JPS59148346A - Substrate for semiconductor device - Google Patents

Substrate for semiconductor device

Info

Publication number
JPS59148346A
JPS59148346A JP2306283A JP2306283A JPS59148346A JP S59148346 A JPS59148346 A JP S59148346A JP 2306283 A JP2306283 A JP 2306283A JP 2306283 A JP2306283 A JP 2306283A JP S59148346 A JPS59148346 A JP S59148346A
Authority
JP
Japan
Prior art keywords
substrate
silicon film
insulating body
laser
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2306283A
Other languages
Japanese (ja)
Inventor
Koji Egami
江上 浩二
Masakazu Kimura
正和 木村
Hideki Tsuya
英樹 津屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2306283A priority Critical patent/JPS59148346A/en
Publication of JPS59148346A publication Critical patent/JPS59148346A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To perform control of the thermal gradient of the surface layer of an insulating body readily, by including lanthanide ions in the insulating body layer when recrystallization is performed by laser annealing. CONSTITUTION:The laser annealing of an amorphous or polycrystalline silicon film 5, which is deposited on an insulating substrate 3, is performed and recrystallization is attained. At this time, the surface of the insulating body is formed by an insulating body 4, in which lanthanide metal ions having large absorption coefficient with respect to laser are doped. Then, the insulating body 4, which separates a device region, is sufficiently heated, and a silicon device froming region having excellent uniformity in orientation can be obtained.

Description

【発明の詳細な説明】 本発明は絶縁体上に結晶性の良好な単結晶シリコン膜を
形成するための基板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate for forming a single crystal silicon film with good crystallinity on an insulator.

絶縁体上に単結晶シリコン膜を形成する技術はデバイス
の高速化、あるいは三次元化に有用であり、種々の方法
が試みられている。その一つの方法として、絶縁体上に
非晶質あるいは多結晶シリコン膜を堆積し、該シリコン
膜をレーザアニールすることによシ該シ男コン膜を再結
晶化し、大きなグレインを有する多結晶シリコン膜ある
いは島状単結晶シリコンを得る方法がある。〔例えば、
T、I Kamins等IBBE l1ilectro
n Device Letters vol法で多結晶
シリコン膜を石英ガラス上に堆積し、レーザとしてネオ
ジウムヤグ(Nd:YAG)レーザを用い、レーザアニ
ールにより再結晶化すると、基板面垂直方向に(100
)優先配向したシリコン膜が得られる。〔木村他、応用
物理学会、応用電子物性分科会N11393(昭57.
5.25)P7]このようなシリフン膜にデバイスを形
成する場合、各単結晶シリコングレインの方位が整って
いることが、デバイス特性のバ乏ツキを小さくする点か
ら好ましく、従ってレーザアニール後のシリコン膜は出
来るだけ多くのグレインが基板面垂直方向に(100)
配向していることが望まれる。しかしながら、絶縁体基
板上全面に堆積させて得られたレーザアニール再結晶化
シリコン膜は結晶学的配同性という点からは良いもので
あるが、実際、デバイスを形成させようとすると、次の
ような障害がある。
The technique of forming a single crystal silicon film on an insulator is useful for increasing the speed of devices or making them three-dimensional, and various methods have been tried. As one method, an amorphous or polycrystalline silicon film is deposited on an insulator, and the silicon film is recrystallized by laser annealing to form a polycrystalline silicon film with large grains. There is a method of obtaining a film or island-like single crystal silicon. 〔for example,
T, I Kamins et al IBBE l1ielectro
A polycrystalline silicon film is deposited on quartz glass using the n Device Letters vol method, and recrystallized by laser annealing using a neodymium YAG (Nd:YAG) laser as a laser.
) A preferentially oriented silicon film is obtained. [Kimura et al., Japan Society of Applied Physics, Applied Electronics Materials Subcommittee N11393 (1982).
5.25) P7] When forming a device on such a silicon film, it is preferable that the orientation of each single crystal silicon grain is aligned in order to reduce variations in device characteristics. The silicon film has as many grains as possible in the direction perpendicular to the substrate surface (100)
It is desirable that it be oriented. However, although the laser-annealed recrystallized silicon film obtained by depositing the entire surface on an insulating substrate is good from the point of view of crystallographic conformation, when actually trying to form a device, the following problems occur. There are some obstacles.

それは、表面の凹凸が大きい、クラックが発生する、必
ずしもデバイス形成領域に単一のシリコンダレインが対
応しないとbうものである。これらの問題点を避ける方
法として、デバイス形成領域を島状に分離し、絶縁体基
板表面上に埋め込む方法がある。(特願昭55−136
292)  本発明者らは前記のような埋め込み型の島
状シリコン膜をレーザアニールに評価したところ、表面
の平坦性が長いこと、クラックの発生が無いことを見い
出したが、この方法ではレーザアニールに用いるシリコ
ン膜のレーザに対する吸収係数が小さい場合には、溝に
埋め込んだ島状シリコンの側壁部の絶縁体領域からの熱
の逃げの影響が犬きく、シリコ:/膜を溶融しにくかっ
たり、あるいは、一部良好なく100)配向が得られる
ものの、配向性の均一性が未だ十分でないことがある。
This is because the surface has large irregularities, cracks occur, and a single silicon duplex does not necessarily correspond to the device formation region. As a method to avoid these problems, there is a method of separating the device formation region into islands and embedding them on the surface of the insulating substrate. (Special application 1986-136
292) When the present inventors evaluated the buried island-shaped silicon film described above by laser annealing, they found that the surface remained flat for a long time and there were no cracks. If the absorption coefficient of the silicon film used for the laser is small, the effect of heat escaping from the insulator region of the side wall of the silicon island embedded in the groove will be severe, making it difficult to melt the silicon film. Alternatively, although a good 100) orientation is obtained in some cases, the uniformity of the orientation is still insufficient.

例えば、レーザアニールにヨク再結晶化したシリコンダ
レインヲ含むIXo、5−程度の領域では(100)配
向の角度分布幅が10以内という領域が存在することも
あれば、IQX5−の広す領域では上記角度分布幅が3
0以上にもなってしまうことがある。本発明は前記シリ
コン膜を埋め込む方法をさらに改善し、発展させたもの
で、デバイスを形成する絶縁体表面層を少なくとも、ン
ーザ光を吸収するよう表乾縁体で形成し、溝領域の周辺
部も加熱される構造を有し、配向性の制御された島状シ
リコン膜を得るために絶縁体表面層の熱勾配の制御を行
うことを特徴とするものである。
For example, in the IXo, 5- or so region containing silicon duplex recrystallized by laser annealing, there may be a region where the angular distribution width of the (100) orientation is within 10, and a region where the IQX5- is wide. Then, the above angular distribution width is 3
It may even be 0 or more. The present invention further improves and develops the method of embedding a silicon film, in which at least the insulator surface layer forming the device is formed with a surface dry layer so as to absorb laser light, and the peripheral part of the groove region is It also has a heated structure and is characterized by controlling the thermal gradient of the insulator surface layer in order to obtain an island-like silicon film with controlled orientation.

以下、一実施例を示し、図面を用いて本発明の詳細な説
明する。第1図は従来例を説明するための模式的断面図
である。絶縁体基板として石英ガラス基板を用い、リン
グラフィ技術にょシブバイス形成領域として溝加工を施
し5次いで、LPCVD法により多結晶シリコン膜を該
基板上に堆積し、さらに、非デバイス形成領域のシリコ
イ膜をボリシングにより取りのぞいた基板断面の模式図
である0このような構造を有するシリコンfs1を含む
基板表面をレーザアニールすると、レーザのエネルギー
を吸収するシリコン膜lは加熱されるが、溝2の側壁部
分Bはレーザのエネルギーを吸収しないので加熱されな
い。側壁部分Bはシリコン膜lが加熱されて伝導してく
る熱で加熱されるだけである。このような場合、レーザ
のエネルギーが不十分だと、埋め込まれたシリコン膜1
の側壁部だ微小なシリコン結晶粒が残留したり、エネル
ギーを十分に与え再結晶化させても、(100)配向性
の均一性が悪かった。溝の深さd%牌の間隔Xをパラメ
ータとして種々の基板について検討した結果、配向性が
不十分なのは、シリコン膜が加熱されて、融液状態とな
り、次いで、冷却して再結晶化する時の固−液界面が基
板の底面Aと平行でないことによるものであることを見
い出した。したがって、上記のような埋め込み型シリコ
ン膜をレーザアニールして再結晶化させる場合、溝の側
壁部も十分加熱できる構造が必要で、このような条件下
では再結晶化時の固−液界面が底面と平行になり、基板
垂直方向に〈100〉優先配向した再結晶化シリコン膜
が得られる。
EMBODIMENT OF THE INVENTION Hereinafter, one Example will be shown and the present invention will be explained in detail using the drawings. FIG. 1 is a schematic cross-sectional view for explaining a conventional example. A quartz glass substrate is used as an insulating substrate, and grooves are formed as a silicon vice formation area using phosphorography technology.Next, a polycrystalline silicon film is deposited on the substrate using an LPCVD method, and a silicone film is further deposited on the non-device formation area. 0 is a schematic diagram of a cross-section of a substrate removed by boring Since B does not absorb laser energy, it is not heated. The side wall portion B is heated only by the heat conducted when the silicon film 1 is heated. In such a case, if the laser energy is insufficient, the buried silicon film 1
Even if sufficient energy was applied to recrystallize, the uniformity of the (100) orientation was poor. As a result of examining various substrates using the groove depth d% and the tile interval It was found that this is due to the fact that the solid-liquid interface is not parallel to the bottom surface A of the substrate. Therefore, when recrystallizing the buried silicon film by laser annealing as described above, it is necessary to have a structure that can sufficiently heat the side walls of the trench. Under such conditions, the solid-liquid interface during recrystallization A recrystallized silicon film is obtained which is parallel to the bottom surface and preferentially oriented <100> in the direction perpendicular to the substrate.

第2図は本発明の一実施例である溝の側壁部分が加熱さ
れる構造を有する基板断面の模式図である。3は基体と
なる絶縁体基板、4はレーザを吸収するランタニド金属
イオンがドープされた光吸収絶縁体、5は埋め込み型島
状シリコン膜である。
FIG. 2 is a schematic cross-sectional view of a substrate having a structure in which sidewall portions of grooves are heated, which is an embodiment of the present invention. 3 is an insulating substrate serving as a base; 4 is a light-absorbing insulator doped with lanthanide metal ions that absorb laser; and 5 is a buried island-shaped silicon film.

先ず、第2図に示した基板の形成法について簡単に説明
する。基体絶縁体3として、直径50簡、板厚350μ
mの石英ガラスを用い九〇次いで、該石英ガラス上にあ
らかじめ所望の含有率になるようにランタニド金属イオ
ンがドープされた二酸化ケイ素をターゲットとして用い
たスパッタ法で光吸収絶縁体膜4を厚さ2〜5μm堆積
させ念。次いでリングラフィ技術、プラズマエツチング
によシ深さ0.7βmの溝を形成した。デバイス形成領
域となる溝は10 XI O−μm茸、 10X20−
、lIm” 、 20x20すm雪の3種類の大きさを
形成した。また、溝と溝との間隔は1〜5μmとした。
First, a method for forming the substrate shown in FIG. 2 will be briefly described. The base insulator 3 has a diameter of 50 mm and a plate thickness of 350 μm.
Next, a light-absorbing insulating film 4 is formed on the quartz glass to a thickness of 90 m using a sputtering method using as a target silicon dioxide doped with lanthanide metal ions to a desired content. Make sure to deposit 2 to 5 μm. Next, grooves with a depth of 0.7 .beta.m were formed by phosphorography and plasma etching. The groove that will become the device formation area is 10XI O-μm mushroom, 10X20-
, lIm'', and 20 x 20 mm snow. The spacing between the grooves was 1 to 5 μm.

次いで該絶縁体膜上にLPCVD法により多結晶シリコ
ン膜を0.7μm堆積させた。次いでボリシングによシ
ブバイスを形成しない不必要なシリコン膜を除去し、第
2図に示すような島状シリコン5を作成した。光吸収絶
縁体膜4として二酸化シリコン(Sing)膜にランタ
ニド金属イオンをドープしたものを用いた。例えばネオ
ジウム(Nd)を5%ドープした二酸化シリコン膜はA
rレーザ光の波長に相当する0、5μm近傍で大きな光
吸収を有する。又、サマリウム(Sm)をドープした二
酸化シリコン膜は、ネオジウム・ヤグ(Nd:YA()
)レーザ光の波長釦相当するI  Am近傍で光吸収を
有する。ランタニド金属イオンはd−電子が関与した光
吸収が見られ、二酸化ケイ素(Sing)のよう々絶縁
体にドープすることにより、加熱効果がある。
Next, a polycrystalline silicon film was deposited to a thickness of 0.7 μm on the insulator film by the LPCVD method. Next, the unnecessary silicon film not forming the sib vice was removed by borising, and an island-shaped silicon 5 as shown in FIG. 2 was created. As the light-absorbing insulator film 4, a silicon dioxide (Sing) film doped with lanthanide metal ions was used. For example, a silicon dioxide film doped with 5% neodymium (Nd) is A
It has large optical absorption near 0.5 μm, which corresponds to the wavelength of r laser light. In addition, the silicon dioxide film doped with samarium (Sm) is made of neodymium YAG (Nd:YA).
) Has light absorption near I Am, which corresponds to the wavelength of the laser beam. Lanthanide metal ions exhibit light absorption involving d-electrons, and have a heating effect when doped into an insulator such as silicon dioxide (Sing).

第2図で示した基板表面を、絶縁体膜4の光吸収波長に
応じて、Arレーザ光又はNd:YkGV−ザ光でアニ
ールし、デバイス形成領域の埋込型島状シリコン膜を再
結晶化させ、結晶学的配同性をX線回折法で、評価した
ところ、基板垂直方向が(100)配向しており、X線
ロッキングカーでの半値幅が1°以内である領域が10
x511j程度の広い領域まで渡っていた。これは、亀
1図で示した絶縁体表面が加熱されない構造を有する場
合で得られた配向量に比べio倍以上も良く配向してい
ることがわかった。また、電子顕微鏡観察によると、埋
め込み島状シリコン膜は単一のグレインから成ってお9
、欠陥は見ら、れす、その結晶の完全性を示す菊池パタ
ーンも見られた。
The substrate surface shown in FIG. 2 is annealed with Ar laser light or Nd:YkGV laser light depending on the light absorption wavelength of the insulator film 4, and the buried island-shaped silicon film in the device formation area is recrystallized. When the crystallographic conformation was evaluated using X-ray diffraction, it was found that the vertical direction of the substrate was (100) oriented, and the region where the half-width in the X-ray rocking car was within 1° was 10.
It spread over a wide area about x511j. It was found that the orientation was more than io times better than the amount of orientation obtained when the insulator surface had a structure in which it was not heated, as shown in Figure 1. Furthermore, according to electron microscopy, the embedded island-like silicon film consists of 9 single grains.
Although no defects were seen, a Kikuchi pattern was also seen, indicating the integrity of the crystal.

以上の実施例では絶縁体表面層として光吸収を増大させ
るために例えばランタニド金属イオンをドープした二酸
化シリコン膜のごとき光吸収絶縁体膜を用いたが、この
ほかに光吸収を住じさせるためのランタニド金属イオン
が基板全体にドーグされた石英ガラスを絶縁体基板とし
て用いても良い。又、絶縁体材料として石英ガラス以外
にシリコン基板表面を酸化させた基板あるいはアルミナ
を主成分としたセ、7ミクス等を用いても本発明は有効
である。
In the above embodiments, a light-absorbing insulator film such as a silicon dioxide film doped with lanthanide metal ions was used as the insulator surface layer in order to increase light absorption. A quartz glass doped with lanthanide metal ions over the entire substrate may be used as the insulating substrate. Further, the present invention is also effective when a substrate having an oxidized silicon substrate surface or a material containing alumina as a main component, etc., other than quartz glass, is used as the insulating material.

以上、示したよう炉、本発明は絶縁体基板上に堆積させ
た非晶質あるいは多結晶質シリコン膜をレーザアニール
して再結晶化する場合、少なくと電絶縁体表面層を、レ
ーザに対する吸収係数が大なるランタニド金属イオンが
ドープされた絶縁体で形成し、デバイス形成領域として
該絶縁体に形成された溝に埋め込まれた島状シリコン膜
を有する構造のシリコン半導体用基板を提供するもので
、これをレーザアニールすることによりデ/(イス領域
を分離する絶縁体も十分に加熱され、配向性の均一性が
優れたシリコンデバイス形成領域が得られる。
As described above, when an amorphous or polycrystalline silicon film deposited on an insulating substrate is recrystallized by laser annealing, at least the surface layer of the electrically insulating material is absorbed by the laser. The present invention provides a silicon semiconductor substrate formed of an insulator doped with lanthanide metal ions having a large coefficient and having an island-like silicon film embedded in a groove formed in the insulator as a device formation region. By laser annealing this, the insulator separating the device regions is also sufficiently heated, resulting in a silicon device formation region with excellent orientation uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するために用いた、従来例を示す
基板断面の模式図。第2図は本発明の基板構造の断面を
示す模式図。 1.5・・・島状シリコン膜、2・・・溝、3・・・絶
縁体基板、4・・・光吸収絶縁体膜。
FIG. 1 is a schematic cross-sectional view of a conventional substrate used to explain the present invention. FIG. 2 is a schematic diagram showing a cross section of the substrate structure of the present invention. 1.5... Island silicon film, 2... Groove, 3... Insulator substrate, 4... Light absorbing insulator film.

Claims (1)

【特許請求の範囲】[Claims] ・ 少くとも表面に絶縁体層が設けられ、該絶縁体層の
表面に島状Kgが形成され、この溝にレーザアニール法
を用いて再結晶化させたシリコン膜が埋込まれた半導体
装置用基板において、前記絶縁体層にランタニド金属イ
オンが含まれていることを特徴とする半導体装置用基板
- For semiconductor devices in which an insulating layer is provided on at least the surface, an island Kg is formed on the surface of the insulating layer, and a silicon film recrystallized by laser annealing is embedded in this groove. 1. A substrate for a semiconductor device, wherein the insulating layer contains lanthanide metal ions.
JP2306283A 1983-02-15 1983-02-15 Substrate for semiconductor device Pending JPS59148346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306283A JPS59148346A (en) 1983-02-15 1983-02-15 Substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306283A JPS59148346A (en) 1983-02-15 1983-02-15 Substrate for semiconductor device

Publications (1)

Publication Number Publication Date
JPS59148346A true JPS59148346A (en) 1984-08-25

Family

ID=12099931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306283A Pending JPS59148346A (en) 1983-02-15 1983-02-15 Substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JPS59148346A (en)

Similar Documents

Publication Publication Date Title
US4596604A (en) Method of manufacturing a multilayer semiconductor device
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPH0732124B2 (en) Method for manufacturing semiconductor device
JPH0450746B2 (en)
JPS5886717A (en) Forming of single crystal silicon film
JPS59148346A (en) Substrate for semiconductor device
JPH027415A (en) Formation of soi thin film
EP0575965B1 (en) Method of forming semiconductor crystal and semiconductor device
JPH0442358B2 (en)
JPS6347256B2 (en)
JPS5975618A (en) Substrate for silicon semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPS5958821A (en) Manufacture of semiconductor single crystal film
JPH0732121B2 (en) Method for manufacturing semiconductor device
JPH0355975B2 (en)
JPS60191090A (en) Manufacture of semiconductor device
JPH027414A (en) Formation of soi thin film
JPS6038809A (en) Manufacture of semiconductor device
JPS6362892B2 (en)
JPS62165908A (en) Forming method for single crystal thin-film
JPS6355925A (en) Recrystallization of semiconductor thin film
JPS6115318A (en) Formation of silicon on insulator crystal
JPS60189215A (en) Soi crystal formation
JPH0371767B2 (en)