JPS58108289A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS58108289A
JPS58108289A JP20624681A JP20624681A JPS58108289A JP S58108289 A JPS58108289 A JP S58108289A JP 20624681 A JP20624681 A JP 20624681A JP 20624681 A JP20624681 A JP 20624681A JP S58108289 A JPS58108289 A JP S58108289A
Authority
JP
Japan
Prior art keywords
catalyst
coal
residue
gas
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20624681A
Other languages
Japanese (ja)
Other versions
JPS617238B2 (en
Inventor
Ryohei Minami
良平 南
Tamio Shirafuji
白藤 民雄
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20624681A priority Critical patent/JPS58108289A/en
Publication of JPS58108289A publication Critical patent/JPS58108289A/en
Publication of JPS617238B2 publication Critical patent/JPS617238B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve product oil quality with effecting higher conversion to light oil, by isolating the resultant residue after a coal liquefaction, performing a solid-liquid separation of the above residue, carrying out a hydrogenation of the liquefied product and gasifying the residue using a molten metal bath. CONSTITUTION:A coal, a solvent and a catalyst are combined into a slurry through the pretreatment process 1, followed by mixing with a hydrogen gas to carry out a high-temperature reaction under high pressure in the liquefaction process 2. The resultant liquefied product is subjected to a gas-liquid separation in the process 3, followed by a solid-liquid separation of the residue containing inorganic constituents such as ash, catalyst, etc. in the process 4. Further, the resulting residue is subjected to a gasification in the presence of oxygen, water vapor etc., using a molten metal bath 8 (said metal(s) comprising at least one selected from Fe, Cr, Mo and Hi). A solid particulate generated with the gas produced is collected to use as a liquefaction catalyst. The liquefied product resulted from eliminating the residue is partly or wholly subjected to a secondary hydrogenation using a hydrogen-contg. gas.

Description

【発明の詳細な説明】 本発明は石炭の液化および重質油の軽質化方法に関し、
軽質化効率を上げるとともに製品油の質を向上させるこ
とを目的とするものである。
[Detailed Description of the Invention] The present invention relates to a method for liquefying coal and lightening heavy oil,
The purpose is to increase the efficiency of lightening and improve the quality of the product oil.

石炭の液化原理は古くから知られておシ、石炭に水素を
添加して石炭をより水素含有量の高い軽質および重質油
成分に転化するものであるが、石炭に水素を添加する反
応はきわめて緩慢であるため通常400〜500℃の高
温下で且つ100〜500 Ky/crA  ないしは
それ以上の水素圧下で行なわれる。
The principle of coal liquefaction has been known for a long time, and is the addition of hydrogen to coal to convert it into light and heavy oil components with higher hydrogen content. Since it is extremely slow, it is usually carried out at a high temperature of 400 to 500°C and under a hydrogen pressure of 100 to 500 Ky/crA or more.

この液化プロセスの経済性を考えると、できるだけ低温
、低圧で反応させて昇温のだめの動力コストを低減させ
るとともに設備費を下げ、高価格の水素をできるだけ効
率良く反応させてガス、水の生成などに使われる水素消
費を防ぐことが重要である。
Considering the economic efficiency of this liquefaction process, the reaction should be carried out at as low a temperature and pressure as possible to reduce the power cost for raising the temperature as well as equipment costs, and the high-priced hydrogen should be reacted as efficiently as possible to produce gas and water. It is important to prevent the consumption of hydrogen used for

めには、次の2点に、すなわち、液化工程における触媒
と、石炭のスラリー化溶剤について、特に配慮する必要
がある。
To achieve this goal, special consideration must be given to the following two points: the catalyst in the liquefaction process and the coal slurrying solvent.

そこで、先づ触媒について考察してみるど、触媒を用い
る石炭液化法としては、次の6つの方法が知られている
First, let us consider catalysts. The following six methods are known as coal liquefaction methods using catalysts.

第1は鉄系の比較的活性の低い触媒を使い捨てで用いる
もので、古くはベルギウス法と称されドイツで開発中で
ある。この方法は鉄系の触媒と石炭を混合し、!100
 K9/II以上の高圧水素下で液化する方法であり、
液化油は蒸留、遠心分離1./重力沈降法等の固液分離
により分離されτ′使用触媒は固体残渣とともに系外へ
排出される。
The first method uses a disposable iron-based catalyst with relatively low activity, which was formerly known as the Bergius method and is currently under development in Germany. This method mixes an iron-based catalyst and coal! 100
It is a method of liquefying under high pressure hydrogen of K9/II or higher,
Liquefied oil is distilled and centrifuged 1. The catalyst used in τ' is separated by solid-liquid separation such as gravity sedimentation and is discharged from the system together with the solid residue.

この方法の長所は触媒を使い捨・てで使用するためコー
キングによる触媒”の劣化を懸念する必要がないことで
あるが、一方鉱石、赤泥等安価な使い捨て触媒は活性が
あまり高くないので、石炭に対して5wt%程度の多量
の添加が必要であり、そのため山元からの運搬コストや
触媒として使うだめの粉砕コストが多くなり液化油のコ
スト高につながる欠点がある。
The advantage of this method is that since the catalyst is disposable, there is no need to worry about catalyst deterioration due to coking, but on the other hand, cheap disposable catalysts such as ore and red mud do not have very high activity. It is necessary to add a large amount of about 5 wt% to the coal, which increases the cost of transportation from the mine and the cost of pulverizing the waste used as a catalyst, which has the drawback of increasing the cost of liquefied oil.

第2はMo系、co系、Ni系等の高活性の触媒を沸騰
床型のリアクターで用いるものである。例としては米国
におけるH−coal法と称するものがある。H−co
al法は水素化、触媒として活性の高いM。
The second method uses a highly active catalyst such as Mo-based, Co-based, Ni-based, etc. in an ebullated bed reactor. An example is the so-called H-coal method in the United States. H-co
The al method uses M, which has high activity as a hydrogenation catalyst.

系触媒を用い、沸騰床で液化する方法である。この方法
の長所は触媒活性が高く、水素添加速度が速いので良質
な軽質油が多量に得られることであるが、摩耗による触
媒の損耗、メタル等の吸着、コーキングによる触媒活性
の低下等があるので、触媒を一部抜き出して再生工程を
設けているが、再生が完全でないためMoやNi等の高
1曲な金属を含有する新触媒を二次的に補充せねばなら
ず、やはシ液化油のコスト高につながる欠点がある。
This method uses a system catalyst and liquefies it in a boiling bed. The advantage of this method is that it has high catalytic activity and the hydrogenation rate is fast, so a large amount of high-quality light oil can be obtained.However, there are problems such as loss of the catalyst due to abrasion, adsorption of metals, etc., and a decrease in catalytic activity due to coking. Therefore, a part of the catalyst is extracted and a regeneration process is set up, but since the regeneration is not complete, a new catalyst containing highly flexible metals such as Mo and Ni must be replenished secondarily, and the system is no longer available. Liquefied oil has drawbacks that lead to high costs.

第3は昭和56年特許願第99647号に示すごとく、
液化残渣を溶融金属浴でガス化する際、ガスに同伴され
る微粉状固体を触媒として用いる方法であり、活性も高
く、液化系内で触媒を循環使用できるというすぐれた長
所を有する。
The third one is as shown in Patent Application No. 99647 of 1982,
This is a method in which a fine powder solid entrained in the gas is used as a catalyst when the liquefaction residue is gasified in a molten metal bath, and has the excellent advantage of being highly active and allowing the catalyst to be recycled within the liquefaction system.

この方法によれば炭種により異なるが1〜1゜チの触媒
添加量で乾燥石炭の50%程度を沸点568℃以下の油
に転化することが可能である。
According to this method, it is possible to convert about 50% of dry coal into oil with a boiling point of 568 DEG C. or less by adding a catalyst in an amount of 1 to 1 degree, although it varies depending on the type of coal.

次に溶剤について考察すると、溶剤の果たす役割は先づ
、石炭が固体であるために200 K9/、d程度の高
圧系内へ連続的に一定量送ることが難しく、そのために
微粉砕した石炭を溶剤と混合してスラリー化し、系内へ
の送シ込みを容易にする点にある・         
        1さらに溶剤は液化した生成物を均一
に分散させ、安定化させる能力も有している。また溶剤
が水素供与能を有している場合には、単にスラリー化ば
かりでなく、液化反応条件を緩和する重要な役割を果た
すことになる。
Next, considering the solvent, the role played by the solvent is that because coal is a solid, it is difficult to continuously feed a constant amount into a high-pressure system of about 200 K9/d, so finely pulverized coal is It mixes with a solvent to form a slurry, making it easier to feed into the system.
1 Additionally, the solvent has the ability to uniformly disperse and stabilize the liquefied product. Further, when the solvent has hydrogen donating ability, it plays an important role not only in forming a slurry but also in relaxing the liquefaction reaction conditions.

従って溶剤の具備すべき性状としては操業を容易にする
媒体油であることおよび反応を促進する水素供与能を有
することが望まれる。
Therefore, it is desired that the solvent has properties such as a medium oil that facilitates operation and a hydrogen donating ability that promotes the reaction.

従来この目的のため石炭液化用溶剤としては石炭を液化
して得られる製品である中・重質油をそのまま循環使用
するか、あるいはこの中・重質油を水素化処理したもの
が使用されてきた。この場合、スラリーの安定性のため
には一般に溶剤が重質であるほど、石炭との親和性が高
く、比重が高いので石炭の沈降を防止し、溶剤蒸発によ
る石炭のコーキング等をおこさない5ので好適と考えら
れる。
Conventionally, as a solvent for coal liquefaction for this purpose, medium/heavy oil, which is a product obtained by liquefying coal, has been recycled as it is, or medium/heavy oil that has been hydrotreated has been used. Ta. In this case, in order to stabilize the slurry, the heavier the solvent, the higher the affinity with the coal, and the higher the specific gravity, which prevents the coal from settling and prevents coking of the coal due to solvent evaporation. Therefore, it is considered suitable.

従って石炭を液化して得られる重質油、とくに望ましく
は沸点400℃以上の留分を水素化処理したものを溶剤
として使用するのが最良である。
Therefore, it is best to use heavy oil obtained by liquefying coal, particularly a hydrotreated fraction with a boiling point of 400° C. or higher, as the solvent.

しかし、石炭液化生成物のうち、重質成分はアスファル
テン、プレアスファルテンという名称で呼ばれる物が主
成分で沸点は450℃以上分子量は数100〜数100
0の芳香核の発達した高分子化合物であシ、一段で触媒
を用いて液化しても石炭あたり20%強が生成する。
However, among the coal liquefaction products, the main heavy components are substances called asphaltenes and pre-asphaltenes, which have a boiling point of 450℃ or higher and a molecular weight of several 100s to several 100s.
It is a polymer compound with 0 aromatic nuclei, and even if it is liquefied in one stage using a catalyst, it will produce more than 20% of the amount per coal.

したがって、重質成分は製品としては付加価値が低いた
め、固液分離して燃料油とするか、固液分離後更に本素
化して軽質な油としてとり出す。
Therefore, since the heavy components have low added value as a product, they are either solid-liquid separated to produce fuel oil, or solid-liquid separated and further refined to produce light oil.

方法については二次水添と称し、米国における5ect
法で〜この方法が採用されている。
The method is called secondary hydrogenation and is 5ect in the United States.
This method is adopted by law.

固液分離を行なう理由は、二次水添の際に灰分が触媒の
被毒をおこすためと、蒸留では灰分、触媒等の無機質と
分離不可能なアスファルテン、グレアスフアルテンを無
機質と分離するためである。
The reason for performing solid-liquid separation is that ash poisons the catalyst during secondary hydrogenation, and to separate asphaltenes and glare asphaltenes from inorganic materials that cannot be separated from inorganic materials such as ash and catalyst during distillation. It is.

この方法に基けば製品として価値の低いアスファルテン
、グレアスフアルテンを分離し、更に水素化分解して、
軽質油収率を向上することが可能であるのみならず、水
素化生成物の一部を溶剤として液化工程に循環すると、
良質な液化用溶剤となる。
Based on this method, asphaltenes and glare asphaltenes, which have low value as products, are separated, and then hydrocracked.
Not only is it possible to improve the light oil yield, but if a part of the hydrogenation product is recycled to the liquefaction process as a solvent,
Becomes a high quality liquefaction solvent.

本発明は以上のような従来技術に基づいて、それを更に
改良した方法である。
The present invention is based on the above-mentioned prior art and is a method that is further improved.

すなわち、本発明は、石炭液化後の残渣を溶融金属浴を
用いてガス化し、その際ガスと同伴して金属浴より生成
する微粉状固体をガスから分離捕集して液化用触媒に供
する残渣のガス化工程と、溶剤と水素含有ガスと前記触
媒とを用いる一石炭の触媒等を主成分とする無機質を含
有する液化残渣を分離する固液分離工程と、残渣を除去
した液化生成物の全量又は一部を、さらに水素含有ガス
を用いて水素化する第二次水素化工程とからなることを
特徴とする石炭の液化方法である。
That is, the present invention gasifies the residue after coal liquefaction using a molten metal bath, and at this time, the fine powder solid produced from the metal bath along with the gas is separated and collected from the gas, and the residue is subjected to a liquefaction catalyst. a solid-liquid separation step that uses a solvent, a hydrogen-containing gas, and the catalyst to separate a liquefied residue containing an inorganic substance whose main component is a single-coal catalyst, and a liquefied product from which the residue has been removed. This method of liquefying coal is characterized by comprising a second hydrogenation step in which all or part of the coal is further hydrogenated using a hydrogen-containing gas.

本発明によれば、二次水素化処理により製品の軽質化と
質の向上が達成される許りでなく、二次水素化生成物を
循環使用することにより、水素化供与能の高い、重質化
溶剤によってスラリーの安定性と液化効率を高めること
ができ、乾燥炭あたり60%程度の油を得ることも可能
である。
According to the present invention, not only lightening and quality improvement of the product can be achieved through the secondary hydrogenation treatment, but also the recycling of the secondary hydrogenation product allows The stabilizing solvent can improve the stability and liquefaction efficiency of the slurry, and it is also possible to obtain about 60% oil per dry coal.

次に本発明を、第1図に示す概略フローシートによって
説明する。
Next, the present invention will be explained with reference to a schematic flow sheet shown in FIG.

粉砕した原料石炭と、溶剤および触媒は石炭前処理工程
1においてスラリー化されたのち、水素ガスと混合して
、液化反応工程2で高温高圧下に反応する。その液化生
成物は、3で気液分離したのち、4で灰分、触媒等の無
機質を含む液化残渣を固液分離する。
The pulverized raw coal, solvent, and catalyst are slurried in coal pretreatment step 1, mixed with hydrogen gas, and reacted at high temperature and pressure in liquefaction reaction step 2. The liquefied product undergoes gas-liquid separation in step 3, and then solid-liquid separation of the liquefied residue containing inorganic substances such as ash and catalyst in step 4.

液化用触媒は、昭和56年特許願第99647号に示す
ごとく、石炭液化後の残渣を酸素、水蒸気等と共に、F
e、Cr、Mo、Niのうち少くとも1種又は2種以上
からなる金属浴8に吹込んでガス化し、その際発生ガス
と同伴する微粉状固体を9で捕集して用いる。使用法と
しては、そのまま触媒とするか、10で示すように硫黄
化合物で予備硫化するか、単体硫黄と共に液化工程に添
加する。
As shown in Patent Application No. 99647 of 1981, the liquefaction catalyst converts the residue after liquefaction of coal into oxygen, water vapor, etc.
The gas is blown into a metal bath 8 consisting of at least one or more of e, Cr, Mo, and Ni for gasification, and the fine powder solids accompanying the generated gas are collected at 9 and used. It can be used as a catalyst as it is, pre-sulfurized with a sulfur compound as shown in 10, or added to the liquefaction process together with elemental sulfur.

固体を分離した発生ガスは11で精製して水素ガスの供
給源となる。
The generated gas from which solids have been separated is purified in step 11 and becomes a source of hydrogen gas.

液化反応条件は400〜460℃、水素圧150〜20
0 K9Icell、滞留時間0.5〜2時間でよい。
Liquefaction reaction conditions are 400-460℃, hydrogen pressure 150-20
0 K9Icell, residence time may be 0.5 to 2 hours.

固液分離法としては、遠心分離法、重力沈降法、カーマ
ギーのcritical 5olvent法等いずれの
方法でもよい。
The solid-liquid separation method may be any method such as centrifugation, gravity sedimentation, Kerr-McGee's critical 5 solvent method, or the like.

残渣を除いた液化生成物は蒸留5によって軽質油を分離
したのち、6で高温高圧下に、水素ガスと触媒を用いて
二次水素化され、溶剤の軽質イヒと水素供与能の高上が
はかられる。次いで7で蒸留により軽質油、中質油に分
留され、中質理由の全部又は一部は液化用溶剤として循
環使用する。
After removing the residue, the liquefied product is subjected to distillation 5 to separate light oil, and then subjected to secondary hydrogenation at high temperature and pressure in 6 using hydrogen gas and a catalyst, resulting in a light oil and a high hydrogen donating ability of the solvent. It can be measured. Next, in step 7, the oil is fractionated into light oil and medium oil by distillation, and all or part of the medium oil is recycled and used as a liquefaction solvent.

二次水素化工程は、Al 203 、 P2O6,T 
io2 、8 io、、 MgOの少くとも1種類から
なる担体に担持されMo、Ni。
The secondary hydrogenation step consists of Al 203 , P2O6,T
io2, 8 io, Mo, Ni supported on a carrier consisting of at least one type of MgO.

Co等を含む触媒を用いて固定床型あるいは沸騰床型の
リアクターで行う。反応条件としては、650〜450
℃、水素圧50〜i 50 K9/a11滞留時間0.
5〜2時間でよい。
It is carried out in a fixed-bed or ebullated-bed reactor using a catalyst containing Co or the like. The reaction conditions are 650-450
°C, hydrogen pressure 50~i 50 K9/a11 residence time 0.
5 to 2 hours is sufficient.

以下実施例により本発明をさらに詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1゜ 第2図、第6図および第1図にフローシートで示す、以
下のA、B、Cの6方法で、液化実験を行った。
Example 1 A liquefaction experiment was conducted using the following six methods A, B, and C shown in flow sheets in FIGS. 2, 6, and 1.

なお、これら3方法における(イ)〜(ホ)の各工程の
条件は次の通りであった。
The conditions for each step (a) to (e) in these three methods were as follows.

(イ)石炭前処理工程 表1に示す石炭を全量100イツシユ以下に粉砕後、触
媒、単体硫黄、溶剤と共に混合した。石炭に対し溶剤は
重量比で2倍、触媒は1%、硫黄は0.5 %の割合で
加えた。
(a) Coal Pretreatment Step The coal shown in Table 1 was pulverized to a total amount of 100 pieces or less, and then mixed with a catalyst, elemental sulfur, and a solvent. The solvent was added at twice the weight of the coal, the catalyst was added at 1%, and the sulfur was added at a ratio of 0.5%.

表  1 (ロ)液化反応工程(−次水素化工程)石炭処理量1に
9/時の連続液化反応装置を用いて、・温度450℃、
水素反応圧180 K9/cd%反応時間1時間で行っ
た。
Table 1 (b) Liquefaction reaction step (-secondary hydrogenation step) Using a continuous liquefaction reactor with a coal throughput of 1 to 9/hour, Temperature: 450°C,
The hydrogen reaction pressure was 180 K9/cd% and the reaction time was 1 hour.

(ハ)固液分離工程 底部から抜出し可能の、内径20cWL1容量151の
反応器を用いた。
(c) Solid-liquid separation process A reactor with an inner diameter of 20 cWL and a capacity of 151 was used, which could be extracted from the bottom.

液化生成物にベンゼンを添加し、6oo℃、50に9/
dの条件で30分間抽出を行なった。沈降した無機質を
含有する残渣を底部から、残部をベンゼンと共に上部か
ら抜出し、その後ベンゼンを分離し、固液分離した。
Add benzene to the liquefied product and heat to 60°C, 9/9 to 50°C.
Extraction was performed for 30 minutes under the conditions of d. The precipitated residue containing minerals was extracted from the bottom, and the remainder together with benzene was extracted from the top, and then the benzene was separated and solid-liquid separation was performed.

に)二次水素化工程 処理液量2に9/時の固定床連続反応装置を用いて、温
度420℃、水素反応圧100 Kf/cl XLH8
V=1/時 の条件で、Mo −N i −、A l 
203系触媒を用いて行った。
2) Secondary hydrogenation process using fixed bed continuous reactor with treated liquid volume 2 to 9/hour, temperature 420°C, hydrogen reaction pressure 100 Kf/cl XLH8
Under the condition of V=1/hour, Mo −N i −, A l
This was carried out using a 203 series catalyst.

(ホ)溶融金属浴操業 浴温1,570℃の溶融鉄浴に、液化残渣を酸素ガスと
共に吹込み、ガスを製造すると共に同伴した微粉状固体
を捕集して、液化用触媒として循環使用した。
(e) Molten metal bath operation The liquefaction residue is blown into a molten iron bath with a bath temperature of 1,570°C together with oxygen gas to produce gas, and the entrained fine powder solids are collected and recycled for use as a liquefaction catalyst. did.

酸素ガスは圧力11 Ky/crls流量3 Nni”
7時 であった。生成ガスの組成はCo 71%、H2
26%、co、 2.2%で、ガス中の微粉状固体含廟
量は69g1Ndであった。
Oxygen gas has a pressure of 11 Ky/crls and a flow rate of 3 Nni.”
It was 7 o'clock. The composition of the generated gas is Co 71%, H2
26%, co, 2.2%, and the finely divided solids content in the gas was 69g1Nd.

I Kyの石炭から0.25Kp以上の残渣が生じ、鉄
浴よ、90.26 Niのガスが製造でき、これは、微
粉状固体10gに相当した。
From the I Ky coal a residue of more than 0.25 Kp was produced, and from the iron bath 90.26 Ni gas could be produced, corresponding to 10 g of finely divided solid.

次にA、B、Cの6方法を示す。Next, six methods A, B, and C will be shown.

A法ニー 第2図に示すように、石炭を水素ガス、触媒、溶剤(1
80〜400℃留分)を用いて液化後、気液分離塔に導
き、ガス、水等を分離し、残部を、さらに固液分離し、
灰分、触媒等の無機質を分離する。さらに固液分離後の
液化生成物を蒸留し、180〜400℃の留分を溶剤と
して循環使用する。
Method A As shown in Figure 2, coal is mixed with hydrogen gas, a catalyst, and a solvent (1
After liquefying the mixture (80-400°C fraction), it is introduced into a gas-liquid separation tower to separate gas, water, etc., and the remainder is further separated into solid-liquid,
Separates inorganic substances such as ash and catalyst. Furthermore, the liquefied product after solid-liquid separation is distilled, and the fraction at 180 to 400°C is recycled and used as a solvent.

B法ニー 第6図に示すように、上記Aの方法において、固液分離
後の無機質を含まない液化生成物のうち、180〜40
0℃の留分を溶剤として循環し、残部をMo −Ni 
−A1103触媒と水素含有ガスを用いて、さらに二次
水素化処理し、液収率を上げる。
Method B As shown in Figure 6, in the above method A, 180 to 40
The fraction at 0°C is circulated as a solvent, and the remainder is used as Mo-Ni.
- Further secondary hydrogenation treatment is performed using the A1103 catalyst and hydrogen-containing gas to increase the liquid yield.

C法ニ一 本発明に該当するもので、第1図に示すように、−ト記
Aの方法において、固液分離後の液化生成物をMo −
Ni −Al2O3触媒と水素含有ガスを用いて、さら
に二次水素化処理し、水素化生成物を溶剤として循環使
用する。
Method C corresponds to the present invention, and as shown in FIG.
A second hydrogenation treatment is further performed using a Ni-Al2O3 catalyst and a hydrogen-containing gas, and the hydrogenated product is recycled as a solvent.

以上の条件で実験を行ない、液化生成物を単蒸留により
分離し、石炭と混合した溶剤量をさし引き、単位石炭あ
たりの各収率を算出した。結果を表2に示す。
An experiment was conducted under the above conditions, the liquefied product was separated by simple distillation, the amount of solvent mixed with coal was subtracted, and each yield per unit of coal was calculated. The results are shown in Table 2.

表  2 方法Aに比べ、Bの方法では二次水素化によりアス7ア
ルテンが水素化分解され、油が生成するので、その分加
算され、収率が増加している。
Table 2 Compared to Method A, in Method B, as7artene is hydrocracked by secondary hydrogenation to produce oil, which adds up and increases the yield.

またCの方法では二次水素化生成物の増分だけでなく、
二次水素化生成物が良質な水素供与性溶剤として働くた
め収率が大幅に増加している。また二次水素化生成物は
液化反応工程で水素化分解され、軽質油の収率が増加し
ている。
In addition, in method C, not only the increment of the secondary hydrogenation product but also
The yield is significantly increased because the secondary hydrogenation product acts as a good hydrogen-donating solvent. In addition, the secondary hydrogenation product is hydrocracked in the liquefaction reaction step, increasing the yield of light oil.

寸だ石炭転化率も増加し、石炭がほぼ全量ベンゼン可溶
分に転化していることがわかる。
It can be seen that the coal conversion rate increased significantly, and almost all of the coal was converted to benzene-soluble content.

実施例2 浴温1,550℃Ni 8.8 s、Mo 9.1 s
、C5,5チを含有する60への鉄合金浴に、触媒、灰
分をてi有−する液化残渣を酸素、水濾気と共に浴上部
から吹込んだ。
Example 2 Bath temperature 1,550°C Ni 8.8 s, Mo 9.1 s
A catalyst and a liquefied residue containing ash were blown from the top of the bath together with oxygen and water into an iron alloy bath containing C5,5 and C60.

酸素は圧力11 Kpeals流量7.1Nn?/時、
水蒸気は温度300℃、圧力12 K9/al11流量
1.15に97時であった。
Oxygen has a pressure of 11 Kpeals and a flow rate of 7.1 Nn? /Time,
The steam temperature was 300° C., the pressure was 12 K9/al11, and the flow rate was 1.15 at 97 hours.

得られた、ガス中には409/Nrdの微粉状固体が含
有されており、ベンチュリースクラバーで捕集した。
The resulting gas contained fine powder solids of 409/Nrd, which were collected with a Venturi scrubber.

この微粉状固体には2%のMo、3%のNi、60 %
のFe、 6 %の硫黄が含有されていた。
This finely divided solid contains 2% Mo, 3% Ni, 60%
of Fe and 6% of sulfur.

この微粉状固体を触媒とし、石炭に対して1チの量にな
るように添加して、実施例1の方法Cにより石炭液化を
行った。
This finely powdered solid was used as a catalyst and added in an amount of 1 g to coal, and coal liquefaction was carried out according to Method C of Example 1.

なお、触媒に共に加える硫黄の添加方法の影響を見るた
め、表3に示す三種の添加方法で行った表  3 表6から明かなようKMo、Niを含有する微粉状固体
を触媒として用いた場合には、Fe単味よシ総油収率は
高くなる。
In addition, in order to see the effect of the addition method of sulfur added to the catalyst, three addition methods shown in Table 3 were used.As is clear from Table 3 and Table 6, when a fine powder solid containing KMo and Ni was used as a catalyst. In this case, the total oil yield is higher than that of Fe alone.

また硫黄は添加せずとも活性はあるが、H2Sで硫化す
るか単体Sと共に加えればよりよいことがわかる。
It is also clear that although there is activity without adding sulfur, it is better to sulfurize with H2S or add it together with elemental S.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の概略フローシート、第2図、第6図
は、実施例1におけるA方法およびB方法を示す概略フ
ローシートである。 1・・・石炭前処理 2・・・液化反応(−火水素化) 6・・・気液分離 4・・・固液分離 5.7・・・蒸留 6・・・二次水素化 8・・・金属浴 9・・・ダスト捕集 10・・・予備硫化 11・・・ガス精製 代理人 弁理士 佐々木 俊 哲
FIG. 1 is a schematic flow sheet of the present invention, and FIGS. 2 and 6 are schematic flow sheets showing Method A and Method B in Example 1. 1... Coal pretreatment 2... Liquefaction reaction (-fire hydrogenation) 6... Gas-liquid separation 4... Solid-liquid separation 5.7... Distillation 6... Secondary hydrogenation 8. ...Metal bath 9...Dust collection 10...Pre-sulfurization 11...Gas purification agent Patent attorney Satoshi Sasaki

Claims (1)

【特許請求の範囲】 (1)石炭液化後の残渣を溶融金属浴を用いてガス化l
〜、その際ガスと同伴して金属浴よシ生成する微粉状固
体をガスから分離捕集して、液化用触媒に其する残渣の
ガス化工程と、溶剤と水素含有ガスと前記触媒とを用い
る石炭の第一次水素化工程と、その液化生成物から灰分
触媒を主成分とする無機質を含有する液化残渣を分離す
る固液分離−1′、程と、残渣を除去した液化生成物の
全量又は一部を、更に水素含有ガスを用いて水素化する
第二次水素化工程とからなることを特徴とする石炭の液
化方法。 (2)溶融金属浴として鉄、クロム、モリブデン、ニッ
ケルのうち少くとも1種又は2種以上からなる金属浴を
用いる特許請求の範囲第1項記載の方法。 (6)分離捕集した微粉状固体に硫黄あるいは含硫黄化
合物を添加して触媒として用いる特許請求の範囲第1項
記載の方法。 (4)第二次水素化工程か゛ら生成する水素化生成物の
全量又は一部を第一次水素化工程に溶剤として、循環使
用する特許請求の範囲第1項記載の方法。  −
[Claims] (1) Gasification of the residue after coal liquefaction using a molten metal bath
~ At that time, the fine powder solids produced along with the gas from the metal bath are separated and collected from the gas, and the residue is gasified using a liquefaction catalyst, and the solvent, hydrogen-containing gas, and the catalyst are combined. The first hydrogenation step of the coal used, the solid-liquid separation-1' step for separating the liquefied residue containing inorganic substances mainly composed of ash catalyst from the liquefied product, and the liquefied product from which the residue has been removed. A method for liquefying coal, comprising a second hydrogenation step in which all or part of the coal is further hydrogenated using a hydrogen-containing gas. (2) The method according to claim 1, wherein the molten metal bath is a metal bath consisting of at least one or two or more of iron, chromium, molybdenum, and nickel. (6) The method according to claim 1, in which sulfur or a sulfur-containing compound is added to the separated and collected fine powder solid as a catalyst. (4) The method according to claim 1, wherein all or part of the hydrogenated product produced from the second hydrogenation step is recycled to the first hydrogenation step as a solvent. −
JP20624681A 1981-12-22 1981-12-22 Liquefaction of coal Granted JPS58108289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20624681A JPS58108289A (en) 1981-12-22 1981-12-22 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20624681A JPS58108289A (en) 1981-12-22 1981-12-22 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS58108289A true JPS58108289A (en) 1983-06-28
JPS617238B2 JPS617238B2 (en) 1986-03-05

Family

ID=16520154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20624681A Granted JPS58108289A (en) 1981-12-22 1981-12-22 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS58108289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132994A (en) * 1985-12-05 1987-06-16 Mitsui Eng & Shipbuild Co Ltd Hydrogenative liquefaction of coal
US20180187679A1 (en) * 2015-07-01 2018-07-05 Sanden Automotive Components Corporation Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132994A (en) * 1985-12-05 1987-06-16 Mitsui Eng & Shipbuild Co Ltd Hydrogenative liquefaction of coal
US20180187679A1 (en) * 2015-07-01 2018-07-05 Sanden Automotive Components Corporation Scroll compressor

Also Published As

Publication number Publication date
JPS617238B2 (en) 1986-03-05

Similar Documents

Publication Publication Date Title
US3700583A (en) Coal liquefaction using carbon radical scavengers
US4230556A (en) Integrated coal liquefaction-gasification process
US4486293A (en) Catalytic coal hydroliquefaction process
WO2014183429A1 (en) Heterogeneous suspension-bed hydrogenation method for coal-based oil product
US4437974A (en) Coal liquefaction process
US4332666A (en) Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
US4452688A (en) Integrated coal liquefication process
US4851152A (en) Prevention of formation of nickel subsulfide in partial oxidation of heavy liquid and/or solid fuels
US4203823A (en) Combined coal liquefaction-gasification process
WO1980000155A1 (en) Coal liquefaction process employing multiple recycle streams
US4222848A (en) Coal liquefaction process employing extraneous minerals
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
CA1128889A (en) Coal liquefaction process with improved slurry recycle system
JPS58108289A (en) Liquefaction of coal
GB1603619A (en) Process for coal liquefaction
JPS6219478B2 (en)
SU904530A3 (en) Method of separating tar and solid particles from coal liquflyed products
US3523886A (en) Process for making liquid fuels from coal
US4227991A (en) Coal liquefaction process with a plurality of feed coals
US4007108A (en) Converting solid fuels to gaseous and liquid fuels
JPS58132080A (en) Conversion of carbon-containing substance to paraffinic hydrocarbons and monocyclic aromatic hydrocarbons
US4904369A (en) Residual oil conversion process
GB2057493A (en) Coal liquefaction process with reduced hydrogen consumption
JPS59213792A (en) Conversion of coal to oil fraction
JPS58215483A (en) Hydrocracking of heavy oil