US3617474A - Low sulfur fuel oil from coal - Google Patents

Low sulfur fuel oil from coal Download PDF

Info

Publication number
US3617474A
US3617474A US45081A US3617474DA US3617474A US 3617474 A US3617474 A US 3617474A US 45081 A US45081 A US 45081A US 3617474D A US3617474D A US 3617474DA US 3617474 A US3617474 A US 3617474A
Authority
US
United States
Prior art keywords
coal
reaction zone
solids
particulated
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US45081A
Inventor
Harold H Stotler
Michael Calderon
Clarence A Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRI Inc
Original Assignee
Hydrocarbon Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrocarbon Research Inc filed Critical Hydrocarbon Research Inc
Application granted granted Critical
Publication of US3617474A publication Critical patent/US3617474A/en
Assigned to HRI, INC., A DE CORP. reassignment HRI, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HYDROCARBON RESEARCH, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent

Definitions

  • Hydrogenation of coal depends on many factors including the characteristics of the coal as to oxygen, ash, and volatile content. Other factors include those controllable reaction conditions of temperature, pressure, throughput, and catalyst. Equally as a controlling factor is the quality of the end product.
  • This invention is primarily adapted to make an inexpensive, low cost, fuel substitute of low gravity which may be used either as ground-up solids or as a liquid if maintained at a temperature above the melting point.
  • the low sulfur characteristic is especially beneficial for reduction of pollution.
  • the drawing is a schematic view of a reactor and auxiliary equipment for a coal hydrogenation process.
  • a gaseous phase is removed overhead at 26 and a liquid stream is removed at 28.
  • the liquid stream is in part recycled through pump 30 to maintain the desired liquid velocity and a net liquid stream is removed at 32.
  • the coal is initially ground to all pass 20 mesh and not more than about percent passing 325 mesh (Tyler).
  • the slurry at 18 is a pumpable slurry with at least equal parts of oil and coal but, if for operating reasons, it is desirable to recycle an additional amount of slurry oil, slurries of one part coal and up to 10 parts oil may be used.
  • a temperature of 800900 F. preferably about 850 F. and a hydrogen partial pressure of 800-2500 p.s.i. and preferably about 1,890 p.s.i. is maintained in the reactor.
  • the vapors 26 leaving the upper part of the reactor are cooled at 34. Condensed light ends are separated in drum 36 and removed at 42. Vapors leaving drum 36 at 40 are cooled in exchanger 64 and scrubbed with an absorber oil in column 63 to remove light hydrocarbon gases at 65 and hydrogen leaving at 38 is recycled. The recycle hydrogen stream 38 plus makeup hydrogen at 44 also passes through heat exchanger 34, through heater 67 and becomes the hydrogen feed line 24.
  • the liquid leaving the reactor at 32 is separated in one or more fractionation columns 50 into a light ends stream 52, a middle distillate at 53, a heavy gas oil at 54 and a heavy ends at 56.
  • the heavy ends at 56 contain a substantial amount of solids which are sent to a filter 58.
  • the filter cake is recovered at 60.
  • the filter cake comprises a char and ash product and may contain up to 20 percent of oil which can be recovered thermally. A centrifuge could also be used.
  • the filtrate leaving filter 58 provides the slurry oil recycle stream 16 and the fuel oil product, 62.
  • the low sulfur fuel oil product 62 will have an API gravity of about l4 with a B.t.u. value in excess of 16,600 BTUs per pound. Normally this product has a boiling point not less than 400 F. and must be kept hot in order to permit pumpability or distillates can be removed to give a product boiling at 900 F. and higher.
  • the fuel oil product can be cooled, solidified and ground and used as a solid combustible fuel low in ash and sulfur, especially when free of distillates.
  • the reactor 22 may be operated under varying conditions depending upon the maximum sulfur desired in the fuel oil product.
  • the following table illustrates experimental results from the operations. Approximately three barrels of fuel oil with a sulfur content of less than 0.5 weight percent sulfur and 0.56 barrels of naphtha have been produced per ton of Illinois N o. 6 coal.
  • the versatility of the reactor is indicated in the table below in which, in one case, 93 pounds of Illinois No. 6 coal per hour per cubic foot was the coal feed rate utilizing a cobalt molybdate on alumina catalyst. In such case the hydrogen consumption was approximately 3.75 s.c.f./lb.
  • the Pittsburgh No. 8 coal was operated at a throughput rate of 187 pounds of coal per hour per cubic foot with activated alumina and only 2 s.c.f./lb. of hydrogen was consumed.
  • Ammonia and hydrogen sulfide produced in the coal hydrogenation step are recovered and the hydrogen sulfide may be converted to elemental sulfur by the Claus process providing ammonia and sulfur as byproducts.
  • reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
  • reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.
  • reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
  • reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.

Abstract

The economic production of a low sulfur residual fuel oil by the hydroconversion of coal is accomplished in an ''''ebullated'''' bed system in the absence of downstream processing and the use of a minimum of hydrogen to produce a fuel of high B.t.u. value and low sulfur content.

Description

United States Patent [21 Appl. No. [22] Filed [45] Patented [73] Assignee [54] LOW SULFUR FUEL OIL FROM COAL [S0 Fie Wof Search 208/10 [56] References Cited UNITED STATES PATENTS 3,183,180 5/1965 Schuman etal. 208/10 3,321,393 5/1967 Schuman et al. 208/10 Primary Examiner-Delbert E. Gantz Assistant Examiner-Veronica OKeefe Attorneys Nathaniel Ely and Bruce E. l-losmer ABSTRACT: The economic production of a low sulfur residual fuel oil by the hydroconversion of coal is accom- 9 Claims 1 Drawing plished in an ebullated bed system in the absence of [52] U.S. I 208/10 downstream processing and the use of a minimum of hydrogen [51] Int. Cl (110g 1/06 to produce a fuel ofhigh B.t.u. value and low sulfur content.
Make up Recycle 38 Ends r Hydrocarbon l2 Gases Grinding 52 Light Ends 14 53 Mlddle Slurry Distillate 54 Heavy Gas Oil Aio Heater 24 mgr 58 Slurry Oil l6 so Filter L/ 62 Low Sulfur Coke L Low Ash Fuel Product PATENTEUNUV 2 l9?! Makeup Recycle Hydrogen Hydrogen L' ht Coal 42 f 65 Hydrocarbon l2 Gases Grinding 2 2 52 Light Ends 53 law, 7 Slurry Disrillate 3O 32 Heavy 54 A8 A 7 Gas Oil Heater 24 H m 58 Fllter Slurry Oil J l6"" 60 Filter 62 Low Sulfur Coke Low Ash Fuel Product INVENTORS HAROLD H. STOTLER MICHAEL CALDERON CLARENCE A.JOHN$ON ATTORNEY LOW SULFUR FUEL OIL FROM COAL BACKGROUND The increase in government concern regarding air pollution, especially with regard to sulfur emission into the atmosphere, has resulted in legislative action which could eliminate the use of some of our conventional coals in the utilities market. This is particularly true for coals such as Pittsburgh No. 8 which contains about 4 percent sulfur, as well as Illinois No. 6. A process which can economically convert coal to a fuel which will meet anticipated air pollution regulations is of prime economic interest.
While it is known that such coals can be processed to produce gasoline boiling range materials, together with some gas and some heavier boiling products, it has been found that the high consumption of hydrogen and catalyst, and relatively low coal throughput per volume of reactor, is not economical unless gasoline is the principal product made.
Hydrogenation of coal depends on many factors including the characteristics of the coal as to oxygen, ash, and volatile content. Other factors include those controllable reaction conditions of temperature, pressure, throughput, and catalyst. Equally as a controlling factor is the quality of the end product.
Normally, the hydrogenation 'of coal has proceeded to the ultimate production of gasoline or similar high quality fuels. In such case, the use of hydrogen, a relatively expensive commodity has directed the research into conditions of high conversion, usually requiring two or more reaction stages and separation equipment.
SUMMARY OF THE INVENTION This invention is primarily adapted to make an inexpensive, low cost, fuel substitute of low gravity which may be used either as ground-up solids or as a liquid if maintained at a temperature above the melting point. The low sulfur characteristic is especially beneficial for reduction of pollution.
DRAWING The drawing is a schematic view of a reactor and auxiliary equipment for a coal hydrogenation process.
DESCRIPTION OF PREFERRED EMBODIMENT Coal at 10, appropriately ground at 12 (and not necessarily dried), is mixed at 14 with recycle slurry oil 16 to form a coaloil slurry. This slurry is passed by line 18 through heater 20 into the lower part of reactor 22. Hydrogen is added at 24. Liquid oil and hydrogen pass upwardly through a bed of catalyst or activated alumina at sufficient velocity to maintain an ebullated bed of catalyst or inert solids such as disclosed in the Schuman U.S. Pat. No. 3,281,393.
A gaseous phase is removed overhead at 26 and a liquid stream is removed at 28. The liquid stream is in part recycled through pump 30 to maintain the desired liquid velocity and a net liquid stream is removed at 32.
Preferably the coal is initially ground to all pass 20 mesh and not more than about percent passing 325 mesh (Tyler). The slurry at 18 is a pumpable slurry with at least equal parts of oil and coal but, if for operating reasons, it is desirable to recycle an additional amount of slurry oil, slurries of one part coal and up to 10 parts oil may be used.
A temperature of 800900 F. preferably about 850 F. and a hydrogen partial pressure of 800-2500 p.s.i. and preferably about 1,890 p.s.i. is maintained in the reactor.
The vapors 26 leaving the upper part of the reactor are cooled at 34. Condensed light ends are separated in drum 36 and removed at 42. Vapors leaving drum 36 at 40 are cooled in exchanger 64 and scrubbed with an absorber oil in column 63 to remove light hydrocarbon gases at 65 and hydrogen leaving at 38 is recycled. The recycle hydrogen stream 38 plus makeup hydrogen at 44 also passes through heat exchanger 34, through heater 67 and becomes the hydrogen feed line 24.
The liquid leaving the reactor at 32 is separated in one or more fractionation columns 50 into a light ends stream 52, a middle distillate at 53, a heavy gas oil at 54 and a heavy ends at 56.
The heavy ends at 56 contain a substantial amount of solids which are sent to a filter 58. The filter cake is recovered at 60. The filter cake comprises a char and ash product and may contain up to 20 percent of oil which can be recovered thermally. A centrifuge could also be used.
The filtrate leaving filter 58 provides the slurry oil recycle stream 16 and the fuel oil product, 62.
The low sulfur fuel oil product 62 will have an API gravity of about l4 with a B.t.u. value in excess of 16,600 BTUs per pound. Normally this product has a boiling point not less than 400 F. and must be kept hot in order to permit pumpability or distillates can be removed to give a product boiling at 900 F. and higher.
Alternatively, the fuel oil product can be cooled, solidified and ground and used as a solid combustible fuel low in ash and sulfur, especially when free of distillates.
The reactor 22 may be operated under varying conditions depending upon the maximum sulfur desired in the fuel oil product. The following table illustrates experimental results from the operations. Approximately three barrels of fuel oil with a sulfur content of less than 0.5 weight percent sulfur and 0.56 barrels of naphtha have been produced per ton of Illinois N o. 6 coal.
Treatment of coal from the Pittsburgh No. 8 seam has yielded 3.48 barrels of fuel oil per ton and 0.21 barrels per ton of naphtha. In this case the fuel oil product contained approximately 1 percent sulfur.
The versatility of the reactor is indicated in the table below in which, in one case, 93 pounds of Illinois No. 6 coal per hour per cubic foot was the coal feed rate utilizing a cobalt molybdate on alumina catalyst. In such case the hydrogen consumption was approximately 3.75 s.c.f./lb.
The Pittsburgh No. 8 coal was operated at a throughput rate of 187 pounds of coal per hour per cubic foot with activated alumina and only 2 s.c.f./lb. of hydrogen was consumed.
EXAMPLE OF TYPICAL COAL ANALYSES Throughput lbs./hr./cu.ft. 93 187 'MAF Moisture and Ash Free EXAMPLES OF YIELDS (Pounds per pounds of dry coal) Illinois No. 6 Pittsburgh No. 8 CO, 0.92
C. ms
C -40O 7.7l 2.85 400-650 [8.19 3.83
650-975 9.19 16.41 Residuum (975 F. plus) 35.31 53.15 Coal Residue 7.34 6.90
Ash l l.60 8.30 l-1,S 1.75 1.80 NH, 0.72 0.20 1-1, 5.27 1.80
Yield Summary Fuel Oil 400 F. plus BIT 3.06 3.48 Naphtha BIT 0.56 0.21 Sulfur (product) Iv by weight 0.46 1.02
BIT-Barrels per ton The relatively low consumption of hydrogen, the high throughput of the reactor, and the substantial absence of downstream refining processing makes it possible to produce the low sulfur residual fuel oil at a cost of about one half that for production of gasoline.
Although but two examples of coal conversions are given, it is our experience that operating ranges will be as follows:
Temperature 800-900 F. Pressure. total |,000-3,000 p.s.i.g. Feed rate 75-200 |bs./hr.lcu.ft. of reactor space When the fuel oil recovered boils at 400 F. plus it is preferably maintained as a liquid fuei although it can be used as a solid fuel. Where the fuel oil recovered is free of distillates, it is preferable that the remaining fuel oil boil at 900 F. plus. This 900 F. plus fuel oil is suitable for use as a liquid fuel although it is preferably allowed to cool and used as a solid fuel.
Ammonia and hydrogen sulfide produced in the coal hydrogenation step are recovered and the hydrogen sulfide may be converted to elemental sulfur by the Claus process providing ammonia and sulfur as byproducts.
While we have shown and described a preferred form of embodiment of our invention, we are aware that modifications may be made thereto within the scope and spirit of our disclosure and the claims hereinafter attached.
We claim:
1. The process of producing a low sulfur fuel oil comprising less than about 1 weight percent of sulfur by the hydrogenation of a coal comprising greater than one weight percent of sulfur which comprises:
a. passing an oil-co'al slurry upwardly through a reaction zone operating under a hydrogen partial pressure between about 800 and about 2,500 p.s.i., and under a temperature between about 800 and about 900 F.;
b. consuming hydrogen, in the reaction zone, at a rate of at least 2 standard cubic feet (s.c.f.) and not to exceed 10 s.c.f. per pound of coal;
c. maintaining a space velocity between about 75 and about 200 lbs. of coal per hour per cubic foot of the reaction zone;
d. removing a coal efiluent which comprises gases, liquids,
ash and unconverted coal solids;
e. separating a solids containing fraction from said effluent;
and
f. recovering a hydrocarbon fraction boiling above about 400 F. plus, the volume of which is at least 2.5 barrels per ton of coal fed to the reaction zone.
2. The process of claim 1 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
3. The process of claim 1 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.
4. The process of producing a low sulfur fuel oil comprising less than about 1 percent of sulfur by the hydrogenation of a coal comprising greater than one weight percent of sulfur which comprises:
a. passing an oil-coal slurry upwardly through a reaction zone operating under a hydrogen partial pressure between about 800 and about 2,500 p.s.i. and under a temperature between about 800 and about 900 F.;
b. consuming hydrogen, in the reaction zone, at a rate of at least 2 standard cubic feet (s.c.f.) and not to exceed 10 s.c.f. per pound of coal;
c. maintaining a space velocity between about 75 and about 200 lbs. of coal per hour per cubic foot of the reaction zone;
d. removing a coal effluent which comprises gases, liquids,
ash, and unconverted coal solids;
e. separating a solids containing fraction from said effluent;
and
f. recovering a hydrocarbon fraction boiling above about 900 F. plus, the volume of which is at least l barrel per ton of coal fed to the reaction zone.
5. The process of claim 4 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
6. The process of claim 4 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.
7. The process of claim 4 wherein the hydrocarbon fraction boiling above about 900 F. plus is allowed to solidify and ground for use as a particulate solid fuel.
8. The process of claim 1 wherein the hydrogen partial pressure is about 1,890 p.s.i. and the temperature is about 850 F.
9. The process of claim 4 wherein the hydrogen partial pressure is about 1,890 psi. and the temperature is about 850 F.
i t t i I!

Claims (8)

  1. 2. The process of claim 1 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
  2. 3. The process of claim 1 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.
  3. 4. The process of producing a low sulfur fuel oil comprising less than about 1 percent of sulfur by the hydrogenation of a coal comprising greater than one weight percent of sulfur which comprises: a. passIng an oil-coal slurry upwardly through a reaction zone operating under a hydrogen partial pressure between about 800 and about 2,500 p.s.i. and under a temperature between about 800 and about 900* F.; b. consuming hydrogen, in the reaction zone, at a rate of at least 2 standard cubic feet (s.c.f.) and not to exceed 10 s.c.f. per pound of coal; c. maintaining a space velocity between about 75 and about 200 lbs. of coal per hour per cubic foot of the reaction zone; d. removing a coal effluent which comprises gases, liquids, ash, and unconverted coal solids; e. separating a solids containing fraction from said effluent; and f. recovering a hydrocarbon fraction boiling above about 900* F. plus, the volume of which is at least 1 barrel per ton of coal fed to the reaction zone.
  4. 5. The process of claim 4 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise cobalt molybdate on alumina.
  5. 6. The process of claim 4 in which the reaction zone contains an ebullated bed of particulated solids wherein said particulated solids comprise activated alumina.
  6. 7. The process of claim 4 wherein the hydrocarbon fraction boiling above about 900* F. plus is allowed to solidify and ground for use as a particulate solid fuel.
  7. 8. The process of claim 1 wherein the hydrogen partial pressure is about 1,890 p.s.i. and the temperature is about 850* F.
  8. 9. The process of claim 4 wherein the hydrogen partial pressure is about 1,890 p.s.i. and the temperature is about 850* F.
US45081A 1970-06-10 1970-06-10 Low sulfur fuel oil from coal Expired - Lifetime US3617474A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4508170A 1970-06-10 1970-06-10

Publications (1)

Publication Number Publication Date
US3617474A true US3617474A (en) 1971-11-02

Family

ID=21935899

Family Applications (1)

Application Number Title Priority Date Filing Date
US45081A Expired - Lifetime US3617474A (en) 1970-06-10 1970-06-10 Low sulfur fuel oil from coal

Country Status (2)

Country Link
US (1) US3617474A (en)
ZA (1) ZA713716B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962070A (en) * 1972-01-03 1976-06-08 Hydrocarbon Research, Inc. H-coal process: slurry oil recycle system
US4045329A (en) * 1974-01-21 1977-08-30 Hydrocarbon Research, Inc. Coal hydrogenation with selective recycle of liquid to reactor
US4054504A (en) * 1975-10-02 1977-10-18 Hydrocarbon Research, Inc. Catalytic hydrogenation of blended coal and residual oil feeds
US4089773A (en) * 1976-12-01 1978-05-16 Mobil Oil Corporation Liquefaction of solid carbonaceous materials
US4148709A (en) * 1977-10-27 1979-04-10 The Lummus Company Hydroliquefaction of sub-bituminous and lignitic coals to heavy pitch
US4327058A (en) * 1980-07-08 1982-04-27 Wheelabrator-Frye, Inc. Capillary processing unit
US4983278A (en) * 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
US20150147264A1 (en) * 2013-11-27 2015-05-28 IFP Energies Nouvelles Process for the production of carbon black from at least one fcc slurry cut, comprising a specific hydrotreatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183180A (en) * 1964-02-18 1965-05-11 Hydrocarbon Research Inc Hydrogenation of oils
US3321393A (en) * 1965-05-10 1967-05-23 Hydrocarbon Research Inc Hydrogenation of coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183180A (en) * 1964-02-18 1965-05-11 Hydrocarbon Research Inc Hydrogenation of oils
US3321393A (en) * 1965-05-10 1967-05-23 Hydrocarbon Research Inc Hydrogenation of coal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962070A (en) * 1972-01-03 1976-06-08 Hydrocarbon Research, Inc. H-coal process: slurry oil recycle system
US4045329A (en) * 1974-01-21 1977-08-30 Hydrocarbon Research, Inc. Coal hydrogenation with selective recycle of liquid to reactor
US4054504A (en) * 1975-10-02 1977-10-18 Hydrocarbon Research, Inc. Catalytic hydrogenation of blended coal and residual oil feeds
US4089773A (en) * 1976-12-01 1978-05-16 Mobil Oil Corporation Liquefaction of solid carbonaceous materials
US4148709A (en) * 1977-10-27 1979-04-10 The Lummus Company Hydroliquefaction of sub-bituminous and lignitic coals to heavy pitch
US4327058A (en) * 1980-07-08 1982-04-27 Wheelabrator-Frye, Inc. Capillary processing unit
US4983278A (en) * 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
US20150147264A1 (en) * 2013-11-27 2015-05-28 IFP Energies Nouvelles Process for the production of carbon black from at least one fcc slurry cut, comprising a specific hydrotreatment
CN104672952A (en) * 2013-11-27 2015-06-03 Ifp新能源公司 Process for the production of carbon black from at least one FCC slurry cut, comprising a specific hydrotreatment
KR20150061586A (en) * 2013-11-27 2015-06-04 아이에프피 에너지스 누벨 Process for the production of carbon black from at least one fcc slurry cut, comprising a specific hydrotreatment
US9512319B2 (en) * 2013-11-27 2016-12-06 IFP Energies Nouvelles Process for the production of carbon black from at least one FCC slurry cut, comprising a specific hydrotreatment
KR102317607B1 (en) 2013-11-27 2021-10-25 아이에프피 에너지스 누벨 Process for the production of carbon black from at least one fcc slurry cut, comprising a specific hydrotreatment

Also Published As

Publication number Publication date
ZA713716B (en) 1972-02-23

Similar Documents

Publication Publication Date Title
US3700583A (en) Coal liquefaction using carbon radical scavengers
US4230556A (en) Integrated coal liquefaction-gasification process
US4839030A (en) Coal liquefaction process utilizing coal/CO2 slurry feedstream
US4217112A (en) Production of fuel gas by liquid phase hydrogenation of coal
US4045329A (en) Coal hydrogenation with selective recycle of liquid to reactor
US4347117A (en) Donor solvent coal liquefaction with bottoms recycle at elevated pressure
US3607719A (en) Low-pressure hydrogenation of coal
US4358344A (en) Process for the production and recovery of fuel values from coal
US3617474A (en) Low sulfur fuel oil from coal
US4338182A (en) Multiple-stage hydrogen-donor coal liquefaction
US4328088A (en) Controlled short residence time coal liquefaction process
US4325800A (en) Two-stage coal liquefaction process with interstage guard bed
US4222848A (en) Coal liquefaction process employing extraneous minerals
US4222847A (en) Coal liquefaction process with improved slurry recycle system
AU545423B2 (en) Short residence time coal liquefaction process including catalytic hydrogenation
GB2062001A (en) Coal liquefaction process
US4541914A (en) Process for converting coal
US4461694A (en) Coal liquefaction process with enhanced process solvent
US4227991A (en) Coal liquefaction process with a plurality of feed coals
US4596650A (en) Liquefaction of sub-bituminous coal
US1950309A (en) Improved method for the production of hydrocarbon oils from solid carbonaceous material
US4544476A (en) Coal liquefaction and hydrogenation
US4545890A (en) Coal liquefaction and hydrogenation
CA1208588A (en) Process and catalyst for the hydrogenation of coal
US2905663A (en) Hydrocarbon hydrocracking process with a boron chloride and aluminum metal catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: HRI, INC., 1313 DOLLEY MADISON BLVD, MC LEANN, VA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HYDROCARBON RESEARCH, INC.;REEL/FRAME:004180/0621

Effective date: 19830331