気体と流路中の液体とを混合する混合部
30が設けられている。混合部30は、その外径を加圧
の程度に合わせて任意に設定し得るものであり、ここで
は広がり部26の最大径よりわずかに広い内径の円筒状
に形成されている。この混合部30の先端には、複数の
ノズル口32が形成されたノズル34が取り付けられて
いる。そして、ノズル34は、所定の液体が収容された
水槽等の底部に接続され、ノズル口32が液体内で開口
している。
On the downstream side of the expanding portion 26, the gas inlet 2
A mixing unit 30 that mixes the gas flowing from 8 and the liquid in the flow path is provided. The outer diameter of the mixing portion 30 can be arbitrarily set according to the degree of pressurization, and here, the mixing portion 30 is formed in a cylindrical shape having an inner diameter slightly wider than the maximum diameter of the spreading portion 26. A nozzle 34 having a plurality of nozzle openings 32 is attached to the tip of the mixing section 30. The nozzle 34 is connected to the bottom of a water tank or the like containing a predetermined liquid, and the nozzle port 32 is open in the liquid.

【0010】この実施例の気液溶解混合装置の作用につ
いて以下に説明する。先ず、混合器20の入口部23に
流入した液体は、ベンチュリ管ののど部22で加速され
て、一端静圧が低くなり気体流入部27、広がり部26
を経て流速が遅くなり再び静圧が増大する。この時、気
体流入部27に設けられた気体流入口28は、のど部2
2の直下流であり、この部分は相対的に負圧になってい
るため、気体が気体流入口28より流路中に流入する。
The operation of the gas-liquid dissolving and mixing apparatus of this embodiment will be described below. First, the liquid that has flowed into the inlet portion 23 of the mixer 20 is accelerated in the throat portion 22 of the Venturi tube, and once the static pressure becomes low, the gas inflow portion 27 and the widening portion 26 are reduced.
After that, the flow velocity decreases and the static pressure increases again. At this time, the gas inflow port 28 provided in the gas inflow part 27 has the throat portion 2
It is immediately downstream of 2, and since this portion has a relatively negative pressure, gas flows into the flow path from the gas inlet 28.

【0011】気体流入口28から流入した気体は、気泡
となって流路中を液体とともに混合部30に流れ、混合
部30の静圧がのど部22より高いのでその気体が液体
中に溶解していく。そして混合部30からノズル口32
を経て気泡とともに液体が噴射される。ノズル口32を
気液混合流が通過する際には、再び加速されるので、そ
の静圧が低くなり、液体中に溶解していた気体が微小気
泡として析出する。さらに溶解しきらなかった気泡も、
ノズル口32で加速される際の流れの乱れに等により、
細分化され小さな気泡となって液体とともに噴射され
る。
The gas flowing in from the gas inlet 28 flows as bubbles into the mixing section 30 together with the liquid in the flow path, and since the static pressure of the mixing section 30 is higher than that of the throat section 22, the gas is dissolved in the liquid. To go. From the mixing section 30 to the nozzle port 32
Then, the liquid is ejected together with the bubbles. When the gas-liquid mixed flow passes through the nozzle port 32, it is accelerated again, so that the static pressure becomes low, and the gas dissolved in the liquid is deposited as fine bubbles. In addition, air bubbles that have not completely dissolved,
Due to the turbulence of the flow when accelerated by the nozzle port 32,
It is subdivided into small bubbles that are ejected together with the liquid.

【0012】この発明の混合器20の気体流入部27
と、ノズル34のノズル口32の断面積の総和の関係は
以下の式(1)、(2)を満たすものであれば良い。 PA<PG …(1) PGは気体流入口28から流入する気体の圧力。PAは流
体力学上の連続の式及びベルヌーイの定理と連続の式に
よる以下の式によって与えられる気体流入部27での
体の静圧である。 PA=(1−S 2 B /S 2 A)P+(δP+P)S 2 B /S 2 A …(2) ここで、SAは気体流入部27の断面積、SBはノズル口
32の断面積の総和、P1は気体流入部27の総圧、δ
Pは気体流入部27からノズル口32までの圧力損失、
Bはノズル口32の出口の静圧である。
The gas inlet 27 of the mixer 20 of the present invention
And the total sum of the cross-sectional areas of the nozzle openings 32 of the nozzles 34 may satisfy the following expressions (1) and (2). P A <P G (1) P G is the pressure of the gas flowing from the gas inlet 28. P A is the liquid in the gas inflow part 27 given by the following equation based on the continuity equation and Bernoulli's theorem and the continuity equation in fluid mechanics.
The static pressure of the body . P A = (1-S 2 B / S 2 A ) P 1 + (δP + P B ) S 2 B / S 2 A (2) where S A is the cross-sectional area of the gas inflow portion 27 and S B is the nozzle. The total cross-sectional area of the mouth 32, P 1 is the total pressure of the gas inflow portion 27, δ
P is the pressure loss from the gas inlet 27 to the nozzle port 32,
P B is the static pressure at the outlet of the nozzle port 32.

【0013】従って、上記式(1)、(2)を満たす様
に気体流入部27及びノズル口32の内径を設定するこ
とにより、液体中に気体を効率的に混合し溶解させる最
適な条件が得られるものである。また、混合部30は、
加圧下で液体に気体が溶解し飽和するまでの気液の接触
時間が得られるものであればより好ましく、気液の接触
時間は混合部の体積に依存するので、混合部の長さがあ
る程度長い方が気体が飽和点にまで溶解する。
Therefore, by setting the inner diameters of the gas inflow portion 27 and the nozzle port 32 so as to satisfy the above equations (1) and (2), the optimum conditions for efficiently mixing and dissolving the gas in the liquid are obtained. Is what you get. Also, the mixing unit 30
It is more preferable if the contact time of gas-liquid until the gas is dissolved and saturated in the liquid under pressure can be obtained. Since the contact time of gas-liquid depends on the volume of the mixing part, the length of the mixing part is to some extent. The longer the gas is, the more it dissolves to the saturation point.

【0014】この実施例の気液溶解混合装置により、混
合部30の処理流量が160リットル/minで試験を
したところ、液体流量に対して気体体積が20%以上の
割合で混合した、高吸引高加圧状態を得ることができ
た。従って、従来のものよりも飛躍的に処理流量が増大
したことが証明された。
The gas-liquid dissolving and mixing apparatus of this example was tested at a processing flow rate of the mixing section 30 of 160 liters / min. As a result, it was found that the gas volume was 20% or more of the liquid flow rate, and high suction A high pressure state could be obtained. Therefore, it was proved that the processing flow rate was dramatically increased as compared with the conventional one.

【0015】次にこの発明の第二実施例について図3を
基にして説明する。ここで、上述の実施例と同様の部材
は同一符号を付して説明を省略する。この実施例の気液
溶解混合装置は、上記第一実施例の混合部として、図3
に示すように、上から下に液体が流れ落ちる流路38を
形成した気液混合槽40を設けたものである。従って、
流路38の入口部には混合器20が取り付けられ、流路
38の出口部管路43を介してノズル44が設けられて
いるものである。
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. The gas-liquid dissolving and mixing apparatus of this embodiment has the same structure as that of the mixing unit of the first embodiment shown in FIG.
As shown in FIG. 3, a gas-liquid mixing tank 40 having a flow path 38 from which liquid flows down is provided. Therefore,
The mixer 20 is attached to the inlet of the flow path 38, and the nozzle 44 is provided via the outlet line 43 of the flow path 38.

【0016】この実施例の気液混合槽40は、緩急を繰
り返しながら段階的に液体が上から下に向う流路38を
有し、この流路38に気液混合流を流すことにより、流
路38内では、その上部に気体、下部に液体が流れる状
態になり、気液の接触面積が広い流れが得られるもので
ある。そして、緩急を繰り返しながら段階的に上から下
に流れ落ちる流路38の出口部の管路43の先端にノズ
ル44を設けることによって、この流路38内部の静圧
を高め、気液の反応、溶解効率を高めるものである。ま
た、気液混合流の流入管路の入り口より出口の流出管路
43の位置が低いため、流路38内に気液混合流が滞る
形になり、さらに、流路38において、密度の大きい液
体の方が気体よりも流出が容易になるため、気体が液体
よりも流路38内により多く滞り、流入の段階では比較
的気体の比率が低い場合であっても、流路38内では気
体の比率が高いものとなる。このため、気液混合槽40
内部で、高効率な気体溶解が行われる。
The gas-liquid mixing tank 40 of this embodiment has a flow path 38 in which the liquid flows from top to bottom in a stepwise manner while repeating the steepness and steepness. In the passage 38, a gas flows in the upper part and a liquid flows in the lower part, so that a flow having a wide contact area of gas and liquid can be obtained. By providing a nozzle 44 at the end of the conduit 43 at the outlet of the flow path 38 that flows down gradually from top to bottom while repeating acceleration and deceleration, the static pressure inside the flow path 38 is increased, and the gas-liquid reaction, It improves the dissolution efficiency. Further, since the position of the outflow conduit 43 at the outlet is lower than the inlet of the inflow conduit of the gas-liquid mixed flow, the gas-liquid mixed flow is stagnant in the flow channel 38, and further, the density of the flow in the flow channel 38 is large. Since the liquid is easier to flow out than the gas, the gas stays in the flow channel 38 more than the liquid, and even if the ratio of the gas is relatively low at the inflow stage, the gas flows in the flow channel 38. The ratio of is high. Therefore, the gas-liquid mixing tank 40
Inside, highly efficient gas dissolution is performed.

【0017】次にこの発明の第三実施例について図4を
基にして説明する。ここで、上述の実施例と同様の部材
は同一符号を付して説明を省略する。この実施例では、
より微細な気泡のみを得るために、混合部で溶解しきら
なかった気泡を、ノズル34のノズル口32でせん断す
るのではなくて、ノズル34の手前の分岐点45から上
方を向いて設けられた分岐路46より、余剰気体として
外部に放出しているものである。これにより析出した気
泡だけを液中に放出することができ、より微細な気泡を
有した液体のみを製造することができる。
Next, a third embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this example,
In order to obtain only finer bubbles, the bubbles that have not been completely dissolved in the mixing portion are provided not by shearing at the nozzle port 32 of the nozzle 34 but by facing upward from the branch point 45 in front of the nozzle 34. The excess gas is discharged to the outside from the branch passage 46. As a result, only the precipitated bubbles can be discharged into the liquid, and only the liquid having finer bubbles can be manufactured.

【0018】次にこの発明の第四実施例について図5を
基にして説明する。ここで、上述の実施例と同様の部材
は同一符号を付して説明を省略する。この実施例は、混
合器から気液混合流が送り込まれる配管47,48の間
に、中間ノズル50を設けたものである。この配管4
7,48は、気液の混合部を兼ねるものであり、鋼管や
フレキシブルな管路でもよく、流れが乱流になる方がよ
り効率良く気体と液体が混合されるので、その管路を螺
旋状に設定したり、管路のレイノルズ数を乱流になる値
以上の条件に設定しても良い。
Next, a fourth embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this embodiment, an intermediate nozzle 50 is provided between the pipes 47 and 48 into which the gas-liquid mixed flow is sent from the mixer. This piping 4
7 and 48 also serve as a gas-liquid mixing section, and may be a steel pipe or a flexible pipe line. Since gas and liquid are mixed more efficiently when the flow becomes turbulent, the pipe line is spiraled. Alternatively, the Reynolds number of the conduit may be set to a value equal to or larger than a value that causes turbulence.

【0019】次にこの発明の第五実施例について図6を
基にして説明する。ここで、上述の実施例と同様の部材
は同一符号を付して説明を省略する。この実施例は、混
合器60の広がり部56が段階的に形成されたものであ
る。これにより、気体流入部27及び広がり部56の加
工がきわめて容易なものとなり、より生産効率の良いも
のとなる。また、広がり部56の段数は任意に設定出来
るものであり、少なくとも混合部30までに1段以上形
成されていれば良い。さらに、段階的に広がる広がり部
56及び気体流入部27の各段差部は、所定角度傾斜し
た面に形成しても良い。
Next, a fifth embodiment of the present invention will be described with reference to FIG. Here, the same members as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. In this embodiment, the expanding portion 56 of the mixer 60 is formed stepwise. As a result, the processing of the gas inflow portion 27 and the widening portion 56 becomes extremely easy, and the production efficiency becomes higher. Further, the number of steps of the spreading portion 56 can be set arbitrarily, and it is sufficient that at least one step is formed by the mixing portion 30. Further, each stepped portion of the expanding portion 56 and the gas inflow portion 27 that gradually expand may be formed on a surface inclined by a predetermined angle.

【0020】尚、この発明の気液溶解混合装置の混合器
の絞り部は、ベンチュリ管により形成したものや、オリ
フィス状に急激に絞ったものでも良く、その形状は問わ
ないものである。さらに、ノズルの形状やノズル口の数
も所定の条件に一致させて適宜設定できるものである。
The throttle portion of the mixer of the gas-liquid dissolving / mixing device of the present invention may be formed by a Venturi tube or may be sharply throttled into an orifice shape, and its shape is not limited. Further, the shape of the nozzle and the number of nozzle ports can be set appropriately in accordance with predetermined conditions.

【0021】[0021]

【発明の効果】この発明の気液溶解混合装置は、簡単な
装置で微細な気泡を連続的に安定して効率よく形成する
ことができ、液体中に吸引する気体の高加圧、高吸引状
態を得ることができ、最大処理流量も従来のものの数倍
以上とすることができる。また、装置の製作においても
混合器の加工が容易な構造である。
The gas-liquid dissolving and mixing apparatus of the present invention is capable of continuously and efficiently forming fine bubbles with a simple apparatus, and highly pressurizes and sucks gas to be sucked into a liquid. The state can be obtained, and the maximum processing flow rate can be made several times higher than the conventional one. In addition, the structure is such that the mixer can be easily processed when manufacturing the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の気液溶解混合装置の第一実施例の混
合器を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a mixer of a first embodiment of a gas-liquid dissolving and mixing apparatus of the present invention.

【図2】この発明の第一実施例の気液溶解混合装置の混
合器の部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of the mixer of the gas-liquid dissolution mixing device according to the first embodiment of the present invention.

【図3】この発明の第二実施例の気液溶解混合装置の混
合槽の縦断面図である。
FIG. 3 is a vertical cross-sectional view of a mixing tank of a gas-liquid dissolution mixing device according to a second embodiment of the present invention.

【図4】この発明の第三実施例の気液溶解混合装置のノ
ズル部分の部分縦断面図である。
FIG. 4 is a partial vertical sectional view of a nozzle portion of a gas-liquid dissolving and mixing apparatus according to a third embodiment of the present invention.

【図5】この発明の第四実施例の気液溶解混合装置の中
間ノズル部分の部分縦断面図である。
FIG. 5 is a partial vertical sectional view of an intermediate nozzle portion of a gas-liquid dissolving / mixing device according to a fourth embodiment of the present invention.

【図6】この発明の第五実施例の気液溶解混合装置の混
合器の縦断面図である。
FIG. 6 is a vertical cross-sectional view of a mixer of a gas-liquid dissolution mixing device according to a fifth embodiment of the present invention.

【図7】この発明の従来技術の混合器の縦断面図であ
る。
FIG. 7 is a vertical cross-sectional view of a prior art mixer of the present invention.

【符号の説明】[Explanation of symbols]

10,20,60 混合器 12,22 のど部 14,24,38 流路 16,26,56 広がり部 18,28 気体流入口 30 混合部 27 気体流入部 32 ノズル口 34 ノズル 10, 20, 60 Mixer 12, 22 Throat 14, 24, 38 Flow path 16, 26, 56 Expanding section 18, 28 Gas inlet 30 Mixing section 27 Gas inflow section 32 Nozzle port 34 Nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏 雅一 大阪府大阪市淀川区三国本町1丁目10番 40号 和泉電気株式会社内 (56)参考文献 特開 平6−285344(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Kashiwa 1-10-40 Mikunihonmachi, Yodogawa-ku, Osaka-shi, Izumi Electric Co., Ltd. (56) Reference JP-A-6-285344 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流路に設けられた絞り部と、この絞り部
につづいてこの絞り部よりわずかに内径が大きく所定長
さ断面積が一定に形成された気体流入部と、この気体流
入部に続いて設けられ下流側に向かって流路を広げた広
がり部と、上記気体流入部に設けられた気体流入口と、
上記広がり部の下流に設けられ流路中の液体と上記気体
流入口から流入した気体とを上記気体流入部の気体圧力
より高い静圧下で加圧混合する混合部と、この混合部の
出口側に設けられたノズルとを備え、上記気体流入部の
断面積を上記混合部の断面積より小さく形成し、上記ノ
ズルのノズル口の断面積の総和を、上記混合部の断面積
よりも小さく且つ上記気体流入部での上記液体の静圧が
上記気体流入口から流入する気体の圧力より低くなるよ
うに設定したことを特徴とする気液溶解混合装置。
1. A throttle portion provided in a flow path, a gas inlet portion which is formed next to the throttle portion and has an inner diameter slightly larger than that of the throttle portion and has a constant cross-sectional area of a predetermined length, and the gas inlet portion. A widened portion that is provided subsequent to and widened the flow path toward the downstream side, and a gas inlet provided in the gas inflow portion,
The gas pressure of the gas inflow part is defined by the liquid in the flow path provided downstream of the spread part and the gas flowing in from the gas inflow port.
A mixing section for pressurizing and mixing under a higher static pressure and a nozzle provided on the outlet side of the mixing section are provided , and the gas inflow section
Make the cross-sectional area smaller than the cross-sectional area of the mixing section, and
The sum of the cross-sectional area of the nozzle nozzle of the slu
And the static pressure of the liquid at the gas inlet is less than
It will be lower than the pressure of the gas flowing from the gas inlet.
A gas-liquid dissolving and mixing device characterized by being set as follows .
【請求項2】 上記気体流入部の上記液体の流れ方向の
長さは、上記絞り部から出た上記液体が広がって壁面に
当たるまでの長さ以下であることを特徴とする請求項1
記載の気液溶解混合装置。
2. The flow direction of the liquid in the gas inflow part
The length of the liquid spread from the throttle is
The length is less than or equal to the time of hitting.
The gas-liquid dissolution mixing device described.
【請求項3】 上記気体流入部と、上記ノズル口の断面
積の総和の関係は、S が気体流入部の断面積、S
ノズル口の断面積の総和、P は気体流入部の総圧、δ
Pは気体流入部からノズル口までの圧力損失、P はノ
ズル口の出口の静圧、P が気体流入口から流入する気
体の圧力とすると、 は流体力学上の連続の式及びベルヌーイの定理と連
続の式による以下の式 =(1−S 2 B /S 2 A )P +(δP+P )S 2 B /S 2 A によって与えられる気体流入部での液体の静圧であり、 とP が、P <P を満たすものである ことを特徴とする請求項1記載の気
液溶解混合装置。
3. A cross section of the gas inlet and the nozzle opening.
The relationship of the sum of products is that S A is the cross-sectional area of the gas inflow part and S B is
The total cross-sectional area of the nozzle port, P 1 is the total pressure of the gas inflow part, δ
P is the pressure loss from the gas inlet to the nozzle port, and P B is
Static pressure at the outlet of the sluice, the gas P G flowing from the gas inlet
Given the pressure of the body, P A is related to the equation of continuity in hydrodynamics and Bernoulli's theorem.
Is the static pressure of the liquid at the gas inlet given by the following equation P A = (1-S 2 B / S 2 A ) P 1 + (δP + P B ) S 2 B / S 2 A according to the following equation : P a and P G is the gas-liquid dissolving and mixing apparatus according to claim 1, wherein a satisfies the P a <P G.
【請求項4】 上記混合部は、その流路が段階的に緩急
を繰り返す形状に形成されていることを特徴とする請求
項1,2又は3記載の気液溶解混合装置。
4. The gas-liquid dissolving and mixing apparatus according to claim 1, wherein the mixing section has a flow path formed in a shape that gradually and gradually repeats.
【請求項5】 上記混合部は、上記広がり部の下流側に
接続された管路から成ることを特徴とする請求項1,
2,又は3記載の気液溶解混合装置。
5. The mixing section comprises a pipe line connected to a downstream side of the expanding section.
The gas-liquid dissolution mixing device according to the item 2 or 3.
JP5234173A 1993-01-22 1993-08-26 Gas-liquid dissolving and mixing equipment Expired - Fee Related JP2670492B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5234173A JP2670492B2 (en) 1993-08-26 1993-08-26 Gas-liquid dissolving and mixing equipment
CN93114861A CN1049845C (en) 1993-01-22 1993-11-10 Method and apparatus for dissolution and mixture of gas and liquid
KR1019930024053A KR0173996B1 (en) 1993-01-22 1993-11-12 Apparatus for dissolving a gas into and mixing the same with a liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5234173A JP2670492B2 (en) 1993-08-26 1993-08-26 Gas-liquid dissolving and mixing equipment

Publications (2)

Publication Number Publication Date
JPH0760088A JPH0760088A (en) 1995-03-07
JP2670492B2 true JP2670492B2 (en) 1997-10-29

Family

ID=16966817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5234173A Expired - Fee Related JP2670492B2 (en) 1993-01-22 1993-08-26 Gas-liquid dissolving and mixing equipment

Country Status (1)

Country Link
JP (1) JP2670492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792016B2 (en) 1994-05-31 1998-08-27 和泉電気株式会社 Gas-liquid dissolving and mixing equipment
JP2792015B2 (en) 1994-05-20 1998-08-27 和泉電気株式会社 Gas dissolution equipment
JP2003112024A (en) * 2001-10-04 2003-04-15 Cyber Techno:Kk Apparatus for producing ozone water

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487991B1 (en) * 1997-03-03 2005-09-02 다우 글로벌 테크놀로지스 인크. How to Generate Gas Bubbles
US7137620B2 (en) 2002-01-25 2006-11-21 Seair Inc. Diffuser and an aeration apparatus equipped with such a diffuser
JP4144669B2 (en) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 Method for producing nanobubbles
JP4439971B2 (en) * 2004-03-31 2010-03-24 全郎 妹尾 Water purification equipment
JP2007144307A (en) * 2005-11-28 2007-06-14 Ishi No Kanzaemon:Kk Method and apparatus for treating water
JP2008086868A (en) * 2006-09-29 2008-04-17 Kawamoto Pump Mfg Co Ltd Microbubble generator
JP4678387B2 (en) * 2007-06-18 2011-04-27 パナソニック電工株式会社 Microbubble generator
JP2010172786A (en) * 2009-01-27 2010-08-12 Nsi:Kk Apparatus and method for washing piping to be washed
RU2642562C2 (en) 2012-01-31 2018-01-25 Сиэйр Инк. Multi-stage aeration installation
JP6018838B2 (en) * 2012-08-23 2016-11-02 株式会社加藤製作所 Road sweeper
CN104138689B (en) * 2013-05-07 2016-02-10 中国石化工程建设有限公司 A kind of knockout drum
KR102627981B1 (en) * 2016-08-04 2024-01-19 엘지전자 주식회사 Air Jet Generator and Dish Washer Having The Same
CN107583480B (en) * 2017-10-17 2023-07-07 上海捷乔纳米科技有限公司 Microbubble generator and manufacturing method thereof
JP7086435B2 (en) * 2019-07-16 2022-06-20 株式会社KB.cuento Micro bubble generation unit and water purification system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906483D0 (en) * 1989-03-21 1989-05-04 Boc Group Plc Dissolution of gas
JPH03267135A (en) * 1990-03-16 1991-11-28 Masami Marusawa Gas-liquid mixing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792015B2 (en) 1994-05-20 1998-08-27 和泉電気株式会社 Gas dissolution equipment
JP2792016B2 (en) 1994-05-31 1998-08-27 和泉電気株式会社 Gas-liquid dissolving and mixing equipment
JP2003112024A (en) * 2001-10-04 2003-04-15 Cyber Techno:Kk Apparatus for producing ozone water

Also Published As

Publication number Publication date
JPH0760088A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP2670492B2 (en) Gas-liquid dissolving and mixing equipment
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP3122320B2 (en) Gas-liquid dissolution mixing equipment
US7487795B2 (en) Chemical dispenser
JPH084731B2 (en) Gas-liquid mixing device
JPH04260431A (en) Improvement of gas-liquid dispersion in pipe
EP0445169A1 (en) Liquid-gas mixing device
US20050189081A1 (en) Device and methodology for improved mixing of liquids and solids
JPH11197475A (en) Gas liquid dissolving and mixing apparatus
JPH1094722A (en) Fine bubble feeder
JP2722373B2 (en) Method and apparatus for producing fine foam
JPH0693991B2 (en) Gas-liquid dissolution mixing device
CN111115861A (en) Aeration device
JPH04235761A (en) Suction type bubble forming nozzle
JPH07328402A (en) Method for dissolving and mixing gas and liquid
JP2554608B2 (en) Gas-liquid dissolution mixing method and gas-liquid dissolution mixing device
JP2003245533A (en) Ultrafine air bubble generator
JP2974236B2 (en) Gas-liquid dissolution mixing method and apparatus
JPH1176780A (en) Fine foam supply device
JP2741342B2 (en) Oxygen and fine bubble supply device for hydroponics
JPH09201520A (en) Method for dispersing gas-liquid mixed fluid and dispersing apparatus using the method
JP2554609B2 (en) Gas dissolved liquid manufacturing equipment
JP2792015B2 (en) Gas dissolution equipment
JP2972093B2 (en) Gas-liquid dissolving and mixing equipment

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees