JPS5968391A - Coal liquefaction - Google Patents
Coal liquefactionInfo
- Publication number
- JPS5968391A JPS5968391A JP17889382A JP17889382A JPS5968391A JP S5968391 A JPS5968391 A JP S5968391A JP 17889382 A JP17889382 A JP 17889382A JP 17889382 A JP17889382 A JP 17889382A JP S5968391 A JPS5968391 A JP S5968391A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- reaction
- slurry
- hydrogen
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は石炭の液化方法に関し、さらに詳しくは軽質油
に富んだ液化油を少ない水素消費量のもとて生成させる
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying coal, and more particularly to a method for producing liquefied oil rich in light oil with low hydrogen consumption.
近年、石油資源の枯渇及び石油師格の高騰にともなって
、代替エネルギーの必要性が認識されるよ5になり、そ
の代替エネルギーの一つとして石炭の液化反応について
も数多くの研究が行われている。In recent years, with the depletion of petroleum resources and the soaring price of petroleum, the need for alternative energy has been recognized5, and many studies have been conducted on the liquefaction reaction of coal as one of these alternative energies. There is.
ところで固体である石炭を液化するためには、水素原子
/炭素原子比を高める必要があり、そのため水素の添加
は必須であって、この水素の添加方法を変えた多くのプ
ロセスが提案されている。By the way, in order to liquefy solid coal, it is necessary to increase the hydrogen atom/carbon atomic ratio, and therefore the addition of hydrogen is essential, and many processes have been proposed that change the method of adding hydrogen. .
しかしながら、この石炭の液化においては、良質の燃I
I /IIJやガソリン、あるいは化学原料となる軽質
油を得るには、同時に起るガス化反応により、水素の液
化に対する選択率が低くなるのを免れず、したがって水
素の経済性が問題となって(・る。また、石炭液化にお
ける他の問題として、液体生成物に含まれるアスファル
テン質の存在が挙げられる。すなわち、このアスファル
テン質の量が多いと、全体的に粘度が高くなって工程北
のトラブルを招きやノー(・上K、蒸留工程にお(・て
、ホトム側への軽質留分の移行が増太し、さらに石炭液
化には必須の固−液分離工程における分離がシャープに
ならない。However, in this coal liquefaction, high quality fuel I
In order to obtain I/IIJ, gasoline, or light oil that is used as a chemical raw material, the gasification reaction that occurs at the same time inevitably lowers the selectivity for hydrogen liquefaction, making the economics of hydrogen a problem. (・ru. Another problem in coal liquefaction is the presence of asphaltenes contained in the liquid product. In other words, if the amount of asphaltenes is large, the overall viscosity becomes high and the process In the distillation process, the transfer of light fractions to the phototom side increases, and furthermore, the separation in the solid-liquid separation process, which is essential for coal liquefaction, does not become sharp. .
これらの問題を解決するために、これまでにも種々の改
良方法が提案されているが、いずれも満足しうるもので
はなかった。In order to solve these problems, various improvement methods have been proposed, but none of them have been satisfactory.
本発明者らは、石炭液化におけるこのような従来技術の
もつ問題点を一挙に解決するために、アスフアルテン質
を減らして軽質化をはかりながら、かつガス化を抑制し
て水素の液化に対する選択性を向上さすべく鋭意?i7
F究を重ねた結果、反応を2段階に分けることによって
容易にその目的を達成しうろことを見出し、この知見に
基づいて不発明を完成するに至った。In order to solve the problems of the conventional technology in coal liquefaction all at once, the present inventors aimed to reduce the amount of asphaltenes to make it lighter, and at the same time suppress gasification and improve selectivity for hydrogen liquefaction. Are you working hard to improve? i7
As a result of repeated research, he discovered that he could easily achieve his goal by dividing the reaction into two stages, and based on this knowledge he completed his invention.
すなわち、本発明は、高温かつ高圧下て゛石炭を液化す
るに当り、粉砕した石炭と触媒と溶媒とを混合してスラ
リーを形成させ、該スラリーを水素の存在下、380〜
430℃の温度VC20分間以上維持したのち、440
〜550°Cの温度で反応さぜることを特徴とする石炭
の液化方法を提供するものである。That is, in liquefying coal under high temperature and high pressure, the present invention mixes pulverized coal, a catalyst, and a solvent to form a slurry, and liquefies the slurry in the presence of hydrogen at
After maintaining the temperature VC of 430℃ for more than 20 minutes,
The present invention provides a method for liquefying coal, which is characterized by reacting and stirring at a temperature of ~550°C.
本発明方法において用いる原料としては、例えば無煙炭
、瀝青炭、亜瀝青炭、褐炭、亜炭及びこれらの混合物な
どの微粉石炭があるが、特に好ましいものは瀝青炭、亜
瀝青炭、褐炭であり、80メツシユ以下の粒度に粉砕さ
れたものが望ましい。The raw materials used in the method of the present invention include, for example, pulverized coal such as anthracite, bituminous coal, sub-bituminous coal, lignite, lignite, and mixtures thereof, and particularly preferred are bituminous coal, sub-bituminous coal, and lignite, with a particle size of 80 mesh or less. It is preferable to use one that has been crushed.
また、不発明方法においては、溶媒として石炭の液化油
を用い、これを循環使用することが好ましいが、他の溶
媒として、例えばクレオソート油、アントラセン油など
の石炭タール留分、重油、軽油、灯油、ナフサ、重質油
なとの石油留分、ナフタリン、テトラリンなどの芳香族
炭化水素及びこれらの混合油、あるいはあらかじめ水添
処理した油なども使用することができる。これらの溶媒
と石炭との混合割合は、重量比でO−5:lないし4:
1の範;用が望ましく、さらに好ましくはl:lな(・
し3:1の範囲である。In addition, in the uninvented method, it is preferable to use liquefied coal oil as a solvent and recycle it, but other solvents may include, for example, coal tar fractions such as creosote oil and anthracene oil, heavy oil, light oil, Petroleum fractions such as kerosene, naphtha, and heavy oil, aromatic hydrocarbons such as naphthalene and tetralin, mixed oils thereof, and oils that have been hydrogenated in advance can also be used. The mixing ratio of these solvents and coal is O-5:1 to 4:1 by weight.
It is desirable to use a range of 1, more preferably l:l (・
It is in the range of 3:1.
さら(・こ、イ究明方法において用いる触媒としては、
?%来石炭の酸化に用いられてし・る活性の高い触媒−
こあtLば(・ずれてもよいが、好ましい触媒としては
、周期律表第Xm族の化合物及び第■族の化合物、例え
ば鉄、コバルト、ニッケル、モリブデン、タンクステン
なとの化合物が挙げられる。これらの化合物は単独で用
(・てもよいし、2種以上組み合わせて用いてもよい。Furthermore, the catalyst used in the investigation method is
? Highly active catalyst used for oxidation of coal
Although it may be different, preferred catalysts include compounds of group Xm of the periodic table and compounds of group Ⅰ of the periodic table, such as iron, cobalt, nickel, molybdenum, and tanksten. These compounds may be used alone or in combination of two or more.
また、アルミナやシリカなどの担体に担持して用いるこ
ともできる。Further, it can also be used by being supported on a carrier such as alumina or silica.
このほか、従来から石炭の液化反応に用いられている赤
泥、鉄鉱石、ニッケル鉱石なども使用し5る。In addition, red mud, iron ore, and nickel ore, which have traditionally been used in coal liquefaction reactions, will also be used.
これらの触媒は、スラリーを形成させるために、微粒化
することが望ましく、その粒度は反応器の型式によって
も異なるが、一般的には100メソ7ユ以下にすること
が好ましい。また、触媒の使用量については、液化反応
に用いる石炭、溶媒及び触媒の種類、あるいは石炭や触
媒の粒度などによってその最適(直は異なるが、一般的
には原料石炭に対1−で5重量裂以上の比較的多量の触
媒を用いると、アスファルテン質の減少に著効が認めら
り。It is desirable that these catalysts be made into fine particles in order to form a slurry, and although the particle size varies depending on the type of reactor, it is generally preferable that the particle size is 100 meso or less. In addition, the amount of catalyst used depends on the type of coal, solvent, and catalyst used in the liquefaction reaction, or the particle size of the coal and catalyst. When a relatively large amount of catalyst with a cracking capacity or higher was used, a remarkable effect was observed on the reduction of asphaltenes.
る。また、不発明においては、特に従来から比較的活性
が低いとされていた鉄系の触媒においても、触媒の増量
が可能になるため、十分な効果が発揮される結果、実質
的な選択率で軽質油を得ることができる。Ru. In addition, in the case of non-invention, it is possible to increase the amount of catalyst, especially in iron-based catalysts, which have traditionally been considered to have relatively low activity, and as a result, a sufficient effect is exhibited, resulting in substantial selectivity. Light oil can be obtained.
不発明においては、触媒にカロえてさらに必要に応じ活
性助剤を用いることもできる。In the present invention, in addition to the catalyst, an activation aid may be used if necessary.
本発明方法においては、前記の粉砕した石炭と溶媒と触
媒とを混合してスラリーを形成させ、該スラリーを予熱
段階及び反応過程で水素と混合して液化反応を行う。こ
のスラリーと水素との混合については、反応器の型式な
どによって水素のフィート位置を任意に選択することが
できるし、また水素の部分フィートも可能である。さら
に本発明方法(C用いる水素は、純水素でなくてもよく
、例えば軽質炭化水素、−酸化炭素、硫化水素などの液
化反応ガスが混在していてもよい。この水素の流ガ;は
、反応器の型式、反応圧などによって最適値が異なり、
液化反応条件によって任意に選択しつる。In the method of the present invention, the pulverized coal, a solvent, and a catalyst are mixed to form a slurry, and the slurry is mixed with hydrogen during a preheating step and a reaction process to perform a liquefaction reaction. Regarding the mixing of this slurry with hydrogen, the position of hydrogen can be arbitrarily selected depending on the type of reactor, etc., and partial hydrogen is also possible. Furthermore, the hydrogen used in the method of the present invention (C) does not have to be pure hydrogen, and may contain a mixture of liquefied reaction gases such as light hydrocarbons, carbon oxides, and hydrogen sulfide. The optimum value varies depending on the reactor model, reaction pressure, etc.
It can be arbitrarily selected depending on the liquefaction reaction conditions.
不発明方法においては、先ず第一段の反応工程−C1前
記のスラリーを水素の存在下、380〜43〇−(の温
度(020分間以上、好ましくは20〜120分間維持
する。この際、反応温度が低(・時には反応時間は長く
、反応温度が高いときには比較的反応時間を短くとるの
がよい。反応温度と反応時間との関係は、用いる石炭や
溶媒のf!!類及び使用量、あるいは触媒の活性度など
によって異なるが、一般的には380℃の温度において
は40〜120分間、430°Cの温度においては20
〜40分間程度が工(1゜
次に、第二段の反応工程においては、前記の第一段の反
応工程を経たスラリーを、440〜550℃の温度に、
好ましくは5〜60分間維持する。この反応工程におい
ても、第一段の反応と同様に、反応温度が低い時には反
応時間は長く、反応温度が高い時には比較的反応時間を
短くとるのが好ましい。反応湿度と反応時間との関係は
、第一段の反応と同様に、用いる石炭や溶媒の種頌及び
使用量、あるいは触媒の活性度などによって異なるが、
一般的には440℃の温度においては40−120分間
、550°Cの温度においては5〜30分間程度とする
のがよ(・。In the uninvented method, first, the first reaction step - C1, the above-mentioned slurry is maintained in the presence of hydrogen at a temperature of 380 to 430 °C (020 minutes or more, preferably 20 to 120 minutes). At this time, the reaction When the temperature is low (・sometimes the reaction time is long, and when the reaction temperature is high, it is better to take a relatively short reaction time. Although it varies depending on the activity of the catalyst, generally it takes 40 to 120 minutes at a temperature of 380°C, and 20 minutes at a temperature of 430°C.
It takes about 40 minutes (1°C) Next, in the second reaction step, the slurry that has gone through the first reaction step is heated to a temperature of 440 to 550°C.
Preferably it is maintained for 5 to 60 minutes. In this reaction step, as in the first stage reaction, it is preferable that the reaction time is long when the reaction temperature is low, and that the reaction time is relatively short when the reaction temperature is high. As with the first stage reaction, the relationship between reaction humidity and reaction time varies depending on the type and amount of coal and solvent used, the activity of the catalyst, etc.
Generally, it is recommended that the time be 40-120 minutes at a temperature of 440°C, and 5-30 minutes at a temperature of 550°C.
この第二段の反応において、反応温度が440’C未満
になったり、反応時間が短かすきると、液化速度が低下
して軽質油分量が少なくなり、また反応温度が550℃
を超えたり、あるいは反応時間が長すぎると、コーキン
グ反応やガス生成量が増大する。In this second stage reaction, if the reaction temperature becomes less than 440'C or the reaction time is too short, the liquefaction rate will decrease and the amount of light oil will decrease, and the reaction temperature will decrease to 550'C.
If the reaction time is exceeded or the reaction time is too long, the coking reaction and the amount of gas generated will increase.
不発明方法における反応圧は、50〜350 K97c
nIの範囲が望ましく、好ましくは100〜300 K
q/crlの範囲である。The reaction pressure in the uninvented method is 50 to 350 K97c
A range of nI is desirable, preferably 100 to 300 K
The range is q/crl.
このようにして得られた生成油は、蒸留及び固−液分離
工程を経て製品とすることができる。この蒸留及び固−
液分離工程の操作は1.不発明方法においては液粘性が
低くなることによって極めて容易である。また、全般的
に不発明にお(・では軽質油の取得率が高くなる。The product oil thus obtained can be made into a product through distillation and solid-liquid separation steps. This distillation and solidification
The operation of the liquid separation process is 1. In the uninvented method, the liquid viscosity is low, which makes it extremely easy. In addition, the acquisition rate of light oil is generally high in non-invention (・).
不発明方法においては、第一段の反応工程において水素
の存在下(−触媒を含む石炭スラリーを比較的低(′晶
度でやや長く滞留させ、次の第二段の反応工程において
比較的高温度で反応させることが特徴であり、このよう
な極めて簡単な操作によって石炭の転化率及び軽質油の
取得率が増大し、アスファルテン質が減少するとともに
、ガス発生が抑i)+llされ、水素の液化に対する選
択性が高まる。In the uninvented method, in the first reaction step, the coal slurry containing the catalyst is allowed to remain in the presence of hydrogen for a relatively long time at a relatively low crystallinity, and in the second reaction step, The feature is that the reaction is carried out at high temperature, and by such an extremely simple operation, the conversion rate of coal and the acquisition rate of light oil are increased, asphaltene content is reduced, gas generation is suppressed, and hydrogen production is increased. Increased selectivity for liquefaction.
次に実施例によって不発明をさらに詳細に説明する。Next, the invention will be explained in more detail with reference to Examples.
実施例
幌内炭をiooメツシュ以下に粉砕し、減圧乾燥機(1
10℃)で水分が5チ以下になるまで乾燥したもの50
g(無灰無水ベース)、脱晶アントラセン油100.5
’、及び触媒の微粒パイライ)10.7.!i’を、(
1−54!のオートクレーブ内に仕込み、次にこの」−
トクレーブ反応器に水素ガスを140 K9 / cn
Iまて充填したのち、力ロ熱して反応させた。Example: The charcoal in the hood was pulverized to an ioo mesh size or less, and dried in a vacuum dryer (1
50% dried at 10°C until the moisture content is less than 5%
g (ashless anhydrous basis), decrystallized anthracene oil 100.5
', and fine particles of catalyst) 10.7. ! i', (
1-54! into an autoclave, and then this
Hydrogen gas into the toclave reactor at 140 K9/cn
After filling the mixture, it was heated to cause a reaction.
反応条件は、Nα1が460℃、60分間の1段反応、
N[l 2が400’C,60分間及び460”C,6
0分間の2段反応、N[13が460℃、120分間の
14反応である。反応終了後、高速ファンを用いて反応
器を速みやかに冷却し、ガスとオイル分の分析を行い、
第1表に示す結果を得た・
Nα2が不発明の実施例であり、第1表から明らかなよ
うにアスファルテン質の減少と有機ガスの副生の抑制が
認められた。The reaction conditions were a one-stage reaction at Nα1 of 460°C for 60 minutes;
N[l 2 at 400'C, 60 minutes and 460''C, 6
2-stage reaction for 0 minutes, 14 reactions for N[13 at 460° C. for 120 minutes. After the reaction is completed, the reactor is quickly cooled down using a high-speed fan, and the gas and oil components are analyzed.
The results shown in Table 1 were obtained. Nα2 is an uninvented example, and as is clear from Table 1, a reduction in asphaltenic substances and suppression of organic gas by-production were observed.
実施例2
オーストラリア産褐炭を用い、実施例1と同様の方法で
、反応時間を変えて、1段反応と2段反応の差を検討し
た結果を第1図に示す。この際の1段反応の反応温度は
460°C,2段反応においては、まず430℃で30
分間反応を行(・、その後460℃に温度をあげて反応
を行い、その反応時間と収率及び水素消費量との関係を
検旧した。第1図中Aは不発明方法、Bは従来法のそれ
ぞれ水素消費量をI、■及び■は、本発明方法による軽
質油、アスファルテン及び有機ガスの収率を、1′。Example 2 Using Australian lignite, the difference between the first-stage reaction and the second-stage reaction was examined in the same manner as in Example 1, but with different reaction times. The results are shown in FIG. 1. In this case, the reaction temperature for the first stage reaction was 460°C, and for the second stage reaction, it was first heated to 430°C for 30°C.
After that, the temperature was raised to 460°C to conduct the reaction, and the relationship between the reaction time, yield, and hydrogen consumption was examined. In Figure 1, A is the uninvented method, and B is the conventional method. 1, 1 and 2 are the hydrogen consumptions of the method, respectively, and 1' are the yields of light oil, asphaltene, and organic gas by the method of the present invention.
■′及ヒ■′は、従来法の軽質油、アスファルテン及び
有機ガスの収率をそれぞれ示す。``■'' and ``■'' indicate the yields of light oil, asphaltene, and organic gas, respectively, in the conventional method.
この図から明らかなように、本発明方法は、従来の1段
反応に比べ非常に優れた結果を示す。As is clear from this figure, the method of the present invention shows very superior results compared to the conventional one-stage reaction.
実施例3
400メツシユ以下に粉砕した幌内炭と、脱晶アントラ
セン油と水酸化第一鉄と硫黄をかきまぜて混合し、原料
スラリーを調製した。調製条件は、石炭と脱晶アントラ
セン油との混合比が重用割合で3ニア、水酸化第一鉄は
、Feとして石炭の3重に係、硫黄は鉄と等モルである
。Example 3 Horonai coal pulverized to 400 mesh or less, decrystallized anthracene oil, ferrous hydroxide, and sulfur were stirred and mixed to prepare a raw material slurry. The preparation conditions were such that the mixing ratio of coal and de-crystallized anthracene oil was 3 nia in terms of heavy duty ratio, ferrous hydroxide was 3 nya in the form of Fe, and sulfur was equimolar to iron.
第2図は、この例て用(・た小型流通式連続試験装置(
石炭処理能力20Kg/日)であって、上記のよう(・
こして調)ソされた原料スラリーは、供給管lを通って
原料タンクに導入されたのち、第1段反応塔1(・C送
られる。一方、水素カスが供給管3より同時(こ第1段
反応塔4に送られる。ここて原料スラリー七よ4 o
o−cに50分維持されたのち、第2段反応塔5(・C
移され、温度460 ’C、圧力200Kg/cJにお
いて50分間反応が行われた。この反応混合物は、欠い
て気液分離器6に送され、ガクはガス排出管7から放出
され、スラリーは製品スラリータンク8に貯蔵される。Figure 2 shows an example of this small flow-type continuous testing device (
Coal processing capacity 20Kg/day), as mentioned above (・
The strained raw material slurry is introduced into the raw material tank through the supply pipe 1, and then sent to the first stage reaction tower 1 (.C).Meanwhile, hydrogen residue is simultaneously supplied from the supply pipe 3 The raw material slurry is sent to the first stage reaction tower 4.
After being maintained at oc for 50 minutes, the second stage reaction column 5 (・C
The reaction was carried out for 50 minutes at a temperature of 460'C and a pressure of 200Kg/cJ. This reaction mixture is then sent to a gas-liquid separator 6, the gunk is discharged from a gas discharge pipe 7, and the slurry is stored in a product slurry tank 8.
このようにして得られた結果を第2表に示す。The results thus obtained are shown in Table 2.
第 2 表Table 2
第1図は不発明方法及び従来法における反応時間と収率
及び水素消費量との関係を示すクラフ、第2図は小型流
通式連続紙1験装置のフローチャートで゛ある。
第2図において符号2は原料タンク、4は第1段反応塔
、5は第2段反応塔、6は気液分離器、8は製品スラリ
ータンクである。
特許出願人 旭化成工業株式会社
代理人 阿 形 明
第1図
尺沈irI+間(亦)
第2図FIG. 1 is a graph showing the relationship between reaction time, yield, and hydrogen consumption in the uninvented method and the conventional method, and FIG. 2 is a flowchart of a small-sized flow-type continuous paper trial apparatus. In FIG. 2, reference numeral 2 is a raw material tank, 4 is a first stage reaction tower, 5 is a second stage reaction tower, 6 is a gas-liquid separator, and 8 is a product slurry tank. Patent applicant Asahi Kasei Kogyo Co., Ltd. Agent A form Akira 1st figure 2
Claims (1)
石炭と触媒と溶媒とを混合してスラリーを形成させ、該
スラリーを水素の存在下、380〜430°Cの温度に
20分間以上維持したのち、440〜550℃の温度で
反応させることを特徴とする石炭の液化方法。1. To liquefy coal under high temperature and high pressure, pulverized coal, catalyst, and solvent are mixed to form a slurry, and the slurry is maintained at a temperature of 380 to 430 ° C for 20 minutes or more in the presence of hydrogen. A method for liquefying coal, which is then reacted at a temperature of 440 to 550°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17889382A JPS5968391A (en) | 1982-10-12 | 1982-10-12 | Coal liquefaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17889382A JPS5968391A (en) | 1982-10-12 | 1982-10-12 | Coal liquefaction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5968391A true JPS5968391A (en) | 1984-04-18 |
Family
ID=16056530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17889382A Pending JPS5968391A (en) | 1982-10-12 | 1982-10-12 | Coal liquefaction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5968391A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247791A (en) * | 1985-04-22 | 1986-11-05 | エイチアールアイ・インコーポレーテツド | Catalytic two-stage coal hydrogenating and hydroforming method |
JPS61247790A (en) * | 1985-04-22 | 1986-11-05 | エイチアールアイ・インコーポレーテツド | Two-stage catalytic hydroconversion |
JPH01161088A (en) * | 1987-10-16 | 1989-06-23 | Hri Inc | Two-step catalytic hydrogenation of coal |
JPH01161087A (en) * | 1987-10-16 | 1989-06-23 | Hri Inc | Catalytic two-step hydrogenation of coal |
JPWO2008072546A1 (en) * | 2006-12-12 | 2010-03-25 | 澤田 重美 | 13C manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5371105A (en) * | 1976-11-30 | 1978-06-24 | Gulf Research Development Co | Method of liquefying coal |
JPS5710682A (en) * | 1980-06-06 | 1982-01-20 | Yamagata Daigaku | Coal direct liquefaction process and equipment therefor |
-
1982
- 1982-10-12 JP JP17889382A patent/JPS5968391A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5371105A (en) * | 1976-11-30 | 1978-06-24 | Gulf Research Development Co | Method of liquefying coal |
JPS5710682A (en) * | 1980-06-06 | 1982-01-20 | Yamagata Daigaku | Coal direct liquefaction process and equipment therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247791A (en) * | 1985-04-22 | 1986-11-05 | エイチアールアイ・インコーポレーテツド | Catalytic two-stage coal hydrogenating and hydroforming method |
JPS61247790A (en) * | 1985-04-22 | 1986-11-05 | エイチアールアイ・インコーポレーテツド | Two-stage catalytic hydroconversion |
JPH01161088A (en) * | 1987-10-16 | 1989-06-23 | Hri Inc | Two-step catalytic hydrogenation of coal |
JPH01161087A (en) * | 1987-10-16 | 1989-06-23 | Hri Inc | Catalytic two-step hydrogenation of coal |
JPWO2008072546A1 (en) * | 2006-12-12 | 2010-03-25 | 澤田 重美 | 13C manufacturing method |
EP2093190A4 (en) * | 2006-12-12 | 2011-08-10 | Sawada Shigemi | Method for production of nonradioactive and stable isotope of carbon having mass number of 13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4661237A (en) | Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions | |
US4338183A (en) | Method of solvent extraction of coal by a heavy oil | |
US4298454A (en) | Hydroconversion of an oil-coal mixture | |
JPH02187495A (en) | Hydrocracking of heavy oil | |
US4092236A (en) | Molten salt hydroconversion process | |
US4123230A (en) | Sulfur removal from coal | |
DE3237002C2 (en) | ||
JPS6215599B2 (en) | ||
JPS5822500B2 (en) | coal liquefaction method | |
JPH026853A (en) | Method for producing a catalyst for hydrogenation and method for hydrogenating conversion with use of the catalyst | |
JPS59206481A (en) | Coal liquefaction by catalytic hydrogenation | |
GB2135691A (en) | Hydrocracking of heavy oils in presence of dry mixed additive | |
JPS5968391A (en) | Coal liquefaction | |
JPH02107335A (en) | Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke | |
CA1108544A (en) | Coal liquefaction | |
US4330390A (en) | Two-stage coal liquefaction process with petroleum-derived coal solvents | |
US4740294A (en) | Method for sequentially co-processing heavy hydrocarbon and carbonaceous materials | |
Tian et al. | Direct liquefaction of coal using ferric-sulfide-based, mixed-metal catalysts containing Mg or Mo | |
JPS5839193B2 (en) | Coal liquefaction method | |
JPS58180587A (en) | Coal conversion | |
JPS6146519B2 (en) | ||
JPS58132080A (en) | Conversion of carbon-containing substance to paraffinic hydrocarbons and monocyclic aromatic hydrocarbons | |
US2127383A (en) | Carrying out catalytic reactions | |
JPH0823020B2 (en) | Contact two-stage coal hydrotreating and hydroconversion method | |
WO2006093236A1 (en) | Process for producing binder for coke |