JPS61269865A - Operation method of fuel cell - Google Patents

Operation method of fuel cell

Info

Publication number
JPS61269865A
JPS61269865A JP60110413A JP11041385A JPS61269865A JP S61269865 A JPS61269865 A JP S61269865A JP 60110413 A JP60110413 A JP 60110413A JP 11041385 A JP11041385 A JP 11041385A JP S61269865 A JPS61269865 A JP S61269865A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
concentration
methanol
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60110413A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Yuichi Kamo
友一 加茂
Teruo Kumagai
熊谷 輝夫
Kazuo Iwamoto
岩本 一男
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60110413A priority Critical patent/JPS61269865A/en
Publication of JPS61269865A publication Critical patent/JPS61269865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To quickly increase temperature by supplying higher concentration fuel than stationary operation at starting. CONSTITUTION:A fuel cell consists of unit cells each of which is comprised of a fuel electrode which electrochemically oxidizes fuel, and an oxidizing agent electrode with electrochemically reduces an oxidizing agent, and an electrolyte which holds ion conductivity between them, and supply and exhaust parts of fuel and oxidizing agent to and from the unit cell respectively. In this fuel cell, higher concentration fuel than stationary operation is supplied at starting. The temperature increasing time at starting of a low temperature type fuel cell which used liquid fuel can be shortened without the help of equipment other than fuel cell.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池の運転方法に係り、特に、その室温か
らの起動時における昇温時間の短絡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of operating a fuel cell, and particularly to short circuiting of the heating time during startup from room temperature.

〔発明の背景〕[Background of the invention]

燃料電池による発明方式では、一般に、室温より高い温
度を作動温度に設定している。そのため、室温より4は
るかに高に650℃とか200℃で運転する溶融炭酸塩
型燃料電池や燐酸型燃料電池などでは室温から冷起動す
る際には、何らかの外部加熱方法を採用しなければなら
ない。100℃以下の低温作動型燃料電池にも、冷起動
時の定常運転温度への昇温か問題になる。すなわち、燃
料電池の出力は、一般に、電池温度に大きく影響され、
温度が高い方が高出力となる傾向がある。そのため、短
時間で定常運転温度まで昇温できることが短時間で高出
力の定常運転状態に行動できることを意味し、その成否
が燃料電池の実用電源としての価値を大きく左右する。
In the invention system using a fuel cell, the operating temperature is generally set at a temperature higher than room temperature. For this reason, for molten carbonate fuel cells and phosphoric acid fuel cells that operate at temperatures much higher than room temperature, such as 650°C or 200°C, some kind of external heating method must be employed when cold starting them from room temperature. Even for fuel cells that operate at low temperatures of 100° C. or lower, there is a problem with the temperature rising to the steady operating temperature during cold startup. In other words, the output of a fuel cell is generally greatly affected by the cell temperature;
The higher the temperature, the higher the output tends to be. Therefore, being able to raise the temperature to the steady-state operating temperature in a short period of time means that it is possible to operate in a high-output steady-state operating state in a short time, and the success or failure of this greatly influences the value of the fuel cell as a practical power source.

低温型燃料電池の昇温を加速する方法には電解液(また
はアノライト)中にヒータを投入し外部より電気的に加
熱する方法などが一般に考えられている。しかし、この
方法では、ヒータを加熱するための電源が必要となり、
燃料電池の他にもう一つ電源が必要となり、系が複雑化
するという問題がある。この方法より簡便な方法には特
開昭57−80673及び特開昭56−114284号
公報に開示される方法がある。これらはいずれもアノー
ド及びカソードに隔離されて電気化学的に反応すべき酸
化剤と還元剤を直接燃焼させることにより、発熱させる
ことを狙ったものである。これらの方法による発熱は、
一般に、そのコントロールが難しく、適度なものとする
ことが出来ない。また、触媒上での発熱が激しい場合に
は、触媒の活性を低下させる心配もある。更に、そのよ
うな方法を実行するための流路や、切接バルブなどを新
たに設置しなければならずシステムが複雑化するという
問題もある。
A commonly considered method for accelerating the temperature rise of a low-temperature fuel cell is to insert a heater into the electrolyte (or anolite) and electrically heat it from the outside. However, this method requires a power source to heat the heater,
There is a problem in that another power source is required in addition to the fuel cell, which complicates the system. A method simpler than this method is the method disclosed in JP-A-57-80673 and JP-A-56-114284. All of these aim to generate heat by directly burning the oxidizing agent and reducing agent, which are isolated at the anode and cathode and are to be electrochemically reacted. Fever caused by these methods is
Generally, it is difficult to control and it is impossible to make it moderate. Furthermore, if heat generation on the catalyst is intense, there is a concern that the activity of the catalyst may be reduced. Furthermore, there is also the problem that a new flow path, disconnection valve, etc. must be newly installed to carry out such a method, which complicates the system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は制御容易にして、速やかな昇温の可能な
燃料電池の昇温起動方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for starting and increasing the temperature of a fuel cell, which is easy to control and can quickly raise the temperature.

〔発明の概要〕[Summary of the invention]

本発明の要点は、イオン交換膜、または、マトリクスな
どの固定化電解液中を拡散する燃料の量が燃料室中の燃
料濃度に比例することに着目し、燃料濃度の調節により
、酸化剤室での直接燃焼による発熱、昇温を制御し、燃
料電池の昇温時間を短縮したことにある。
The main point of the present invention is to focus on the fact that the amount of fuel diffused through an ion exchange membrane or an immobilized electrolyte such as a matrix is proportional to the fuel concentration in the fuel chamber. The aim is to control the heat generation and temperature rise caused by direct combustion in the fuel cell, thereby shortening the time it takes to heat up the fuel cell.

本発明の内容を図面に従って更に詳しく説明する。第4
図は積層型燃料電池の断面模式図である。
The contents of the present invention will be explained in more detail with reference to the drawings. Fourth
The figure is a schematic cross-sectional view of a stacked fuel cell.

この積層型燃料電池は燃料極1と酸化剤極2及びそれら
の間にあってイオン導電性をもつ電解質3とからなる単
位電池を構成単位としており、この単位をセパレータ4
を介して繰り返すことにより、積層電池が形成される。
This stacked fuel cell has a unit cell consisting of a fuel electrode 1, an oxidizer electrode 2, and an ionic conductive electrolyte 3 located between them.
By repeating the steps, a stacked battery is formed.

燃料極1にはセパレータ4の溝部5を通って燃料である
還元性物質が、酸化剤極2にはセパレータ4の溝部6を
通って酸化性物質である酸化剤がそれぞれ供給され、そ
れぞれの電極上で電気化学的反応が進行し、燃料電池に
よる発電がなされることになる。また、電解質3は燃料
極1と酸化剤極2との間をイオン電導によって接続する
機能をもつものであれば、液体でも固体でもよい。一般
に、電解質物質の水溶液、電解質水溶液を含有する多孔
性物質、また、ペースト状物質であるマトリクス、ある
いは、イオン交換膜などが用いられる。燃料と酸化剤の
いずれもが気体である時には、電解質はこれら三者のい
ずれの形態であっても問題はない、しかし、燃料、酸化
剤の少なくとも一方が、液体である時には、燃料と酸化
剤が直接接触して短絡反応を起こすという問題を生じる
ため、少なくとも、電解質物質の水溶液のみを電解質と
して使用することは好ましくない。しかし、他の二つの
方法も液体物質の移動を100%完全に阻止することは
不可能であって、実用上どの範囲までが許容されるかを
、それぞれの燃料電池系で明らかにしておく必要がある
A reducing substance, which is a fuel, is supplied to the fuel electrode 1 through the groove 5 of the separator 4, and an oxidizer, which is an oxidizing substance, is supplied to the oxidizer electrode 2 through the groove 6 of the separator 4. An electrochemical reaction proceeds on top of the fuel cell, and the fuel cell generates electricity. Further, the electrolyte 3 may be either liquid or solid as long as it has the function of connecting the fuel electrode 1 and the oxidizer electrode 2 by ionic conduction. Generally, an aqueous solution of an electrolyte substance, a porous substance containing an aqueous electrolyte solution, a matrix that is a pasty substance, an ion exchange membrane, etc. are used. When both the fuel and the oxidizer are gases, it does not matter whether the electrolyte is in any of these three forms, but when at least one of the fuel and the oxidizer is a liquid, the fuel and the oxidizer At the very least, it is not preferable to use only an aqueous solution of an electrolyte substance as an electrolyte, since this may cause a problem of direct contact with the electrolyte substance and a short-circuit reaction. However, with the other two methods, it is impossible to completely prevent the movement of liquid substances 100%, and it is necessary to clarify for each fuel cell system what range is practically acceptable. There is.

100℃以下の低温で作動する低温型燃料電池の酸化剤
は、一般に、空気、または、酸素が用いられる。従って
、液体の反応物質をもつ燃料電池系とは液体燃料物質を
用いる燃料電池のことである。液体燃料には、メタノー
ル、ホルマリン、ギ酸、ヒドラジン、エチレングリコー
ルなどがある。
Air or oxygen is generally used as the oxidizing agent for low temperature fuel cells that operate at low temperatures of 100° C. or lower. Thus, a fuel cell system with a liquid reactant is a fuel cell that uses liquid fuel material. Liquid fuels include methanol, formalin, formic acid, hydrazine, and ethylene glycol.

これらの燃料を用い電解質としてマトリクスまたはイオ
ン交換膜のいずれを用いる場合にも燃料はフリックの法
則に従い空気極(すなわち酸化剤極)側へ拡散、して行
き、そこで空気中の酸素と直接反応、つまり、燃料反応
し発熱する。たとえば、燃料として、メタノールを用い
、イオン交換膜を電解質とし、メタノール濃度1.mo
Q/Q、イオン交換膜のメタノール透過係数I X 1
00−3a/minの時の発熱量は、0.17caQ/
m、”minであるにの値は60mA/cn”でのメタ
ノールの酸化反応(CH,○H+H20→6H”十CO
,+68)の発熱量の約23%に相当する量であり、無
視できない量である。また、このメタノール透過量はメ
タノール濃度に比例するので、このメタノール濃度を制
御することにより、発熱量を制御することができる。こ
のことはメタノールを燃料とする燃料電池系だけでなく
、他の液体燃料を用いる燃料電池系についても全く、同
様である。濃度制御により発熱量制御が可能になるとい
うことは、燃料電池の定常運転時の熱バランスの問題だ
けでなく、実用的には更に重要な意味を持つことを発明
者らは見い出した。つまり、燃料電池の実用運転上の一
つの問題点である起動時間の短縮に利用できるというこ
とである。
When using either a matrix or an ion exchange membrane as an electrolyte using these fuels, the fuel diffuses to the air electrode (i.e., oxidizer electrode) according to Frick's law, where it directly reacts with oxygen in the air. In other words, the fuel reacts and generates heat. For example, methanol is used as the fuel, an ion exchange membrane is used as the electrolyte, and the methanol concentration is 1. mo
Q/Q, methanol permeability coefficient of ion exchange membrane I X 1
The calorific value at 00-3a/min is 0.17caQ/
m, "min value is 60 mA/cn" methanol oxidation reaction (CH,○H+H20→6H"10CO
, +68), which is an amount that cannot be ignored. Furthermore, since the amount of methanol permeation is proportional to the methanol concentration, the amount of heat generated can be controlled by controlling the methanol concentration. This is true not only for fuel cell systems using methanol as fuel, but also for fuel cell systems using other liquid fuels. The inventors have discovered that the ability to control the calorific value through concentration control has a more important practical meaning than just the issue of heat balance during steady operation of the fuel cell. In other words, it can be used to shorten startup time, which is one of the problems in practical operation of fuel cells.

上記を実例により、更に、具体的に説明する。The above will be explained more specifically using an example.

用いた燃料電池は酸性電解液型メタノール空気燃料電池
である。この燃料電池の定格出力は100Wであり重量
は20kgである。また、この電池のメタノール極と空
気極の間にはメタノール透過係数I X 10−”am
 /min (60℃)の陽イオン交換膜を介在させて
いる。電池の運転条件は、アノライト量212、空気流
量50 Q /win放電電流密度60mA/dとした
。また、アノライト中の硫酸濃度は3moQ/Qである
。アノライト中のメタノール濃度を変数とし、電池温度
が室温から50℃にまで昇温するのに要する時間を測定
した。なお、50”Cは定常運転温度60”Cの出力の
90%を出力することのできる温度である。結果を第5
図に示す。図から明らかなように、メタノール濃度を高
くすることにより、電池の昇温速度を短くすることがで
きる。第5図によって得られた基礎的な 。
The fuel cell used was an acidic electrolyte methanol air fuel cell. The rated output of this fuel cell is 100W and the weight is 20kg. Additionally, there is a methanol permeability coefficient I
/min (60°C) is interposed with a cation exchange membrane. The operating conditions of the battery were an anorite amount of 212, an air flow rate of 50 Q/win, and a discharge current density of 60 mA/d. Moreover, the sulfuric acid concentration in the anolyte is 3moQ/Q. Using the methanol concentration in the anolyte as a variable, the time required for the battery temperature to rise from room temperature to 50°C was measured. Note that 50''C is a temperature at which 90% of the output at the steady operating temperature of 60''C can be output. 5th result
As shown in the figure. As is clear from the figure, by increasing the methanol concentration, the rate of temperature rise of the battery can be shortened. The basic value obtained from Figure 5.

知見をもとに、更に実用的な形態での本発明の実施態様
を以下に示す。
Based on the findings, embodiments of the present invention in a more practical form are shown below.

〔発明の実施例〕[Embodiments of the invention]

〈実施例1〉 第1図に本発明を実施した装置の構成を示す。 <Example 1> FIG. 1 shows the configuration of an apparatus embodying the present invention.

11は定格出力1oowの酸性電解液型メタノ−1ルー
空気燃料電池であり、メタノール極と空気極の間には陽
イオン交換膜を介在させており、そのメタノール透過係
数はI X 10−”c++/minである。
11 is an acidic electrolyte type methanol-1-air fuel cell with a rated output of 1oow, and a cation exchange membrane is interposed between the methanol electrode and the air electrode, and its methanol permeability coefficient is I x 10-"c++ /min.

11へは酸化剤である空気がエアポンプ15により、5
0 Q /win送入されており、燃料であるメタノー
ルはアノライトとして、アノライトタンク12より、ア
ノライトポンプ16で11へ送入循環させられる。アノ
ライトは:3+ol/Q硫酸と3n+ol/Aメタノー
ルを含む242の水溶液である。
Air, which is an oxidizing agent, is supplied to 5 by an air pump 15.
0 Q /win is fed, and methanol as fuel is fed as anolite from an anolite tank 12 to 11 by an anolite pump 16 and circulated. The anolyte is an aqueous solution of: 242 containing 3+ol/Q sulfuric acid and 3n+ol/A methanol.

60 m A / cn+”の定電流密度で室温より起
動し、32分後に50℃になった。50℃までの昇温時
間は1moQ/fl  のメタノール濃度で運転した時
の2/3である。なお、この運転において、メタノール
タンク13からアノライトタンク12ヘメタノールを供
給するメタノール供給バルブ22はメタノール濃度1.
0moQ/ffiに設定してあり、32分間の運転では
開くことはなかった。また、水タンク14よりアノライ
トタンク12へ水を保給する水保給バルブ21は32分
間の運転において三回開いて、12の水レベルを一定に
保つために約80 m Qの水を加えた。
It was started from room temperature at a constant current density of 60 mA/cn+'' and reached 50°C after 32 minutes. The time to raise the temperature to 50°C was 2/3 of that when operating at a methanol concentration of 1 moQ/fl. In this operation, the methanol supply valve 22 that supplies methanol from the methanol tank 13 to the anolyte tank 12 has a methanol concentration of 1.
It was set to 0moQ/ffi and did not open during 32 minutes of operation. In addition, the water retention valve 21 that retains water from the water tank 14 to the anorite tank 12 is opened three times during the 32-minute operation, and about 80 mQ of water is added to keep the water level in 12 constant. Ta.

〈実施例2〉 第2図に本実施例の装置を示す。アノライト補助タンク
12′とアノライト供給バルブ23以外は実施例1と全
く同じである。アノライトタンク中のアノライト量は5
00mΩで3monIQ  硫酸と3mon/fi  
メタノールを含んでおり、アノライトポンプ16で積層
電池11へ送入循環されている。60 m A / c
m”の定電流放電で放電し、50℃になるのに14分を
要した。これは1n+o12/Qのメタノール濃度で運
転した時の約1/3の時間に短縮できた。なお、この運
転中アノライトタンク12の中のメタノール濃度とアノ
ライト量はバルブ22とバルブ21よりメタノールと水
を保給し一定に保つようにした。電池温度が50℃を起
え60℃になるまで同一条件で運転し、60℃になった
時点で7ノライト供給バルブ23を開き。
<Example 2> Fig. 2 shows the apparatus of this example. The components other than the anolyte auxiliary tank 12' and the anolyte supply valve 23 are exactly the same as in the first embodiment. The amount of anolite in the anolite tank is 5
3monIQ at 00mΩ 3mon/fi with sulfuric acid
It contains methanol, and is fed and circulated to the stacked battery 11 by an anolyte pump 16. 60m A/c
It took 14 minutes for the temperature to reach 50°C after discharging at a constant current of 1.0 m''.This time was reduced to approximately 1/3 of the time required when operating at a methanol concentration of 1n+o12/Q. The methanol concentration and the amount of anolyte in the medium anolyte tank 12 were kept constant by retaining methanol and water through valves 22 and 21.The same conditions were maintained until the battery temperature rose from 50°C to 60°C. Operate, and when the temperature reaches 60°C, open the 7norite supply valve 23.

3monIQ硫酸と1moQ/Qメタノールを含有する
1、5Q の7ノライトをアノライトタンクに加えた。
1,5Q 7nolite containing 3monIQ sulfuric acid and 1moQ/Q methanol was added to the anolyte tank.

アノライトタンクへアノライトを供給した直後温度は約
51℃まで低下したが、その後ゆっくり上昇した。7ノ
ライト中のメタノール濃度はその24分後に定常運転濃
度の1mo12/ρになつた。
Immediately after supplying the anolyte to the anolyte tank, the temperature dropped to about 51°C, but then rose slowly. After 24 minutes, the methanol concentration in the 7norite reached the steady-state operating concentration of 1 mo12/ρ.

〈実施例3〉 第3図に本実施例の装置を示す。メタノール供給バイパ
スとバイパスバルブ24が付いている以外はすべて実施
例2とその装置を示す第2図と同じである。アノライト
タンク12の中には3!IOQ/Q硫酸と3moQ/J
メタノールを含む500m0のアノライトがあり、アノ
ライト補給タンク12′中には、3mon/u硫酸と1
rrroQ/Qメタノールを含む1500m 12のア
ノライトが入っている。
<Embodiment 3> FIG. 3 shows the apparatus of this embodiment. Everything is the same as Example 2 and FIG. 2 showing the apparatus, except that a methanol supply bypass and a bypass valve 24 are provided. There are 3 in the anorite tank 12! IOQ/Q sulfuric acid and 3moQ/J
There is 500 m0 of anolyte containing methanol, and in the anolyte supply tank 12', 3 mon/u sulfuric acid and 1
Contains 1500m 12 anolytes containing rrroQ/Q methanol.

、アノライトポンプ16を始動すると同時にバイパスバ
ルブ24を開いて積層セル中のアノライトのメタノール
濃度が5n+oQ/12  になるようなメタノール量
を注入しバルブ24を開き15秒後にアノライトポンプ
16を停止し、60mA/c♂の定電流放電を開始した
。5分後に、再び、アノライトポンプを始動し、電池の
放電を続行した。電池温度は放電開始後11分で50℃
になった。この時間はメタノール濃度1mojl/Ω 
の定常運転条件のときの約1/4に短縮されたことを示
している。
At the same time as starting the anolyte pump 16, open the bypass valve 24, inject an amount of methanol such that the methanol concentration of the anolite in the laminated cell becomes 5n+oQ/12, open the valve 24, and stop the anolyte pump 16 after 15 seconds. , a constant current discharge of 60 mA/c♂ was started. After 5 minutes, the anolyte pump was started again to continue discharging the battery. The battery temperature reached 50℃ 11 minutes after the start of discharge.
Became. During this time, methanol concentration is 1 mojl/Ω
This shows that the time has been shortened to about 1/4 of that under steady operating conditions.

その後、電池温度が60℃になった時にアノライト補給
バルブ23を開き、メタノール濃度が1taoQ/Qア
ノライト1.5Q を補給した。その直後温度は約50
℃まで低下した。
Thereafter, when the battery temperature reached 60° C., the anolyte replenishment valve 23 was opened and 1.5Q of anolyte having a methanol concentration of 1taoQ/Q was replenished. Immediately after that the temperature was about 50
The temperature dropped to ℃.

〔発明の効果〕〔Effect of the invention〕

本発明によれば液体燃料を用いる低温型燃料電池の冷起
動時の昇温時間を、燃料電池以外の他の装置の助けを借
りることなく、短縮することが可能である。
According to the present invention, it is possible to shorten the temperature rise time during cold startup of a low-temperature fuel cell using liquid fuel without the aid of any other device other than the fuel cell.

実施例1,2.3ではメタノールを燃料とする酸性電解
液型メタノール−空気燃料電池を用いて説明した。しか
し、本発明の適用範囲はこの例に限定されることなく、
ホルマリン、ギ酸、ヒドラジン、エチレングリコールな
どの他の液体燃料を用いた燃料電池にも同様に適用可能
である。電解質も酸性物質ばかりでなくアルカリ性物質
を用いたものの使用も可能である。更に、気体活性物質
を用いる燃料電池において、気体の濃度、すなわち、圧
力と考えるなら、冷起動時に面電極のガス圧カバランス
を故意にくずし、電解質を通してのガラスの交差を生じ
させ発熱昇温させることも可能である。
In Examples 1, 2.3, an acidic electrolyte methanol-air fuel cell using methanol as fuel was used. However, the scope of application of the present invention is not limited to this example,
It is equally applicable to fuel cells using other liquid fuels such as formalin, formic acid, hydrazine, and ethylene glycol. As for the electrolyte, it is possible to use not only acidic substances but also alkaline substances. Furthermore, in fuel cells that use gaseous active substances, if we consider the concentration of gas, that is, the pressure, the gas pressure balance of the plane electrode is intentionally destroyed during cold startup, causing the glass to cross through the electrolyte, causing heat generation and temperature rise. It is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例の系統図、第4
図は燃料電池の断面模式図、第5図は本発明の原理とな
る基礎実験の結果を示す図である。 11・・・メタノール−空気燃料電池、12・・・アノ
ライトタンク、13・・・メタノールタンク、14・・
・水タンク、15・・・空気ポンプ、16・・・アノラ
イトポンプ、21・・・水供給バルブ。
Figures 1 to 3 are system diagrams of one embodiment of the present invention;
The figure is a schematic cross-sectional view of a fuel cell, and FIG. 5 is a diagram showing the results of basic experiments that form the principle of the present invention. 11... Methanol-air fuel cell, 12... Anolyte tank, 13... Methanol tank, 14...
- Water tank, 15... Air pump, 16... Anorite pump, 21... Water supply valve.

Claims (1)

【特許請求の範囲】 1、燃料物質を電気化学的に酸化する燃料極、酸化剤を
電気化学的に還元する酸化剤極、それらの間のイオン導
電性を保持する電解質から成る単位電池によつて構成さ
れる部分とその部分で消費される燃料および酸化剤を供
給・排出する部分とからなる燃料電池において、 起動時に定常運転時より高い濃度の燃料を供給すること
を特徴とする燃料電池の運転方法。 2、特許請求の範囲第1項において、起動時に与えた燃
料濃度が所定の温度に達する時に定常運転時の濃度まで
低下するように始動時の燃料の量と濃度を設定したこと
を特徴とする燃料電池の運転方法。 3、特許請求の範囲第1項において、所定の温度に達し
た後、濃度の薄い燃料を加えることにより定常運転濃度
に調整することを特徴とする燃料電池の運転方法。 4、特許請求の範囲第1項において、前記燃料電池の燃
料がメタノール、ホルマリン、蟻酸、ヒドラジンから選
ばれるものの中の少なくとも一つの液体物質であること
を特徴とする燃料電池の運転方法。
[Claims] 1. A unit cell consisting of a fuel electrode that electrochemically oxidizes a fuel substance, an oxidizer electrode that electrochemically reduces an oxidizer, and an electrolyte that maintains ionic conductivity between them. A fuel cell is characterized in that it supplies a higher concentration of fuel during startup than during steady operation, in a fuel cell consisting of a section that supplies and discharges the fuel and oxidizer consumed in that section. how to drive. 2. Claim 1 is characterized in that the amount and concentration of fuel at startup are set such that the fuel concentration applied at startup decreases to the concentration during steady operation when the fuel concentration reaches a predetermined temperature. How to operate a fuel cell. 3. The method of operating a fuel cell according to claim 1, characterized in that after reaching a predetermined temperature, the concentration is adjusted to a steady operating concentration by adding fuel with a low concentration. 4. The method of operating a fuel cell according to claim 1, wherein the fuel of the fuel cell is at least one liquid substance selected from methanol, formalin, formic acid, and hydrazine.
JP60110413A 1985-05-24 1985-05-24 Operation method of fuel cell Pending JPS61269865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110413A JPS61269865A (en) 1985-05-24 1985-05-24 Operation method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110413A JPS61269865A (en) 1985-05-24 1985-05-24 Operation method of fuel cell

Publications (1)

Publication Number Publication Date
JPS61269865A true JPS61269865A (en) 1986-11-29

Family

ID=14535146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110413A Pending JPS61269865A (en) 1985-05-24 1985-05-24 Operation method of fuel cell

Country Status (1)

Country Link
JP (1) JPS61269865A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003220A1 (en) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for operating a fuel cell
JP2002151132A (en) * 2000-11-07 2002-05-24 Japan Storage Battery Co Ltd Fuel cell using glycol as fuel
JP2003520413A (en) * 2000-01-18 2003-07-02 ラモツト・アット・テル−アビブ・ユニバーシテイ・リミテッド New fuel
WO2003003494A3 (en) * 2001-06-28 2003-09-18 Ballard Power Systems Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
EP1366534A2 (en) * 2001-03-02 2003-12-03 MTI Microfuel Cells, Inc. Cold start and temperature control method and apparatus for fuel cell system
DE102008020362A1 (en) 2007-04-24 2008-10-30 Yamaha Hatsudoki K.K., Iwata The fuel cell system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003220A1 (en) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for operating a fuel cell
JP2003520413A (en) * 2000-01-18 2003-07-02 ラモツト・アット・テル−アビブ・ユニバーシテイ・リミテッド New fuel
JP2002151132A (en) * 2000-11-07 2002-05-24 Japan Storage Battery Co Ltd Fuel cell using glycol as fuel
EP1366534A2 (en) * 2001-03-02 2003-12-03 MTI Microfuel Cells, Inc. Cold start and temperature control method and apparatus for fuel cell system
JP2004530259A (en) * 2001-03-02 2004-09-30 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド Cold start and temperature control method and apparatus for fuel cell system
EP1366534A4 (en) * 2001-03-02 2007-12-26 Mti Microfuel Cells Inc Cold start and temperature control method and apparatus for fuel cell system
WO2003003494A3 (en) * 2001-06-28 2003-09-18 Ballard Power Systems Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
DE102008020362A1 (en) 2007-04-24 2008-10-30 Yamaha Hatsudoki K.K., Iwata The fuel cell system
US8071244B2 (en) 2007-04-24 2011-12-06 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
KR100699371B1 (en) Direct-methanol fuel cell system and mtehod for controlling the same
US7622209B2 (en) Fuel cell system and fuel cell starting method
JP2004530259A (en) Cold start and temperature control method and apparatus for fuel cell system
JPH10144334A (en) Fuel cell system power plant, and starting and stopping method therefor
US20100035098A1 (en) Using chemical shorting to control electrode corrosion during the startup or shutdown of a fuel cell
WO2003003494A2 (en) Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion
JP2002530817A (en) Fuel cell system with improved startable output
JP2002539586A (en) Fuel cell and low-temperature starting method thereof
CN101682065B (en) Fuel cell system and method of operating the same
KR101309154B1 (en) Operating method of fuel cell system
JP2007149360A (en) Fuel cell power generation system
JP2003510766A (en) Method and system for starting fuel cell stack of fuel cell device
JPS61269865A (en) Operation method of fuel cell
JP2005149902A (en) Fuel cell power generating device and fuel cell power generating method
US6884529B2 (en) Method of heating up a solid polymer electrolyte fuel cell system
JP3918999B2 (en) Direct methanol fuel cell system and its operation method
JP2007005280A (en) Fuel cell generator
US6576356B1 (en) Preconditioning membranes of a fuel cell stack
JPH09147896A (en) Solid high polymer fuel cell system
JP2003197240A (en) Fuel cell system
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JP3561659B2 (en) Fuel cell system
JPH08222252A (en) Solid high polymer fuel cell system
US20220246963A1 (en) Direct methanol fuel cell and method of operation
JP2007066844A (en) Fuel cell system