JPS59148809A - Defect inspecting method of surface with lattice pattern - Google Patents

Defect inspecting method of surface with lattice pattern

Info

Publication number
JPS59148809A
JPS59148809A JP2322583A JP2322583A JPS59148809A JP S59148809 A JPS59148809 A JP S59148809A JP 2322583 A JP2322583 A JP 2322583A JP 2322583 A JP2322583 A JP 2322583A JP S59148809 A JPS59148809 A JP S59148809A
Authority
JP
Japan
Prior art keywords
light
defect
inspected
illumination
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2322583A
Other languages
Japanese (ja)
Inventor
Taketoshi Yonezawa
米澤 武敏
Ryukichi Matsumura
松村 隆吉
Masayuki Shibano
正行 芝野
Minoru Katsuyama
実 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2322583A priority Critical patent/JPS59148809A/en
Publication of JPS59148809A publication Critical patent/JPS59148809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform easy, high-speed defect inspection by a simple device by irradiating a surface to be inspected which has a grating pattern with illumination luminous flux which is regarded substantially as parallel light in a direction which does not cross the grating pattern at right angles. CONSTITUTION:Light from an illumination light source is sent as substantially parallel luminous flux 21 and guided to the surface of a sample 16 through mirrors 19 and 20. The projection direction of the illumination flux luminous upon the sample 16 is set without crossing the grating pattern on the surface of the sample 16 at right angles, e.g. at 45 deg. to the grating for the orthogonal grating pattern of a mosaic type color filter. Thus, the simple device performs defect inspection easily at a high speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えばCODイメージセンサあるいけその上
に配置するカラーフメルタの表面における数ミクロン以
上の大きさの欠陥ま゛でも検査することができる格子状
パターンを有−1iる表′面の欠陥検査方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a lattice pattern that can inspect even defects of several microns or more on the surface of a color fumerta placed on a COD image sensor or cage, for example. The present invention relates to a surface defect inspection method having -1i.

従来例の構成とその問題点 IC,LSi等の微細構造を持った電子デバイスにおり
てけ、デバイスを構成する半導体材料表面に存在する傷
、異物等の欠陥がデバイス特性を損じることがあり、欠
陥の検査は製造工程において欠かせなめものである。
Conventional configurations and their problems When electronic devices with fine structures such as ICs and LSis are used, defects such as scratches and foreign substances on the surface of the semiconductor materials that make up the device can impair device characteristics. Inspection is an essential part of the manufacturing process.

これまで各種の検査方式が検討、実施されているが、基
本的な原理はすべて共通であp1第1図に示すものであ
る。検査すべき半導体材料1等の表面1aは一般に鏡面
状態であり、表面1aと適当な角度を成す実質的に平行
光とみなせる照明光3は、表面111’で正反射し反射
γC4となる。
Although various inspection methods have been studied and implemented so far, the basic principle is common to all of them and is shown in Figure 1 of page 1. The surface 1a of the semiconductor material 1 etc. to be inspected is generally in a mirror state, and the illumination light 3 which forms an appropriate angle with the surface 1a and can be regarded as substantially parallel light is specularly reflected by the surface 111' and becomes reflected γC4.

表面1aに異物2が存在すると、照明光3は異物2によ
って散乱反射し、散乱光5となる。暗室等において第1
図のような状態肴・表面1aの真上から目視で智察する
と、散乱光5だけを見ることになり、暗黒の中に異物6
が輝点として認識される。
When a foreign substance 2 is present on the surface 1a, the illumination light 3 is scattered and reflected by the foreign substance 2, and becomes scattered light 5. No. 1 in the darkroom, etc.
In the state shown in the figure, if you visually inspect the dish from directly above the surface 1a, you will see only the scattered light 5, and there will be a foreign object 6 in the darkness.
is recognized as a bright spot.

異物の他に傷も同様に観察、さizる0すなわち、鏡面
状の表面1a上に存在する凹凸等の段差部で散乱反射す
る光を検出して旨、ることになる。一般にこの様な検査
ケ肉眼で直接目視・する方法全斜光検査あるいは、スポ
ット光検査と称し、顕微鏡でこの様に構成した照明系を
暗視野照明、そのような顕微鏡を暗視野顕微鏡と称−「
る。
In addition to foreign matter, scratches are also observed in the same way, that is, by detecting light that is scattered and reflected at steps such as unevenness existing on the mirror-like surface 1a. In general, this type of inspection is performed directly with the naked eye, which is called full oblique light inspection or spot light inspection.The illumination system configured in this way with a microscope is called dark field illumination, and such a microscope is called dark field microscope.
Ru.

IC,LSi等においては、 半導体材料の表面に酸化
、エツチング等の処JIJjによって回路パターンが形
成されており、倣細な凹凸が存在する。したがって、こ
hを暗視野顕微鏡で観察でると回路パターンの凹凸段差
部と欠陥の両方で照明光が散乱反射し、欠陥のみを検出
することは極めて困難である。
In ICs, LSis, etc., circuit patterns are formed on the surface of semiconductor materials by processes such as oxidation and etching, and there are fine irregularities. Therefore, when this is observed using a dark-field microscope, the illumination light is scattered and reflected by both the uneven step portion of the circuit pattern and the defect, making it extremely difficult to detect only the defect.

近年、CODイメージセンサ等の固体撮像素子を用いた
テレビカメラが実用化さitつつあるが、これ全カラー
化するにあたっては、モザイク状等のカラーフィルタを
イメージセンサの上に形成する必要があ−る。第2図は
そのようなカラーフィルタのパターンの一例である。
In recent years, television cameras that use solid-state image sensors such as COD image sensors are being put into practical use, but in order to make them all color, it is necessary to form a mosaic-like color filter on top of the image sensor. Ru. FIG. 2 is an example of such a color filter pattern.

モザイク状の各色フィルターはぞれぞ、れイメージセン
サの一画素に対応して力る色フィルターは染色部6とセ
パレータ部7で構成され、染色部6の大きさは、20μ
m×25μm稈度、またセパレーク部7の幅は3am−
程度であろ−このセパレータ部7け一般に1aW1以下
の凹形状となっておジ、暗視野顕微鏡で観察するとセパ
レータ部7が輝いて見える。このような格子状のセパレ
ータがある表面の欠陥検査の場合、従来にL、格子状パ
ターンノヒノチ等の一様性を利用17、テレビカメラの
信号を計算機で処理して、欠陥のみ′fc認識できるよ
うにしたり、パターンマツチング法によって格子状パタ
ーンの信号を抜きとって欠陥を認識したりしていたが、
いずれも大がかりな装置が必要となるばかりでなく、計
算機で信号処理をする段階で時間を要し、高速検査の障
害となっていた。
Each color filter in a mosaic pattern corresponds to one pixel of the image sensor.The color filter is composed of a dyeing section 6 and a separator section 7, and the size of the dyeing section 6 is 20μ.
m x 25μm culm, and the width of the separate lake part 7 is 3am-
However, the separator portion 7 generally has a concave shape of 1aW1 or less, and when observed with a dark field microscope, the separator portion 7 appears shining. In the case of defect inspection on a surface with such a grid-like separator, the uniformity of L, grid-like patterns, etc. is conventionally used17, and the TV camera signal is processed by a computer to recognize only the defects'fc. In the past, defects were recognized by extracting signals from grid patterns using pattern matching methods.
All of these methods not only require large-scale equipment, but also take time to process the signals using a computer, which hinders high-speed inspection.

発明の目的 本発明は、上記従来の問題点を解決するもC)でIC,
LSI行にCC,DイメージセンサあるいけCODイメ
ージセンサの土に配置するモザイク状力う−フメルタ等
の基本的に格子状σ〕/クターンを有する素子の表面に
存在−する比較的大きな(格子状パターンを形状する微
細な凹凸の段差C)大きさより大きい程度)欠陥全容易
に検出−する方法を提供することケ目的とする0 発明の構成 本発明は、微細な凹凸によ・〕て形成される格子状パタ
ーンを有する被検査表面に対し、実質的に平行光と見な
せる照明光束を、格子状ノくター・ンの格子と直交しな
り方向から、被検査表面と適宜σ)角度を成して照射し
、被検査表面に存在する傷。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional problems.
CC, D image sensors and COD image sensors are placed on the surface of the LSI line in a mosaic-like structure. It is an object of the present invention to provide a method for easily detecting all defects (to a degree larger than the size) of fine irregularities forming a pattern. A beam of illumination light that can be considered to be substantially parallel light is directed at a surface to be inspected that has a grid-like pattern from a direction perpendicular to the grid-like no-turn-n grating, forming an appropriate angle σ) with the surface to be inspected. flaws present on the surface to be inspected.

異物等の欠陥によって散乱した光を、被検査表面に垂直
な方向に設けた光検出手段Vこよって受光し、前記欠陥
を認識する欠陥検査方法であり、前記照明方法により、
格子部で散乱した)℃の強度を、欠陥によって散乱した
光の強度よりも小さくし、欠陥の認識?容易とし、安価
に高速の倹介を可能とするものである。
A defect inspection method in which light scattered by a defect such as a foreign object is received by a light detection means V provided in a direction perpendicular to the surface to be inspected, and the defect is recognized, and the illumination method:
The intensity of light scattered by the lattice) is made smaller than the intensity of the light scattered by the defect, and the defect is recognized. This makes it possible to perform the treatment easily, inexpensively, and at high speed.

実施例の説明 喰3図、第4図は本発明実施例に」、−ける格子状パタ
ーンを有する表面の欠陥検査方法の原理゛を説明するた
めの図である。まず第3図VCおいて、斜め方向から平
行光8を物体9に投射−「ると、平和部9aでは図の方
向に照射し、段差9bfは散乱反射する。物体9の真上
から観察−「ノLは散乱光によって明瞭に段差9bが認
識されるのは第1図で説明した場合と同様である。
DESCRIPTION OF THE EMBODIMENT FIGS. 3 and 4 are diagrams for explaining the principle of a method for inspecting defects on a surface having a lattice pattern according to an embodiment of the present invention. First, in FIG. 3 VC, when parallel light 8 is projected onto object 9 from an oblique direction, it is irradiated in the direction shown in the figure at peace part 9a, and the step 9bf scatters and reflects it. Observed from directly above object 9. In the case of No. L, the step 9b is clearly recognized by the scattered light, as in the case explained in FIG. 1.

次に第4図において、物体10の段差1obがなだらか
な場合には、平担部10aでの反射光も段差10bの斜
面部での反射光も、はぼ同方向に反射され、第3図にお
ける様な散乱光成分は微少である。すなわち、物体10
i上方から観察しても、段差1ob全認−@することは
極めて困難である。
Next, in FIG. 4, when the step 1ob of the object 10 is gentle, the reflected light from the flat portion 10a and the reflected light from the sloped portion of the step 10b are reflected in approximately the same direction, and as shown in FIG. Scattered light components like those in are minute. That is, object 10
Even when observed from above, it is extremely difficult to fully recognize the difference in level.

そこで、第2図と同様のカラーフィルタに、第5図に示
すように、カラーフィル2表面と適宜の角度ケ成して、
図の様に8方向から11.11’、12゜12<  1
3.13’、14.14’の平行光を投射する場合を考
えると、セパレータ部7の段差による散乱反射の状態は
、照明光11.11’および12.12’では第3図と
同等であり、照明光13.’13’および14.14’
  では第4図に近いものとなる。その状態は第4図は
どでは無いにせよ、表面に垂直な方向への散乱光成分は
十分に少くなる。・一方表面に存在する欠陥は無定形と
みなせるから散乱光の表面に垂直な方向の成分は、照明
光の投射方向によって急激に変化することはない。
Therefore, as shown in FIG. 5, a color filter similar to that shown in FIG.
As shown in the figure, 11.11' from 8 directions, 12°12<1
Considering the case of projecting parallel light beams 3.13' and 14.14', the state of scattering and reflection due to the step of the separator section 7 is the same as that shown in Fig. 3 for illumination lights 11.11' and 12.12'. Yes, illumination light 13. '13' and 14.14'
The result will be similar to that shown in Figure 4. Although the state is not as shown in FIG. 4, the scattered light component in the direction perpendicular to the surface is sufficiently reduced. - On the other hand, since defects existing on the surface can be considered amorphous, the component of the scattered light in the direction perpendicular to the surface does not change rapidly depending on the direction in which the illumination light is projected.

すなわち、照明光13.13’、14.14’  によ
れば、欠陥は明るく輝すて見え、セパレータ部7はほと
んど見え々b程度になるため、欠陥の認識が容易となる
That is, according to the illumination lights 13.13' and 14.14', the defect appears bright and shiny, and the separator portion 7 is almost invisible, so that the defect can be easily recognized.

ただし、非常に微小な欠陥、たとえばセパレータ部70
段差の大きさ程度より小さい欠陥の場合には、それを検
出するためには照明光源の輝度を相当に高くしなければ
ならず、そうなるとセパレータ部7の段差、特に角部で
の散乱光が欠陥による散乱光の強度と同レベルになり、
欠陥と識別することが困難となる。しかし、その様な微
細な欠陥(たとえば1μm以下の大きさ)はカラーフィ
ルタの欠陥としては無視できるものであり、本発明によ
る検出対象とはしなくてもよ゛い。
However, very small defects, such as the separator part 70,
In the case of a defect that is smaller than the size of a step, the brightness of the illumination light source must be considerably increased in order to detect it, and in this case, the scattered light from the step of the separator section 7, especially at the corners, will be detected by the defect. The intensity of the scattered light is the same as that of
It becomes difficult to distinguish it from a defect. However, such minute defects (for example, size of 1 μm or less) can be ignored as color filter defects, and do not need to be detected by the present invention.

次に本発明実施例の構成を第6図に示す。カラーフィル
タ等の試料16が試料台15の上に載せられ、真空吸着
等の手段で固定さ五ている。試料台15ばXYテーブル
に連結されて試料16f!:移動しうる様に構成されて
−る。試料16の上に顕微鏡の対物レンズ17が位置し
、拭清116の観察像はテレビカメラ18で撮像し、電
気信号に変換される。
Next, the configuration of an embodiment of the present invention is shown in FIG. A sample 16 such as a color filter is placed on a sample stage 15 and fixed by means such as vacuum suction. Sample stand 15 is connected to the XY table and sample 16f! : Constructed so that it can be moved. An objective lens 17 of a microscope is positioned above the sample 16, and an observed image of the wipe 116 is captured by a television camera 18 and converted into an electrical signal.

照明光源からの光は、実質的に平行な光束21として送
られ、ミラー19および2oによって試料16の表面に
導びかれ・る。試料16の表面と照明光の成す角度θは
、暗視野照明の効果がでるよう適宜の角度を選択してよ
いが、対物レンズ17のワーキングディスタンスによっ
て制約されることが多い。
The light from the illumination source is transmitted as a substantially parallel beam 21 and directed onto the surface of the sample 16 by mirrors 19 and 2o. The angle θ between the surface of the sample 16 and the illumination light may be selected as appropriate so as to produce the effect of dark-field illumination, but it is often restricted by the working distance of the objective lens 17.

照明光束の試料16へ投射方向は、第5図に示した様に
、試料16の表面に存在する格子状パターンと直交しな
い方向に設定しており、モザイク状カラーフィルタの様
な直交格子状パターンの場合には、格子と460の角度
を成す方向から照明光を投射するのが適切である。一般
のIC,LSiのパターンもほぼ直交パターンの組合せ
であり、同様の構成による検査が可能である。
As shown in FIG. 5, the direction in which the illumination light beam is projected onto the sample 16 is set in a direction that is not orthogonal to the grid pattern existing on the surface of the sample 16, and the orthogonal grid pattern like a mosaic color filter is formed. In this case, it is appropriate to project the illumination light from a direction forming an angle of 460 with the grating. General IC and LSi patterns are also a combination of almost orthogonal patterns, and inspection can be performed using a similar configuration.

第7図はテレビカメラ18の電気信号出力を説明する図
である。信号のレベルVを縦軸にとり、23および26
は格子状パターンの段差部による散乱光、24および2
7は欠陥による散乱光である。23.24の場合の条件
22は、照明光の強度が低い場合であり、26.27の
場合の条件26は照明光の強度が高く、欠陥の信号27
のレベルがカメラの飽和レベルVsに達している。照、
明光の強度をさらに高めると、格子状パターンの段差部
による散乱光のレベルも飽和レベルVsに達するように
なり、格子、と欠陥を識別できなくなる。
FIG. 7 is a diagram illustrating the electrical signal output of the television camera 18. Taking the signal level V on the vertical axis, 23 and 26
is the scattered light due to the step part of the grid pattern, 24 and 2
7 is scattered light due to defects. Condition 22 in the case of 23.24 is a case where the intensity of the illumination light is low, and condition 26 in the case of 26.27 is a case where the intensity of the illumination light is high and the defect signal 27
has reached the camera saturation level Vs. Teru,
When the intensity of the bright light is further increased, the level of scattered light due to the stepped portions of the lattice-like pattern also reaches the saturation level Vs, and it becomes impossible to distinguish between lattices and defects.

すなわち、格子状パターンの段差部による散乱光にもと
づく信号レベルが段差の大きさより大きい□欠陥による
散乱光の信号レベルに比べて小さくなるように照明光強
度を設定し、その中間にスレショールドレベルVTを設
定し、格子状パターンの段差部より大きい大きさの欠陥
のみ看r検、出+る。
In other words, the illumination light intensity is set so that the signal level based on the light scattered by the step part of the lattice pattern is larger than the size of the step □ It is smaller than the signal level of the light scattered by the defect, and the threshold level is set in the middle. VT is set, and only defects larger than the step portion of the grid pattern are detected and detected.

発明の効果 以上のように、本発明の欠陥検鋒方法は、格子。Effect of the invention As described above, the defect detection method of the present invention uses a grid.

状パターンを有する被検査表面に対して、実質的に平行
光と見なせる照明光束?r、格子状パターンと直交しな
い方向から、被検査表面と適宜の角度を成して照射し、
被検査表面に存在−する傷、異物等の欠陥によって散乱
した光を1被検査表面と垂直な方向に設けた光検出手段
Vこよって受光し、前記欠陥を認識することにより、簡
単な装置で容易にかつ高速で欠陥検査をすることが可能
であり、その工業的価値は大きい。
Is the illumination light flux that can be considered as substantially parallel light to the surface to be inspected that has a shaped pattern? r, irradiate from a direction not perpendicular to the grid pattern at an appropriate angle with the surface to be inspected;
The light scattered by defects such as scratches and foreign objects existing on the surface to be inspected is received by a light detection means V installed in a direction perpendicular to the surface to be inspected, and the defects can be recognized using a simple device. It is possible to inspect defects easily and at high speed, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における検査方法の原理を説明するため
の原理図、第2図は被検査表面ケ例を示す平面図、第3
図〜第5図は本発明の格子状パターンを有′する表面の
欠陥検査方法の原理を説明するための原理図、第6図は
同検査方法を実施した巳 装置の原理図、第7図り、固装@説明のための特性図で
ある。 16・・・・被検査物、17・・・・・対物レンズ、1
8・・・・・・テレビカメラ、1g、20・・・・・・
ミラー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名。 第 1 図 第2図 第3図 第6図 /9   /’? 第7図 ???5
Fig. 1 is a principle diagram for explaining the principle of a conventional inspection method, Fig. 2 is a plan view showing an example of a surface to be inspected, and Fig. 3
5 to 5 are principle diagrams for explaining the principle of the method of inspecting defects on a surface having a lattice pattern according to the present invention, FIG. , solid mounting @ is a characteristic diagram for explanation. 16...Object to be inspected, 17...Objective lens, 1
8...TV camera, 1g, 20...
mirror. Name of agent: Patent attorney Toshio Nakao and one other person. Figure 1 Figure 2 Figure 3 Figure 6 /9 /'? Figure 7? ? ? 5

Claims (2)

【特許請求の範囲】[Claims] (1)微細な凹凸によ−て形成される格子状パターンを
有する被検査表面に′対し、実質的に平行光と見なせる
照明光束を、格子状パターンの格子と直交1〜ない方向
から、被検査表面と適宜の角度?成して照射し、被検査
表面に存在する傷。 異物等の欠陥によって散乱した光を、被検査表面と垂直
な方向に設けた光検出手段によって受光し、前記欠陥を
認識することを特徴とする格子状パターンを有する表面
の欠陥検査方法。
(1) An illumination beam that can be considered as substantially parallel light is applied to the surface to be inspected which has a lattice pattern formed by fine irregularities from a direction that is perpendicular to or not perpendicular to the lattice of the lattice pattern. Inspection surface and appropriate angle? flaws present on the inspected surface. A method for inspecting defects on a surface having a lattice pattern, characterized in that light scattered by a defect such as a foreign object is received by a light detection means provided in a direction perpendicular to the surface to be inspected, and the defect is recognized.
(2)光検出手段として対物レンズに入射した散乱光を
テレビカメラ等で受光して電気信号に変換するよう構成
し、格子状パターンを形成する微細な凹凸の段差部で散
乱した光にもとづく電気信号レベルが段差の大きさより
大きい欠陥によって散乱した光にもとづく電気信号レベ
ルに比べて小さくなる様に照明光強度を設定し、前記二
種の電気信号レベルの中間にスレッショールドレベルを
設定することによって、格子状パターンを形成する凹凸
の段差の大きさより大きb欠陥の
(2) As a light detection means, the scattered light incident on the objective lens is received by a television camera or the like and converted into an electrical signal, and electricity is generated based on the light scattered on the fine uneven steps forming a grid pattern. Setting the illumination light intensity so that the signal level is smaller than the electrical signal level based on light scattered by a defect larger than the size of the step, and setting a threshold level between the two types of electrical signal levels. , the size of the defect b is larger than the step size of the unevenness forming the lattice pattern.
JP2322583A 1983-02-14 1983-02-14 Defect inspecting method of surface with lattice pattern Pending JPS59148809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322583A JPS59148809A (en) 1983-02-14 1983-02-14 Defect inspecting method of surface with lattice pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322583A JPS59148809A (en) 1983-02-14 1983-02-14 Defect inspecting method of surface with lattice pattern

Publications (1)

Publication Number Publication Date
JPS59148809A true JPS59148809A (en) 1984-08-25

Family

ID=12104688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322583A Pending JPS59148809A (en) 1983-02-14 1983-02-14 Defect inspecting method of surface with lattice pattern

Country Status (1)

Country Link
JP (1) JPS59148809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453433A2 (en) * 1990-04-18 1991-10-23 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Automatic control process of the quality of a car body component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453433A2 (en) * 1990-04-18 1991-10-23 CENTRE DE RECHERCHES METALLURGIQUES CENTRUM VOOR RESEARCH IN DE METALLURGIE Association sans but lucratif Automatic control process of the quality of a car body component

Similar Documents

Publication Publication Date Title
JP3817427B2 (en) Semiconductor configuration
US8416292B2 (en) Defect inspection apparatus and method
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JPS63244753A (en) Defect recognition and processing device
JPH08128959A (en) Optical inspection method and optical inspection device
JPH1151622A (en) Method and device for foreign matter inspection
JP2003185593A (en) Visual examination device for wafer
JPH05100413A (en) Foreign matter detecting device
JP4414533B2 (en) Defect inspection equipment
JP2001209798A (en) Method and device for inspecting outward appearance
JPH0410563B2 (en)
JP2004184142A (en) Defect inspection method and apparatus therefor
JPS59148809A (en) Defect inspecting method of surface with lattice pattern
US5745239A (en) Multiple focal plane image comparison for defect detection and classification
JP2705764B2 (en) Defect detection device for transparent glass substrate
JP3166320B2 (en) Method and apparatus for inspecting foreign matter in resist coating film
JPH08145901A (en) Inspection equipment of foreign substance of transparent metal thin film substrate
JP2898669B2 (en) Defect inspection equipment
JP2559470B2 (en) Appearance inspection method
JPH03165534A (en) Defect inspecting device
JPH09218162A (en) Surface defect inspection device
JP3796101B2 (en) Foreign object inspection apparatus and method
JPH03181807A (en) Visual apparatus
JPH06305110A (en) Apparatus and method for testing blinding of printing screen
JPH0293312A (en) Flaw detecting apparatus