JPS59149667A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPS59149667A
JPS59149667A JP58021569A JP2156983A JPS59149667A JP S59149667 A JPS59149667 A JP S59149667A JP 58021569 A JP58021569 A JP 58021569A JP 2156983 A JP2156983 A JP 2156983A JP S59149667 A JPS59149667 A JP S59149667A
Authority
JP
Japan
Prior art keywords
fuel cell
supply
measuring device
internal resistance
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58021569A
Other languages
Japanese (ja)
Inventor
Takeshi Kuwabara
武 桑原
Toshiaki Seki
関 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58021569A priority Critical patent/JPS59149667A/en
Publication of JPS59149667A publication Critical patent/JPS59149667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To attain stabilized battery performance and long life by adjusting the amount of steam to be supplied to a fuel battery body and by controlling an internal resistance value. CONSTITUTION:During operation of fuel battery body 1, a controller 14b having received a measuring value signal of an electromotive force measuring apparatus 11 controls the fuel gas and oxidizing agent gas supply regulator valves 4, 5 and regulates the flow of supply in accordance with the specified operation program. The controller 14b having received measured value signals from the internal pressure measuring apparatus 9, internal temperature measuring apparatus 10 and internal resistance measuring apparatus 12 compares the volume of said gas with given volume of phosphoric acid and controls the internal resistance in the specified range by controlling independently the steam supply valves 15, 16. Fluctuation of the volume of phosphoric acid can be controlled with in the specified range and the battery performance and reliability can be maintained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特に寿命特性向上させた燃料
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and particularly to a fuel cell with improved life characteristics.

〔発明の技術的背景とその間頭点〕[Technical background of the invention and important points]

燃料電池は燃料の有している化学的エネルギーを面接電
気エネルギーに変換する装置である。燃料電池は通常庖
解質層を挾んで一対の多孔質電極を配置するとともに一
方の電極の背面に水素など気体燃料を接触させ、また他
方の電極の背面に111!素などの酸化剤を接触させ、
このときに起る送気化学的反応により発生する′電気エ
ネルギーを上記一対の電極から取り出すようにしたもの
である。
A fuel cell is a device that converts the chemical energy of fuel into electrical energy. A fuel cell normally has a pair of porous electrodes sandwiching a sulfuric acid layer, and a gaseous fuel such as hydrogen is brought into contact with the back surface of one electrode, and 111! is placed on the back surface of the other electrode. Contact with an oxidizing agent such as
The electrical energy generated by the chemical reaction of the gas that occurs at this time is extracted from the pair of electrodes.

電解質としては、溶融炭酸塩、アルカリ溶液、酸性浴液
などがあるが、燃料電池として代表的なリン酸を電解質
とする燃料電池の原理を説明する。
Examples of the electrolyte include molten carbonate, alkaline solution, and acidic bath solution, but the principle of a typical fuel cell using phosphoric acid as the electrolyte will be explained.

第1図において、電解′成層1マトリックスを形成する
は繊維質シート又は鉱吻改粉末にリン酸を倉浸させて形
成したものである。2はアノード、3はカソードであり
炭素質の多孔性の電極であり、′市解質1゛〜1に接す
る面に11!1常白金触媒を塗布しである。4け水素を
含むガスの流れる空間で、5は酸化剤気体、−好適は空
気の流れる空間である。空間4に流入した水素は多孔性
電極2の空孔に拡散して触媒に到達する。こ\で水素カ
スは水素イオンと電子に触媒の作用により屏1i11q
する。反応式ld、If2−→21−1  +  2e
    である。
In FIG. 1, the electrolytic layer 1 matrix is formed by soaking a fibrous sheet or ore modified powder with phosphoric acid. 2 is an anode, and 3 is a cathode, which is a carbonaceous porous electrode, and a 11:1 platinum catalyst is coated on the surface in contact with the electrolyte 1-1. 4 is a space through which a gas containing hydrogen flows, and 5 is a space through which an oxidizing agent gas, preferably air, flows. Hydrogen flowing into the space 4 diffuses into the pores of the porous electrode 2 and reaches the catalyst. In this case, hydrogen scum is converted into hydrogen ions and electrons by the action of a catalyst.
do. Reaction formula ld, If2-→21-1 + 2e
It is.

水素イオンは丁に解質層lに入り儂tJX拡7’i(を
及び′目り界作用によりカソードに向って泳動する。一
方、水素ガスのり1イ離により分i’1lIIした1:
帆−トはアノ−1・2にvit力こむ。カソードでは、
アノートカ)ら泳動して米だ水素イオンと、酸化剤とし
て仝ifl 5 (/C供、拾さ)11、更にカソード
3の空孔を拡散して来た酸諮と、アノード2から外部負
荷を、亀って仕事上L ′+5:准のカソード3に戻っ
て米た電子との3者が触媒表面で欠の反応を起す。
Hydrogen ions immediately enter the solute layer 1 and migrate toward the cathode due to the interlayer action. On the other hand, hydrogen ions are separated by separation of the hydrogen gas.
Saito puts vit into Anno 1 and 2. At the cathode,
Hydrogen ions migrated from the oxidizing agent (/C, picked up) 11, acid adsorbent diffused through the pores of the cathode 3, and an external load was removed from the anode 2. , the turtle is working L'+5: Returning to the quasi cathode 3, the three parties with the electrons cause a deficiency reaction on the catalyst surface.

かくして、水素が酸化されて水になる反応と、水素の有
する化学的エネルギーが外部負荷中で電気エネルギーを
与える反応とが生起される。
Thus, a reaction occurs in which hydrogen is oxidized to water, and a reaction in which the chemical energy of hydrogen provides electrical energy under external load.

このとき、電気エネルギーの一部は電解質層1の中で、
電池の内部抵抗により消費される。従って、電池の効率
を高めるために、電解質層は極めて薄く設計し、水素イ
オンの泳動距離を短くし抵抗を低減するようにしている
At this time, part of the electrical energy is inside the electrolyte layer 1,
It is consumed by the internal resistance of the battery. Therefore, in order to increase battery efficiency, the electrolyte layer is designed to be extremely thin to shorten the migration distance of hydrogen ions and reduce resistance.

又、燃料として供給される水素ガス及び酸化剤ガスとし
ての空気は数気圧に加圧されるのが通常である。これは
、一般の化学反応と同じく、反応に関与する物質の濃度
を上げることが反応速度を高める有効な手段であるため
である。
Furthermore, hydrogen gas supplied as fuel and air as oxidant gas are usually pressurized to several atmospheres. This is because, like in general chemical reactions, increasing the concentration of substances involved in the reaction is an effective means of increasing the reaction rate.

実際に隠池本体に各々のガスを供給する場合、水素と酸
素の直接の接触、或は混合を防止しなければならない。
When actually supplying each gas to the main body of the hidden pond, direct contact or mixing of hydrogen and oxygen must be prevented.

第1図に示す通り、燃料ガスと酸化剤ガスとを実質的に
隔離するものは電解質層1のみである。電解質JWi 
1は前述した通り繊維質シート又は鉱物性粉末にリン酸
をぎ浸させたものであり、その厚さは0.1聾程度と極
めて薄くリン酸の界面張力が上記両ガスの混合を防いで
いる。
As shown in FIG. 1, only the electrolyte layer 1 substantially separates the fuel gas and the oxidant gas. Electrolyte JWi
As mentioned above, 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid, and its thickness is extremely thin, about 0.1 mm, and the interfacial tension of the phosphoric acid prevents the two gases from mixing. There is.

従って、燃料電池を安全に運転するには両ガスをはゾ等
しい圧力で供給しなければならない。即ち、負荷変動に
ともなう供給ガスの流動変動時及び起動・停止時におい
ても両ガスの差圧は、水柱で数10ミリメートル以下の
極めて僅少差になるよう1む]j御しなければならない
Therefore, to operate the fuel cell safely, both gases must be supplied at very equal pressures. That is, even when the supply gas flow fluctuates due to load fluctuations and when starting and stopping, the differential pressure between the two gases must be controlled to an extremely small difference of several tens of millimeters or less in the water column.

一方、燃イご1電池を安全に、かつ安定した性能で運転
させるためには、薄い電解質層中の電解質、すなイつち
、リン酸の容量を一定に保持することが畏求さ力、る。
On the other hand, in order to operate a combustion engine battery safely and with stable performance, it is important to maintain a constant capacity of the electrolyte, i.e., phosphoric acid, in the thin electrolyte layer. ,ru.

すなイつち、運転中に、リン酸4ギ−lが減少すると、
薄いマ) IJラックス空孔が多故発生し、反応部所で
ある触媒−′「托解剥−反応ガス、三者の接触界面が減
少する。これに伴い接触抵抗(内部抵抗)が増加し、燃
料ガスと酸化剤ガスの差圧が微小であっても、上記両ガ
スの混合が起り、ガスの無効消費(てよる発成効率の低
下がもたらさぜる。さらには異常発熱による燃料電池本
体の破損、爆発などのトラブルが発生することにもなる
In other words, when phosphoric acid 4 g-l decreases during operation,
Thin ma) IJ lux vacancies are generated due to a number of occurrences, and the contact interface between the catalyst, which is the reaction site, and the reaction gas decreases.Consequently, the contact resistance (internal resistance) increases. Even if the differential pressure between the fuel gas and the oxidant gas is small, mixing of the two gases will occur, resulting in ineffective consumption of gas (reduction in generation efficiency).Furthermore, abnormal heat generation will cause damage to the fuel cell itself. Problems such as damage and explosion may occur.

一方、リン酸容量が増加して電極のリザーバ機能(電極
がその機能をそこなイつれることなく過剰のリン酸を吸
蔵し、電解質が減少したとき、と\に吸蔵されているリ
ン酸を電解質層に補給することができる機能のことで、
従来は約15係である)を超過すると電極上の触媒がリ
ン酸中に浸種されてしまい反応ガスが直接拡散する現象
が阻止される。
On the other hand, when the phosphoric acid capacity increases and the electrode's reservoir function (the electrode absorbs excess phosphoric acid without impairing its function) and the electrolyte decreases, the phosphoric acid stored in A function that can replenish the electrolyte layer.
Conventionally, the ratio is about 15 mm), the catalyst on the electrode is soaked in the phosphoric acid, and the reaction gas is prevented from directly diffusing.

これにより電池性能の極端な低下が起るとともに、排出
ガス中に霧状状態で排出される遺が急増する。この排出
に伴う電解質容積変化が一定滑以上になると常態に回復
しないことが実験的に確認されている。従って最初から
電解質容積変化を量以内に制御する必要がある。
This causes an extreme drop in battery performance and a sharp increase in the amount of atomized residue emitted into exhaust gas. It has been experimentally confirmed that when the electrolyte volume change due to this discharge exceeds a certain level, it does not return to normal. Therefore, it is necessary to control the electrolyte volume change within a certain amount from the beginning.

そして、この電解質であるリン酸の容量が変化する現象
は、燃料電池本体の運転温度、運転圧力及び負荷の大き
さなどによっても大きく影響される。しかしながらリン
酸容量の変動は前記した関係から内部抵抗の測定により
把握することは可能である。
The phenomenon in which the capacity of phosphoric acid, which is an electrolyte, changes is greatly influenced by the operating temperature, operating pressure, and load of the fuel cell main body. However, it is possible to understand the fluctuation in phosphoric acid capacity by measuring the internal resistance based on the above-mentioned relationship.

以下、この電解質であるリン酸の容置が変動する現象に
ついてさらに説明する。
Hereinafter, the phenomenon in which the container of phosphoric acid, which is an electrolyte, changes will be further explained.

すなわち、電解質であるリン酸Vま次の反応式の如く水
と五酸化リンの反応生成物であり、強い吸湿性を有する
。このため、旨温で乾燥した条件下3礼0+1/2P、
O□。平=二 2H3PO4では、前記反応d左へ進み
、低温で湿度が高い条件下では上記反応は右へ進む。
That is, it is a reaction product of water and phosphorus pentoxide as shown in the following reaction formula of phosphoric acid V, which is an electrolyte, and has strong hygroscopicity. For this reason, under warm and dry conditions, 3 bows 0 + 1/2P,
O□. In 2H3PO4, the reaction d proceeds to the left, and under conditions of low temperature and high humidity, the reaction proceeds to the right.

一方、負荷をとると電気的反応生成物として水が生成す
る。また、リン酸容量に変動を与える湿度は水蒸気分圧
と全圧の比で決められるのであるから、運転圧力の影響
を受ける。
On the other hand, when a load is applied, water is produced as an electrical reaction product. Furthermore, since the humidity which causes fluctuations in the phosphoric acid capacity is determined by the ratio of water vapor partial pressure to total pressure, it is affected by the operating pressure.

このようにリンn安の′81賃変!助現象をtlijl
 1illすることは多数の条件を考慮することが必要
であり、従来の燃料電池はこれらの状、態を考慮してリ
ン酸の容量変化現象を確実に制御する機能を有するもの
ではなかった。
In this way, the '81 price change of Rin n cheap! tlijl the auxiliary phenomenon
1 ill requires consideration of many conditions, and conventional fuel cells do not have a function to reliably control the phenomenon of phosphoric acid capacity change in consideration of these conditions.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に汲みでなされたもので、内部抵抗値
を制御することにより電池性能の安定化。
The present invention was made in consideration of the above circumstances, and aims to stabilize battery performance by controlling the internal resistance value.

長寿命化を達成させた燃料電池を提供することを目的と
する。
The purpose of the present invention is to provide a fuel cell that has a long service life.

〔発明の概要〕[Summary of the invention]

か力)る目的を達成するため、本発明は・燃料ガス及び
酸化剤ガスの供給排出系が接続された燃料・1池本体と
、との燃料電池本体に接続される運転圧力841J定装
置及び運転温度測定装置と、前記燃料電11i2本体に
接続した負荷装置・起電力測定装置及び内部抵抗測定装
置と、前記燃料電池本体に水蒸気を供給する装置と、前
記水蒸気の供給量を調整し前記燃、1′斗″通池本体の
内部抵抗を制御する機能を有する市:j仰装置とを具備
して成ることを特徴とする。
In order to achieve the object of the present invention, the present invention provides: a fuel cell main body to which a fuel gas and oxidant gas supply/discharge system is connected; An operating temperature measuring device, a load device/electromotive force measuring device and an internal resistance measuring device connected to the main body of the fuel cell 11i2, a device for supplying water vapor to the fuel cell main body, and a device that adjusts the supply amount of the water vapor and controls the fuel cell 11i2. , 1' is characterized in that it is equipped with a lifting device having a function of controlling the internal resistance of the passage body.

〔発明の′−(雄側〕['-(male side) of the invention]

第2図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIG.

燃料′L4L池本体1に燃料ガス、酸化剤ガスの各々の
供給排出系を配゛■を介して構成する。この供給排出系
は各々の供給流量測定器2,3及び供給調整弁4,5を
備える供給部と、燃料ガスと酸化剤ガスの圧力厘を測定
する差圧測定器6と連動する各々の排出調整弁7,8を
備える排出部とから構・成する。さらにこの燃料tに池
本体lに内部圧力6+IJ定装置9、内部ζ、l!度測
定装置[0、起電力(1’!定装置11、内部抵抗測定
装置]2、負荷装置]3を各々接続する。そして各測定
装置の(ill定値は信号線i/cより制御装置14に
入力さ、11.るイア構成と゛する。制御装置14は、
内部11巳力測定装[1ズ9、内部温度測定装置101
及び内部抵抗Ii’lll定装置■2から測定値信号を
人力さ力2図示しない水蒸気供給装置及び前記した供給
部の配管に接j曲される水蒸気供給* 15 、 ]L
5をIIJ御するfljiJ御器1.42と、起電力1
川定装置11からのτ、11定値信号を入力さh供給調
整弁4,5を1切御するiUU ?41器]31〕とか
ら構成する。
The fuel gas and oxidant gas supply and discharge systems are provided in the fuel L4L pond body 1 via the distribution system (2). This supply/discharge system includes a supply section including respective supply flow rate measuring instruments 2, 3 and supply regulating valves 4, 5, and respective discharging sections linked with a differential pressure measuring instrument 6 for measuring the pressure of fuel gas and oxidant gas. It consists of a discharge section equipped with regulating valves 7 and 8. Furthermore, this fuel t, internal pressure 6 + IJ constant device 9, internal ζ, l! power measuring device [0, electromotive force (1'! 11. The control device 14 has the following ear configuration.
Internal temperature measuring device 11 9, internal temperature measuring device 101
and the internal resistance Ii'llll determination device (2) to manually input the measured value signal from (2) the steam supply device (not shown) and the steam supply connected to the piping of the above-mentioned supply section *15, ]L
5 is controlled by IIJ, fljiJ control is 1.42, and the electromotive force is 1.
Input the τ, 11 fixed value signal from the river control device 11 and control the supply regulating valves 4 and 5 by 1 iUU? 41 units] and 31].

−に記47I¥戚(でより、燃料′1は池本体の運転時
、l1iJ記した1IIll定装置11の(11す定値
信号をう(′すだ伺爾j耐141)は所スjシの演算ブ
fjグラトに従い、各IJ(hk’i調整弁4゜5を1
tifl fli(] L、供$1: Dir、 kを
調整する。 7i?で谷七則定装置9 、10 、12
からの測定短信@をうけ7゛辷1ト1]御器14 aが
既存のリン酸容量と比1代演算し、水蒸気洪給升I↓5
,16を各々独立に制イ1lll L、内部抵抗(交θ
IL抵抗)を所定範囲に1)芭実に制御皿する。こ力、
によりリン峡容社の′:4・剣を所定、鉋囲ビ・jに副
側■することができ、電池性能及び信頼性を維持させる
ことができる。
According to 47I\Relative (described in 47I\Relative), when the fuel '1 is in operation of the pond body, the (11) fixed value signal of 1IIll constant device 11 (11iJ marked ('SudakikiernejTai 141)) is outputted at the specified level. According to the calculation program fj, each IJ (hk'i adjustment valve 4°5 is set to 1
tifl fli(] L, supply $1: Dir, adjust k. 7i? and valley seven law setting device 9, 10, 12
In response to the short measurement message from @ 7゛辷1ト1] Controller 14 a calculates the ratio with the existing phosphoric acid capacity, and calculates the water vapor supply volume I ↓ 5
, 16 independently 1llll L, internal resistance (cross θ
1) Control the IL resistance (IL resistance) within a predetermined range. Power,
This allows Rinkyoyosha's ':4' to be placed on the side of the cylindrical blade in a predetermined manner, thereby maintaining battery performance and reliability.

第3図に、従来例と本発明の一実施例に係る燃料電池の
性能比較図を示す。
FIG. 3 shows a performance comparison diagram of a fuel cell according to a conventional example and an embodiment of the present invention.

尚、実験例は電解質としての103%リン酸をノ才い、
205°Cr 3.5 Ky /αdで運転し、定格電
流値に対し、空気利用率、燃料利用率それぞれ60%、
80%でガスを供給し、空気側は3%(平衡分圧は2チ
である)、燃料側は10%の水蒸気を注入した結果を比
較したものである。
In addition, the experimental example uses 103% phosphoric acid as the electrolyte,
Operating at 205°Cr 3.5 Ky/αd, the air utilization rate and fuel utilization rate are each 60% relative to the rated current value,
The results are compared when gas is supplied at 80%, water vapor is injected at 3% on the air side (equilibrium partial pressure is 2H), and 10% on the fuel side.

明ら力)に、本発明例は内部抵抗値は所定値に維持され
、促来例は漸時内部抵抗値が増加していることがわかる
。このことはリン酸容量の変動現象を確実に制御した本
発明の効果に外ならない。
It can be clearly seen that the internal resistance value of the present invention example is maintained at a predetermined value, whereas the internal resistance value of the present invention example gradually increases. This is nothing but an effect of the present invention, which reliably controls the fluctuation phenomenon of phosphoric acid capacity.

尚、水蒸気の供給は、燃料電池の温度制御装置から供給
することも可能である。
Note that the water vapor can also be supplied from the temperature control device of the fuel cell.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、内部抵抗及び池の
状態値を監視して水蒸気を注入し、起動。
As explained above, according to the present invention, the internal resistance and state values of the pond are monitored, water vapor is injected, and the system is started.

停止時などにおいても内部抵抗を制rnすることができ
、これにより電解質であるリン酸の容量変動を制御し、
性能の安定した寿命特性の良好な燃料電池を提供−する
ことかできる。
It is possible to control the internal resistance even when the engine is stopped, thereby controlling the fluctuation in the capacity of the electrolyte phosphoric acid,
It is possible to provide a fuel cell with stable performance and good life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の動作原理の説明図、第2図は不発明
の一実施例の燃料電池の構成図、第31図は従来しむと
本発明例の性能比較図である。 l・・・燃料電池本体   2,3・・・供給流量測定
器4.5・・・供給調整弁   6・・・差圧1lll
J定器7.8・・・排出調整弁   9・・・内部圧力
測定装置10・・・内部温度41す定装置 11・・・
起電力測定装置12・・・内部抵抗n+++定装置 [
3・・・負荷装置14・・・制御装置     14a
、14b・・・制御器1.5.J6・・・水蒸気供給プ
P 代理人 弁理士  則近憲佑(ほか1名)第1図 /72102 第 2 図 第3図 J私蒋間1−h) 手続補正書(自発) 1. 事件の表示 特願昭58−21569号 2、 発明の名称 燃料電池 3 補正をする者 事件との関係 特許出願人 (307)東尿芝浦電気株式会社 4代理人 〒100 東尿都千代田区内幸町1−1−6 と訂正する。
FIG. 1 is an explanatory diagram of the operating principle of a fuel cell, FIG. 2 is a configuration diagram of a fuel cell according to an embodiment of the invention, and FIG. 31 is a performance comparison diagram of the conventional example and the example of the invention. l... Fuel cell main body 2, 3... Supply flow rate measuring device 4.5... Supply adjustment valve 6... Differential pressure 1llll
J regulator 7.8...Discharge regulating valve 9...Internal pressure measuring device 10...Internal temperature 41 regulating device 11...
Electromotive force measuring device 12...Internal resistance n+++ constant device [
3... Load device 14... Control device 14a
, 14b...controller 1.5. J6...Steam supply P Agent Patent attorney Kensuke Norichika (and 1 other person) Figure 1/72102 Figure 2 Figure 3 J Chioma 1-h) Procedural amendment (voluntary) 1. Indication of the case Japanese Patent Application No. 58-21569 2 Name of the invention Fuel cell 3 Person making the amendment Relationship to the case Patent applicant (307) Toureshibaura Electric Co., Ltd. 4 Agent 1 Uchisaiwai-cho, Chiyoda-ku, Toureto 100 -1-6 Corrected.

Claims (1)

【特許請求の範囲】 1 燃料ガス及び酸化剤ガスの供給排出系が接続された
燃料電池本体と、この燃料電池本体に接続される運転圧
力測定装置及び運転温度測定装置と、前記燃料電池本体
に接続した負荷装置・起電力1111]定装置及び内部
抵抗測定装置と、前記燃料電池不・体に水蒸気を供給す
る装置と、前記水蒸気の供給、背を調整し前記燃料電池
本体の内部抵抗を制御する7衆能を有する制御装置とを
具4G シて成る燃料電池。 2、 供給排出系は供給流量測定器及び供給調整弁を備
えた供給部と、燃料ガスと酸化剤カスの圧力差を4iす
定する差圧測定器と連動する排出調整弁を備えた排出部
とを備えて成る特許請求の範囲第1項記載の燃料′電池
。 3、 制御装置は起電力測定装置の測定値信号より供給
調整弁をmlJ御する第1の制御器と、運転圧力測定装
置・運転温度測定装置及び内部抵抗測定装置の各々の測
定値信号から水蒸気の供給量を制御する第2の制御器か
ら成る特許請求の範囲第2項記載の燃料電池。
[Scope of Claims] 1. A fuel cell main body to which a fuel gas and oxidant gas supply/exhaust system is connected, an operating pressure measuring device and an operating temperature measuring device connected to the fuel cell main body, and a fuel cell main body connected to the fuel cell main body. A connected load device/electromotive force 1111] constant device and internal resistance measuring device, a device for supplying water vapor to the fuel cell body, and controlling the internal resistance of the fuel cell body by adjusting the supply and back of the water vapor. A fuel cell comprising a 4G controller and a control device having seven functions. 2. The supply and discharge system includes a supply section equipped with a supply flow rate measuring device and a supply regulating valve, and a discharge section equipped with a discharge regulating valve that works with a differential pressure measuring device that determines the pressure difference between the fuel gas and oxidizer scum by 4i. A fuel cell according to claim 1, comprising: 3. The control device includes a first controller that controls the supply regulating valve mlJ based on the measured value signal of the electromotive force measuring device, and a water vapor control device that controls the supply regulating valve mlJ based on the measured value signal of the electromotive force measuring device, and the water vapor from the measured value signals of the operating pressure measuring device, the operating temperature measuring device, and the internal resistance measuring device. 3. The fuel cell according to claim 2, further comprising a second controller for controlling the supply amount of.
JP58021569A 1983-02-14 1983-02-14 Fuel battery Pending JPS59149667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021569A JPS59149667A (en) 1983-02-14 1983-02-14 Fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021569A JPS59149667A (en) 1983-02-14 1983-02-14 Fuel battery

Publications (1)

Publication Number Publication Date
JPS59149667A true JPS59149667A (en) 1984-08-27

Family

ID=12058655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021569A Pending JPS59149667A (en) 1983-02-14 1983-02-14 Fuel battery

Country Status (1)

Country Link
JP (1) JPS59149667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431353A (en) * 1987-07-27 1989-02-01 Sanyo Electric Co Operating method for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431353A (en) * 1987-07-27 1989-02-01 Sanyo Electric Co Operating method for fuel cell

Similar Documents

Publication Publication Date Title
US8153332B2 (en) Fuel cell system
JP4886170B2 (en) Fuel cell system
US6127056A (en) Start up of proton exchange membrane fuel cell
JP2000082480A (en) Humidifier for fuel cell and water managing device for fuel cell system
EP0284023A1 (en) Fuel cell configuration for contaminated fuel gases and method of using the same
JPH07240220A (en) Fuel cell system
JPH0763020B2 (en) Fuel cell start / stop device
CA2450595C (en) Method for controlling flow rate of oxidizer in fuel cell system
JPS59149667A (en) Fuel battery
JP2752987B2 (en) Phosphoric acid fuel cell power plant
JP5411901B2 (en) Fuel cell system
JPS59149664A (en) Fuel-cell system
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JPS61269865A (en) Operation method of fuel cell
JPS61116764A (en) Fuel cell system
JPS61185872A (en) Fuel cell device
JPS60207255A (en) Fuel cell control system
JPH0349185B2 (en)
RU2795075C1 (en) Vehicle power supply system
JPS5882479A (en) Fuel battery generating system
JPH0326507B2 (en)
JPH0654674B2 (en) Fuel cell power generator
JPS62278766A (en) Operating method for phosphoric acid fuel cell
JPS59149665A (en) Fuel-cell system
JP2007299627A (en) Fuel cell and fuel cell system