JPS59147082A - Coal liquefaction - Google Patents

Coal liquefaction

Info

Publication number
JPS59147082A
JPS59147082A JP1975183A JP1975183A JPS59147082A JP S59147082 A JPS59147082 A JP S59147082A JP 1975183 A JP1975183 A JP 1975183A JP 1975183 A JP1975183 A JP 1975183A JP S59147082 A JPS59147082 A JP S59147082A
Authority
JP
Japan
Prior art keywords
boiling point
solvent
coal
fraction
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1975183A
Other languages
Japanese (ja)
Inventor
Ryohei Minami
良平 南
Tamio Shirafuji
白藤 民雄
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1975183A priority Critical patent/JPS59147082A/en
Publication of JPS59147082A publication Critical patent/JPS59147082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:Coal liquefaction is effected using coal, a hydrogen-containing gas, an iron catalyst and a specially composed solvent to obtain good quality oil in high efficiency. CONSTITUTION:In the coal liquefaction using coal, a solvent, a hydrogen-containing gas and an iron catalyst under less than 200kg/cm<2> hydrogen pressure, the proportion of the fraction boiling over 350 deg.C is kept lower than 35%, preferably 25% in the solvent. The proportion of fractions are preferably maintained by distilling off a part of the fraction boiling over 350 deg.C as a product out of the system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、溶剤、水素含有ガス、及び鉄系触媒を用いる
比較的低圧の石炭液化法において、効率良く石炭液化反
応を行うだめの溶剤の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the control of a solvent for efficient coal liquefaction in a relatively low-pressure coal liquefaction method using a solvent, hydrogen-containing gas, and iron-based catalyst. It is something.

従来技術 石炭の液化原理は、石炭に水素を添加して石炭をより水
素含有量の高い軽質および重質油成分に転化するもので
あるが、石炭に水素を添加する反応は極めて緩慢である
ために、通常400〜500℃の高温下で、且つ、水素
圧100〜300kg/cntないしはそれ以上の水素
圧の条件下で行なう。
Conventional technology The principle of coal liquefaction is to add hydrogen to coal to convert it into light and heavy oil components with higher hydrogen content, but the reaction of adding hydrogen to coal is extremely slow. This is usually carried out at a high temperature of 400 to 500° C. and under a hydrogen pressure of 100 to 300 kg/cnt or more.

この際、反応効率を上けるため種々の触媒が使用される
。触媒としては、米国のH−coal法等を除いて、通
常安価な鉄系触媒を使用することが多い。
At this time, various catalysts are used to increase reaction efficiency. As a catalyst, an inexpensive iron-based catalyst is often used, except for the H-coal method in the United States.

これは、石炭液化反応系では、コーキング等により触媒
の寿命が短いので、使い捨てで用いることが多く、出来
るだけ廉価な触媒が望ましいためである。
This is because in a coal liquefaction reaction system, the lifetime of the catalyst is short due to coking, etc., so it is often used disposable, and it is desirable to use a catalyst that is as inexpensive as possible.

鉄系触媒を使用するベルギウス型の方法は、鉄系の触媒
と心剤と石炭を混合し、高圧水素下で液化する方法であ
る。鉄系触媒としては、アルミニ場から生成するFe2
O3、A6203を主成分とする赤泥、鉄鉱石−1−硫
黄、転炉やガス化炉より生成するダスト類(特開昭56
−1.05504.特願昭56799+17 )等が用
いられる。溶剤としては、液化反応生成物中の沸点2C
O〜568℃の広い範囲の留分を使ハ〕し、沸点735
0℃以上の留分けすべて溶剤として循環するようにし、
製品としては沸点35 [] 0c以下の比較的軽質な
留分を取9出す。
The Bergius-type method using an iron-based catalyst is a method in which an iron-based catalyst, a core agent, and coal are mixed and liquefied under high-pressure hydrogen. As an iron-based catalyst, Fe2 generated from an aluminum field
O3, red mud mainly composed of A6203, iron ore-1-sulfur, dust generated from converters and gasifiers (JP-A-56
-1.05504. Patent Application No. 56799+17) etc. are used. As a solvent, the boiling point of the liquefied reaction product is 2C.
Using a wide range of distillates from 0 to 568°C, the boiling point is 735°C.
All distillates above 0°C are circulated as a solvent.
As a product, 9 relatively light fractions with a boiling point of 35[]0C or less are taken out.

このヘルギウス型の問題点は、石炭を液化しつつ、沸点
350°C以上の重質油を沸点350 ’C以−トに軽
質化するので、比較的高圧、例売′汀、少なくとも20
0 kg/C11t以上の条件で液化装置を運転する必
要があり、反応条件が厳しいので、困難が伴なうし、反
応器の材質もNi 、Crの含イ1敗が増え高価になり
、丑だ、水素の浪費がおこり経済性を失なう恐れがある
点にある。
The problem with this Hergius type is that while coal is liquefied, heavy oil with a boiling point of 350°C or higher is lightened to a boiling point of 350°C or higher, so the pressure is relatively high, and at least 20°C is required.
It is necessary to operate the liquefaction equipment under conditions of 0 kg/C11 t or more, and the reaction conditions are severe, which makes it difficult, and the material of the reactor also increases the Ni and Cr content, making it expensive. , there is a risk that hydrogen will be wasted and economic efficiency will be lost.

そこで、最近の液化プロセスの主流となっているのが、
反応圧140〜’200 kg / cボ程度の反応条
件で、溶剤のもつ水素供与性により液化を行う方法であ
る。米国のE])S法、5RCI、5RCII法等がこ
れにあたる。ただ、これらの方法では、灰分等の弱い触
媒作用に依存しているためか、水素消費が少なく、1段
での液収率が低いので、ベルギウス法と同様に、鉄系触
媒を使用し、比較的霊和な140〜2001tg/cr
dの圧力で液化を行う試みもある。
Therefore, the mainstream of recent liquefaction processes is
This is a method in which liquefaction is carried out using the hydrogen donating property of the solvent under reaction conditions of a reaction pressure of 140 to 200 kg/cm. This includes the United States' E]) S Law, 5RCI, and 5RCII Law. However, in these methods, hydrogen consumption is low and the liquid yield in the first stage is low, probably because they rely on weak catalytic effects such as ash, so like the Bergius method, iron-based catalysts are used, Relatively calm 140-2001tg/cr
There is also an attempt to liquefy at a pressure of d.

このような、鉄系触媒を使用した140〜200kg 
/ cyltの圧力下での液化方法の問題点は、はルギ
ウス型の液化のように良質な製品を得ることを目的とし
て、350℃以下の留分のみを取り出すことを行なうと
、沸点650℃以上の重質留分を沸点650℃以下に転
下させることが充分できないので、むしろ650℃以上
の重質留分の蓄積が生じ、石炭の液化反応を阻害する点
にある。
140-200kg using iron-based catalyst like this
The problem with the liquefaction method under pressure in /cylt is that if you extract only the fraction below 350°C with the aim of obtaining a high-quality product, as in the case of Lugius-type liquefaction, the boiling point is above 650°C. Since it is not possible to sufficiently lower the heavy fraction to a boiling point of 650° C. or lower, the heavy fraction with a boiling point of 650° C. or higher actually accumulates, which impedes the liquefaction reaction of coal.

発明の目的 本発明は、このような鉄系触媒を使用し、反応水素圧1
40〜200kg/mの比較的温和な条件下での石炭液
化の問題点を改善したもので、沸点350°G以下の留
分を主成分とする重質油を高収率でイノ)る液化方法を
提供するものである。
Purpose of the Invention The present invention uses such an iron-based catalyst, and the reaction hydrogen pressure is 1
This method improves the problems of coal liquefaction under relatively mild conditions of 40 to 200 kg/m, and innovates heavy oil whose main component is a fraction with a boiling point of 350°G or less at a high yield. The present invention provides a method.

発11月の4P成 本光明者等は、沸点350℃以上の重質留分の蓄積と石
炭の液化反応について種々試験、研究した結果、溶剤中
のろ50°C以上の留分の割合が25%を越えると、液
収率の低下をきたし、35%を越えると更に低下がある
ことを見出し、本発明をなすに到ったものである。
As a result of various tests and research on the accumulation of heavy fractions with a boiling point of 350°C or higher and the liquefaction reaction of coal, Komei Narimoto and others at 4P in November found that the proportion of distillates with a boiling point of 50°C or higher in the solvent was 25%. It was discovered that when the amount exceeds 35%, the liquid yield decreases, and when it exceeds 35%, there is a further decrease, and the present invention was developed based on this discovery.

本発明は、石炭、溶剤、水素含有ガス、及び鉄系触媒を
用い、反応水素圧200 kg / C1d以下で行な
う石炭液化法において、溶剤中の沸点650℃以上の留
分の割合を35%以下、特に好ましくは、25%以下に
制御して、液化率の低下を防上する方法である。
The present invention uses coal, a solvent, a hydrogen-containing gas, and an iron-based catalyst in a coal liquefaction method carried out at a reaction hydrogen pressure of 200 kg/C1d or less, in which the proportion of fractions with a boiling point of 650°C or higher in the solvent is reduced to 35% or less. A particularly preferred method is to control the liquefaction rate to 25% or less to prevent a decrease in the liquefaction rate.

本発明で使用する石炭種としては、特に限定はないが、
比較的温和な反応条件で液化し易い褐炭、111i−f
ffi?青炭が好寸しい。反応圧力としては140〜2
001=、q/ if程度が、反応温度としては420
〜470℃が良い。また、液化触媒としても特に限定は
なく、従来使用されてきた水酸化鉄、酸化鉄、硫化鉄、
赤泥、鉄鉱石、パイライト、転炉ダスト、ガス化炉のダ
スト(%願昭56−9917)等いずれでもよい。添加
量としては、触媒は多い糊液化反応全効率良く進めるが
、その効果に上限があるし、余り多量に添加すると液化
残渣中の無機、物が増加し、固液分離あるいは蒸留工程
のトラブルの原因となるので、石炭あたりFe原子とし
て05〜ろチが望ましい。
Although there are no particular limitations on the type of coal used in the present invention,
Lignite that is easily liquefied under relatively mild reaction conditions, 111i-f
ffi? Blue coal is suitable. The reaction pressure is 140~2
001=, q/if is about 420 as the reaction temperature
~470°C is good. In addition, there is no particular limitation as a liquefaction catalyst, and conventionally used iron hydroxide, iron oxide, iron sulfide,
Any of red mud, iron ore, pyrite, converter dust, gasifier dust (% patent application No. 56-9917), etc. may be used. As for the amount of catalyst added, the paste liquefaction reaction proceeds with high efficiency, but there is an upper limit to its effectiveness, and adding too much will increase the amount of inorganic substances and substances in the liquefaction residue, leading to troubles in the solid-liquid separation or distillation process. Therefore, it is desirable to have Fe atoms of 05 to 000 per coal.

溶剤留分中の沸点350℃以上の留分の割合を65%以
下、好ましくは25%以下に制御する手段としては、特
に限定は々いが、好寸しい手段は、蒸留によって分けた
沸点350℃以上の留分を少量づつ製品として抜き出し
、650℃以上の留分の蓄積を抑制するか、1だは、液
化生成物を蒸留し、沸点200〜538℃の留分を取り
出した後、水素化して軽質化して、350℃以上の留分
の量を制御することである。また、350℃以上の留分
のみを取り出して水素化し軽質化した後、200〜35
0℃の留分と混合してもよい。
The means for controlling the proportion of fractions with a boiling point of 350°C or higher in the solvent fraction to 65% or less, preferably 25% or less, is not particularly limited, but a suitable means is to control the fraction with a boiling point of 350°C or higher by distillation. ℃ or higher as a product in small quantities to suppress the accumulation of fractions with boiling points of 650℃ or higher, or alternatively, distill the liquefied product and take out the fraction with a boiling point of 200 to 538℃, and then add hydrogen. The objective is to reduce the amount of distillate at a temperature of 350°C or higher by making it lighter. In addition, after extracting only the fraction above 350℃ and hydrogenating it to make it lighter,
It may be mixed with the 0°C fraction.

留分全水素化するには、例えば、Mo 、Ni 、Co
 。
For total hydrogenation of fractions, for example, Mo, Ni, Co
.

1・゛(・−〜lから選はれた金属幣昧あるいは少くと
も2伸類の金1、帆の組合せからなる触媒を、A403
 、 S i02゜・I・+02 、13203 、 
p、、o、 、 MgO等の酸化物からなる担体に担描
して使用する。最も一般的なものは、Mo −N i。
A403 A403
, S i02゜・I・+02 , 13203 ,
It is used by being coated on a carrier made of oxides such as p, , o, , and MgO. The most common one is Mo-Ni.

Mo−Co、 W−Ni等の組合せから々る金属をd2
03に担持したものやFeを含准した鉱石、ダスト等が
考えられる。反応条件は、350〜450℃、水素圧5
0〜150)cg / C1r!で、沸点20[]〜5
38°Cの留分を全量水素化してもよいし、例えば沸点
350〜538°Cの留分を取り出し、部分的に水素化
してもよい。
Metals from combinations such as Mo-Co and W-Ni are d2
Possible examples include Fe-supported materials, Fe-loaded ores, and dust. The reaction conditions were 350-450°C, hydrogen pressure 5
0~150)cg/C1r! So, the boiling point is 20 [ ] ~ 5
The entire fraction at 38°C may be hydrogenated, or, for example, the fraction with a boiling point of 350 to 538°C may be taken out and partially hydrogenated.

寸だ、別の手段として、高圧水蒸気を使用して、400
〜600°C程度の温度で、350”°C以上の留分の
1経質化をしてもよい。
Alternatively, using high pressure steam, 400
The fraction having a temperature of 350''°C or higher may be subjected to one-layer reforming at a temperature of about 600°C.

本発明を実施するだめの概略フローンートを第1図に示
す。
FIG. 1 shows a schematic flow route for implementing the present invention.

〔実施例1〕 石炭処理量1kg / h r規模の石炭液化プラント
および20e規模の蒸留装置を使用して、下記の条件で
石炭液化実験を行った。
[Example 1] A coal liquefaction experiment was conducted under the following conditions using a coal liquefaction plant with a coal throughput of 1 kg/hr and a 20e scale distillation apparatus.

■使用石炭 第1表に示す亜瀝青炭を1()Dメツシュ
以下に粉砕後、真空乾燥し て使用した。
(2) Coal used The sub-bituminous coal shown in Table 1 was pulverized to a size of 1()D mesh or less, dried under vacuum, and used.

第1表 ■反応時間 1時間 ■反応温度 450℃ ■圧力   反応水素圧 190kg/cr/1■溶剤
   石炭液化生成物の沸点200〜568℃留分 ■溶剤比  溶剤/石炭 重量比1,5■触媒   4
wtチ(無水炭換算)の赤泥と1wt%(無水炭換算)
の単体硫黄 ただし、製品の抜き出し方法としては、A法、B法の2
方法で行った。
Table 1 ■ Reaction time 1 hour ■ Reaction temperature 450℃ ■ Pressure Reaction hydrogen pressure 190 kg/cr/1 ■ Solvent Boiling point 200-568℃ fraction of coal liquefaction product ■ Solvent ratio Solvent/coal weight ratio 1.5 ■ Catalyst 4
Red mud of wt (anhydrous carbon equivalent) and 1wt% (anhydrous carbon equivalent)
However, there are two methods for extracting the product: method A and method B.
I went by method.

A法  製品として、沸点650℃以下の留分のみを系
外に抜き出す。
Method A Only the fraction with a boiling point of 650°C or lower is extracted from the system as a product.

11法  沸点350 ’C以上の留分を少量づつ製品
として系外に抜き出し、溶剤中の 350℃以上の留分が25%以下にな るようにする。
Method 11: The fraction with a boiling point of 350°C or higher is extracted from the system in small quantities as a product, so that the fraction with a boiling point of 350°C or higher in the solvent is 25% or less.

A、Bの2方法で、夫々100時間づつ連続操業を行っ
た。結果を第2図(イ)(ロ)に示す。
Two methods, A and B, were operated continuously for 100 hours each. The results are shown in Figures 2 (a) and (b).

液収率の評価は、液化生成物の蒸留を行ない、沸点20
0〜568°Cの留出油総量より、反応前の溶剤量を差
し引いて求めた。
The liquid yield was evaluated by distilling the liquefied product and obtaining a boiling point of 20
It was determined by subtracting the amount of solvent before reaction from the total amount of distillate oil at 0 to 568°C.

第2図から明らかなように、A法では、溶剤中の沸点3
50°O以」二の留分の割合が時間と共に増加するにつ
れ、液収率が減少する。一方、B法では、沸点350°
C以上の留分を少量づつ抜き出すことにより、沸点35
0℃以上の留分の割合を20〜25%程度に制御し、4
7〜48係(無水炭換算)の安定しだ液収率が得られた
。第2表に13法で得られた製品油の構成を示す。
As is clear from Figure 2, in method A, the boiling point of the solvent is 3
As the proportion of the two fractions above 50° O increases with time, the liquid yield decreases. On the other hand, in method B, the boiling point is 350°
By extracting fractions of C or higher little by little, the boiling point is 35.
Control the proportion of the fraction above 0°C to about 20 to 25%, and
A stable saliva yield of 7 to 48 (calculated as anhydrous charcoal) was obtained. Table 2 shows the composition of the product oil obtained by Method 13.

寸だ、A法における溶剤中の沸点350℃以上の留分割
合と液収率の関係を@5図に示す。第6図かられかるよ
うに、47チ以上の液収率を得るには、溶剤中の沸点3
50℃以上の留分を25%以下に、また、40%以上の
液収率を得るには55チ以下に制御すればよい。
Figure 5 shows the relationship between the proportion of fractions with a boiling point of 350°C or higher in the solvent and the liquid yield in Method A. As shown in Figure 6, in order to obtain a liquid yield of 47 cm or more, the boiling point of the solvent must be 3
The fraction at 50° C. or higher should be controlled to 25% or less, and to obtain a liquid yield of 40% or more, the fraction should be controlled to 55% or less.

〔実施例2〕 石炭処理量1に9/hr規模の石炭液化プラント、2D
I!規模の蒸留装置および21/hr規模の連続式水素
化装置を使用して、下記の条件で石炭液化実験を行った
[Example 2] Coal liquefaction plant with coal processing capacity of 1 to 9/hr scale, 2D
I! Coal liquefaction experiments were conducted under the following conditions using a scale distillation unit and a 21/hr scale continuous hydrogenation unit.

■使用石炭  実施例1と同一の石炭 ■反応時間  1時間 ■反応温度  450℃ (4)圧力    反応水素圧 1701cg / o
rt”り m 1vIll比   溶剤/石炭 ii比
1.5■触媒    石炭の鉄浴ガス化炉(特願昭53
164186号)により生成し た微粉状ダスト2.1w+%(無水 炭換算)と単体硫黄1.2w+% (無水炭換算) 的剤としては、石炭液化生成物の沸点200〜5′58
°Cの留分を使用したが、溶剤の調製方法としては、C
法、D法の2方法で行った。
■ Coal used: Same coal as in Example 1 ■ Reaction time: 1 hour ■ Reaction temperature: 450°C (4) Pressure: Reaction hydrogen pressure: 1701 cg/o
rt”ri m 1vIll ratio Solvent/coal ii ratio 1.5 Catalyst Coal iron bath gasifier
164186) and 1.2 w+% of elemental sulfur (in terms of anhydrous coal).
Although a fraction of °C was used, the method for preparing the solvent was
Two methods were used: method and method D.

C法  液化生成物のうち、沸点650℃以下の留分の
一部を製品として取り出し、 残部を溶剤とする。従って、製品は、 すべて58点650℃以下である。
Method C: Of the liquefied product, a portion of the fraction with a boiling point of 650°C or less is extracted as a product, and the remainder is used as a solvent. Therefore, all products are 58 points below 650°C.

■)法  液化生成物のうち、沸点350℃以下の留分
の一部を製品として取り出し、 その後、残部(沸点200〜538°Cの留分)の一部
又は全部を水素化して 軽質化し、沸点200°C以下のナフサを抜き出した後
、沸点350℃以上の 留分が25係以下になるようにした後、溶剤として循環
する。なお、水素化は 下記の条件で行った。
■) Method Among the liquefied products, a part of the fraction with a boiling point of 350°C or less is extracted as a product, and then part or all of the remaining part (the fraction with a boiling point of 200 to 538°C) is hydrogenated to lighten it. After extracting the naphtha with a boiling point of 200°C or lower, the fraction with a boiling point of 350°C or higher is reduced to 25% or lower, and then recycled as a solvent. Note that hydrogenation was performed under the following conditions.

■TlH8V   1 ’ (hr ’)■反応温度 
 420°C ■圧力     反応水素圧 1o o kg、/cr
t!■触媒    Mo N+ −A40s上述のC法
、D法により、夫々100時間づつ連続操業を行った。
■TlH8V 1'(hr') ■Reaction temperature
420°C ■Pressure Reaction hydrogen pressure 1o o kg,/cr
T! (2) Catalyst Mo N+ -A40s Continuous operation was performed for 100 hours each using the above-mentioned methods C and D.

結果を第4図(イ)(ロ)に示す。The results are shown in Figure 4 (a) and (b).

第4図から明らかなように、C法では、溶剤中の沸点6
50℃以上の留分の割合が時間と共に増加し、それにつ
れて液収率が減少する1、一方、D法では、水素化分M
VCよる軽質化により、溶剤中の沸点350 ’C以上
の留分の割合は25%以下に制御されており、47〜4
8%(無水炭換算)の安定した液収率が得られる。
As is clear from Figure 4, in method C, the boiling point of the solvent is 6
The proportion of the fraction at 50°C or higher increases with time, and the liquid yield decreases accordingly1. On the other hand, in method D, the hydrogenated fraction M
By lightening with VC, the proportion of fractions with a boiling point of 350'C or higher in the solvent is controlled to 25% or less, and 47 to 4
A stable liquid yield of 8% (calculated as anhydrous charcoal) is obtained.

第5図には、C法における溶剤中の沸点650℃以上の
留分割合と液収率の関係を示す。第5図かられかるよう
に、45%以上の液収率を得る((は、溶剤中の沸点6
50℃以上の留分を25%以下に、また、A0俤以上の
液収率を得るには65チ以下に制御すればよい。
FIG. 5 shows the relationship between the proportion of fractions with a boiling point of 650° C. or higher in the solvent and the liquid yield in Method C. As can be seen from Figure 5, a liquid yield of 45% or more was obtained ((=boiling point 6 in the solvent).
The fraction at 50° C. or higher should be controlled to 25% or less, and to obtain a liquid yield of A0 or more, the fraction should be controlled to 65% or less.

第6表に、■)法で得られた代表的な製品油の構成を示
す。
Table 6 shows the composition of typical product oils obtained by method (1).

以上のように、溶剤を水素化することによシ、高収率で
良質な製品が得られることがわかる。なお、製品油の抜
き出しは、溶剤を水素化する前でも、水素化後でもよい
As described above, it can be seen that high yield and high quality products can be obtained by hydrogenating the solvent. Note that the product oil may be extracted before or after hydrogenating the solvent.

発明の効果 本発明によれば、140〜2001cg/Cr/lの低
圧で、ベルギウス型と同様に、沸点650℃以下の重質
油を高収率で得ることができる。
Effects of the Invention According to the present invention, heavy oil with a boiling point of 650° C. or lower can be obtained in high yield at a low pressure of 140 to 2001 cg/Cr/l, similar to the Bergius type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するための概略フロー7−ト。 第2図は、実施例1の石炭液化実験の結果を示す図で、
(イ)はA法、(ロ)は13法で行った場合である。第
3図は、A法における溶剤中の沸点650℃以上の留分
割合と液収率の関係を示す。 第4図は、実施例2の石炭液化実験の結果を示す図で、
(イ)はC法、(ロ)はD法で行った場合である。 第5図は、C法における溶剤中の沸点ろ50’C以上の
留分割合と液収率の関係を示す。なお、第2図、第4図
には、溶剤中の沸点650℃以上の留分の割合と、その
溶剤を使用した場合の゛液収率を示す。 代理人 弁理士    佐々木 俊 哲第1図 ↑ H:L 第2図 (イ〕 運転鳴(lv) 第2図 (O) 運転時開(− 第3図 寿キ沖の沸、侘350’C以上の留分割合(%)第4図 第4図 (ロ) 葭賑呵闇(hr)
FIG. 1 is a schematic flowchart for implementing the present invention. FIG. 2 is a diagram showing the results of the coal liquefaction experiment of Example 1,
(a) is the case where method A is used, and (b) is the case where method 13 is used. FIG. 3 shows the relationship between the proportion of fractions with a boiling point of 650° C. or higher in the solvent and the liquid yield in Method A. FIG. 4 is a diagram showing the results of the coal liquefaction experiment of Example 2,
(a) is the case when the C method was used, and (b) is the case where the D method was used. FIG. 5 shows the relationship between the proportion of fractions with a boiling point of 50'C or higher in the solvent and the liquid yield in Method C. In addition, FIG. 2 and FIG. 4 show the proportion of fractions with a boiling point of 650° C. or higher in the solvent and the liquid yield when the solvent is used. Agent Patent Attorney Shun Tetsu Sasaki Figure 1 ↑ H: L Figure 2 (A) Operating sound (LV) Figure 2 (O) Open when operating (- Figure 3 Suki offing boil, Wataru 350'C or more Distillate ratio (%) Figure 4 Figure 4 (b) Darkness (hr)

Claims (4)

【特許請求の範囲】[Claims] (1)  石炭、溶剤、水素含有ガス、及び鉄系触媒を
使用し、反応水素圧2001cg / cnt以下で行
う石炭液化法において、溶剤中の沸点550℃以上の留
分の割合を35%以下に制御することを特徴とする石炭
液化法。
(1) In a coal liquefaction method that uses coal, a solvent, a hydrogen-containing gas, and an iron-based catalyst and is carried out at a reaction hydrogen pressure of 2001 cg/cnt or less, the proportion of fractions with a boiling point of 550°C or higher in the solvent is reduced to 35% or less. Coal liquefaction method characterized by control.
(2)  沸点650℃以上の留分の割合が25%以下
である特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the proportion of the fraction having a boiling point of 650° C. or higher is 25% or less.
(3)液化生成物から、沸点350℃以」−の留分の一
部を製品として系外に取り出すことにより、留分の割合
を制御する特許請求の範囲第1項記載の方法9
(3) Method 9 according to claim 1, in which the proportion of the fraction is controlled by extracting a part of the fraction with a boiling point of 350° C. or higher from the liquefied product out of the system as a product.
(4)液化生成物中の、沸点200〜568℃の留分の
一部または全部を水素化することにより、留分の割合を
制御する特許請求の範囲第1項記載の方法。
(4) The method according to claim 1, wherein the proportion of the fraction in the liquefied product is controlled by hydrogenating part or all of the fraction with a boiling point of 200 to 568°C.
JP1975183A 1983-02-10 1983-02-10 Coal liquefaction Pending JPS59147082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975183A JPS59147082A (en) 1983-02-10 1983-02-10 Coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975183A JPS59147082A (en) 1983-02-10 1983-02-10 Coal liquefaction

Publications (1)

Publication Number Publication Date
JPS59147082A true JPS59147082A (en) 1984-08-23

Family

ID=12008037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975183A Pending JPS59147082A (en) 1983-02-10 1983-02-10 Coal liquefaction

Country Status (1)

Country Link
JP (1) JPS59147082A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448811A (en) * 1977-09-26 1979-04-17 Nippon Petrochemicals Co Ltd Coal liquefaction
JPS5635712A (en) * 1979-08-29 1981-04-08 Sumitomo Metal Ind Ltd Operating method of converter
JPS5635711A (en) * 1980-05-12 1981-04-08 Kubota Ltd Alloy for inoculation of cast iron
JPS5716155A (en) * 1980-07-02 1982-01-27 Nippon Funmatsu Gokin Kk Free cutting sintered iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5448811A (en) * 1977-09-26 1979-04-17 Nippon Petrochemicals Co Ltd Coal liquefaction
JPS5635712A (en) * 1979-08-29 1981-04-08 Sumitomo Metal Ind Ltd Operating method of converter
JPS5635711A (en) * 1980-05-12 1981-04-08 Kubota Ltd Alloy for inoculation of cast iron
JPS5716155A (en) * 1980-07-02 1982-01-27 Nippon Funmatsu Gokin Kk Free cutting sintered iron

Similar Documents

Publication Publication Date Title
JPH02187495A (en) Hydrocracking of heavy oil
JP6643426B2 (en) Combined hydrotreating method to produce high quality fuel from medium and low temperature coal tar
US4486293A (en) Catalytic coal hydroliquefaction process
US3155608A (en) Process for reducing metals content of catalytic cracking feedstock
JPH0611403B2 (en) Method for producing hydrogenation catalyst and hydroconversion method using the same
EP0290689A1 (en) Partial oxidation process
JPS5874785A (en) Hydrogenolysis of heavy hydrocarbon oils
CN110819390B (en) Method and system for low-rank coal fractional conversion
US4437974A (en) Coal liquefaction process
US1932186A (en) Production of refined hydrocarbon oils
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
JPS6126954B2 (en)
US1876009A (en) Conversion of solid fuels and products derived therefrom or other carbonaceous materials into valuable products
JPS59147082A (en) Coal liquefaction
US3617474A (en) Low sulfur fuel oil from coal
JPS5843433B2 (en) coal liquefaction method
JPH0149318B2 (en)
JPS5839193B2 (en) Coal liquefaction method
JPS58180587A (en) Coal conversion
JPH10298556A (en) Liquefaction of coal
JP5524887B2 (en) Process for producing hydrocracked oil from heavy oil
US4818374A (en) Process for converting coal to an oil fraction
JPS5968391A (en) Coal liquefaction
EP0159867B1 (en) Process for hydroconversion of sulphur containing heavy hydrocarbons with synthesis gas
JPS58108289A (en) Liquefaction of coal