JPS58215483A - Hydrocracking of heavy oil - Google Patents

Hydrocracking of heavy oil

Info

Publication number
JPS58215483A
JPS58215483A JP9964682A JP9964682A JPS58215483A JP S58215483 A JPS58215483 A JP S58215483A JP 9964682 A JP9964682 A JP 9964682A JP 9964682 A JP9964682 A JP 9964682A JP S58215483 A JPS58215483 A JP S58215483A
Authority
JP
Japan
Prior art keywords
hydrocracking
catalyst
gas
heavy oil
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9964682A
Other languages
Japanese (ja)
Other versions
JPH0376355B2 (en
Inventor
Ryohei Minami
良平 南
Yoshihiko Sunami
角南 好彦
Keiichi Sasaki
恵一 佐々木
Takuo Kano
狩野 拓夫
Tamio Shirafuji
白藤 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9964682A priority Critical patent/JPS58215483A/en
Publication of JPS58215483A publication Critical patent/JPS58215483A/en
Publication of JPH0376355B2 publication Critical patent/JPH0376355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To perform hydrocracking of heavy oil with a consistently high yield of low-sulfur light oil and a reduced amount of low value heavy components, by gasifying the residue of hydrocracking and recovering entrained solid substances in fine powder for use as cracking catalyst. CONSTITUTION:In the hydrocracking of petroleum heavy oil which employs hydrogen-containing gas and catalyst, the residue of hydrocracking is gasified with molten metal powder and solid substances formed from the metal bath together with the gas are separated from the gas for recovery. The solid substance in fine powder is used as it or after sulfation with elementary sulfur or sulfur-containing compd., as catalyst for the hydrocracking. The recovered solid substance which is a fine powder of scores of mu or smaller in size has a large surface area and a high activity. The activity is increased further when the molten metal bath consists of Fe, Mo, Cr, Ni, Co, Cu or V. The substance is recovered for use as metal for the bath.

Description

【発明の詳細な説明】 この発明は水素含有ガスと触媒を用いる石油系重質油の
水素化分解方法に関し、低硫黄含有針の軽質油を高収率
で安定して得ると同時に、生成する利用価値の低いピッ
チ状の重質成分を極力減少させることを目的とするもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrocracking petroleum heavy oil using a hydrogen-containing gas and a catalyst, which can stably obtain low sulfur-containing needle light oil in high yield, and at the same time produce it. The purpose is to reduce pitch-like heavy components with low utility value as much as possible.

石油系重質油の水素化分解は、石油系重質油に水素を添
加して低硫黄含装置の軽質油を得ることを目的とするも
のであるが、この石油系重質油の軽質化および脱硫技術
は近年世界的な原油の重質化傾向に伴ない重曹となって
きている。これまでに開発されている石油系重質油の水
素化分解方法には、石油系重質油である減圧残油を軽質
化する方法として、クランキング法、ビスグレーキング
法、コーキング法等があり、また脱硫技術としてはNi
 、 Co、 M□等の金属類を固定床に用いた直接脱
硫技術または沸騰床を用いるいわゆるH−oinプロセ
ス等が提案されている。
Hydrocracking of petroleum-based heavy oil aims to obtain light oil with low sulfur content by adding hydrogen to petroleum-based heavy oil. And desulfurization technology has become more popular in recent years due to the global trend towards heavier crude oil. The hydrocracking methods for petroleum heavy oil that have been developed so far include the cranking method, visgraking method, and coking method to lighten the vacuum residual oil, which is petroleum heavy oil. Yes, and as a desulfurization technology, Ni
Direct desulfurization technology using metals such as , Co, and M□ in a fixed bed or the so-called H-oin process using an ebullated bed have been proposed.

具体的に説明すると、例えばビスグレーキング法は43
0〜480°Cの温度で熱分解を行なうもので、カフジ
減圧残油を対象にした場合、ガス2%。
To explain specifically, for example, the visgraking method is 43
It performs thermal decomposition at a temperature of 0 to 480°C, and when used for Kafji vacuum residual oil, the gas content is 2%.

ナフサ(05〜200°C)9%9分解軽油(2oo〜
480”C)88%2分解残油(480″C以上)56
%の収率が得られる。また、同じ480″Cにおいても
、過熱水蒸気を用いたユリカプロセスでは減圧残油の約
60%が軽油留分に、約35%がピッチに転化するが、
いずれも残油(ピッチ)留分の歩留りが高く、かつこれ
ら残油分には相当の除去困蝋な硫黄分を含み、また固定
床を用いたこれら重質油のいわゆる直接脱硫法け1. 
[11)〜150気圧の水素圧下、850〜4 (1(
1”(j程Ifの反応温度下に1〜8時間の滞留時間で
、76〜80チ程度の脱硫率が得られているが、重質油
中に&:1. Ni 、 V等の重金属が含有され触媒
を被毒するので、これら重金属類の含有社の少ない限ら
れた種類の重質油に適用され、今後に予想される広範囲
のル質油処理にはとうてい選出されず、土だこの問題に
対処すべく開発されたv1i騰宋触llv:を用いるr
i−otnプロセスは操柴の難しさに加え、触媒の粉化
等による劣化が漱しく、末だ本来の1.1的を達成する
ところ捷で到っていない現状にある。
Naphtha (05~200°C) 9% 9 cracked light oil (2oo~
480"C) 88%2 cracked residual oil (480"C or more) 56
% yield is obtained. Also, at the same temperature of 480″C, in the Eureka process using superheated steam, about 60% of the vacuum residual oil is converted to light oil fraction and about 35% to pitch.
In both cases, the yield of the residual oil (pitch) fraction is high, and these residual oils contain a considerable amount of sulfur that is difficult to remove.
[11) ~ Under hydrogen pressure of 150 atm, 850 ~ 4 (1 (
A desulfurization rate of about 76 to 80 inches has been obtained with a residence time of 1 to 8 hours at a reaction temperature of about 1" (If), but heavy metals such as Ni and V It is applied to a limited number of types of heavy oil that contain few heavy metals, and will not be selected for the wide range of heavy oil treatment that is expected in the future. Using v1i Teng Song Touch llv: which was developed to deal with this problem.
In addition to the difficulty of operating the i-otn process, the catalyst is severely degraded due to powdering, etc., and the current state is that it has not yet reached the original target of 1.1.

この鞘明けこのj、うな現状に鑑みてなされたもので6
9、安価でかつ活性が尚い触媒を提供し、しかも回収再
利用が口「能な石油系重質油の水素化分解方法を提案す
るものである。
This scabbard was done in view of the current situation.6
9. We propose a method for hydrocracking petroleum-based heavy oil that provides an inexpensive and highly active catalyst and is also easily recoverable and reusable.

すなわち、この発明を」水素含佇ガスと触媒を用いる石
油系重質油の水素化分解方法において、水素化分解残渣
を溶rt&属浴を用いてガス化し、その際カスと同伴し
て金属浴より生成する微粉状固体をガスから分離回収し
て、水素化分解用触媒として使用することを特徴とし、
また回収した微粉状固体を単体硫黄または含硫黄化合物
を用いて硫化して、水素化分解用触媒として用いること
を特徴とするものでおる。
That is, the present invention is directed to a method for hydrocracking petroleum heavy oil using a hydrogen-containing gas and a catalyst, in which the hydrocracking residue is gasified using a melt bath, and at that time, the residue is entrained in a metal bath. It is characterized by separating and recovering the fine powder solid produced from the gas and using it as a catalyst for hydrocracking.
Further, the recovered fine powder solid is sulfurized using elemental sulfur or a sulfur-containing compound and used as a catalyst for hydrocracking.

水素化分解残渣を金属浴ガス化法によりガス化し、その
際ガスと同伴して金属浴より生成する微粉状固体は水素
化系内で自給できるため、コストがかからず、かつ生成
ガスとともに飛来することから数10μ以下の微粉末で
あるため、粉砕する必要がないt1比表面積が高く高活
性でbる。例えば、温度1500〜1600°Cの広融
鉄浴中に反応残渣を酸素および水蒸気とともに吹込んだ
場合、酸素ジェットにより形成される2000°C以上
の火点で金属蒸気が発生し、一部の金属蒸気は残渣中の
硫黄分と反応して鉄硫化物を生成するため、比表面積の
高い高活性な触媒となる。この場合、溶融金属浴として
、Fe、 Mo、 Cr、 Ni、 Co、 Cu、 
Vのうち少なくとも1種または2種以上からなる金属浴
を用いた場合、またMu、 Cr、 Go、 Cu、 
V のうち少なくとも1種また&412種以11を添加
した溶融鉄浴を用いた場合には、鉄よりも水素化活性に
富み、触媒活性はさらに向1−する。さらに大きな利点
は、微粉状固体は触媒と1.’を水素化工程で働いたの
ら、反応残漬とどもに金属浴ガス化工程に入るので金属
浴ガス化炉の&、w4源として再利用されることである
The hydrocracking residue is gasified by the metal bath gasification method, and the fine powder solids produced from the metal bath along with the gas can be self-sufficient within the hydrogenation system, so there is no cost, and the solids are blown away with the generated gas. Therefore, since it is a fine powder of several tens of microns or less, it does not need to be pulverized and has a high t1 specific surface area and high activity. For example, when the reaction residue is blown into a broad molten iron bath with a temperature of 1500 to 1600°C together with oxygen and water vapor, metal vapor is generated at the fire point of 2000°C or more formed by the oxygen jet, and some The metal vapor reacts with the sulfur content in the residue to produce iron sulfide, resulting in a highly active catalyst with a high specific surface area. In this case, the molten metal bath includes Fe, Mo, Cr, Ni, Co, Cu,
When using a metal bath consisting of at least one or two or more of V, Mu, Cr, Go, Cu,
When using a molten iron bath to which at least one of V and 11 or more of &412 is added, the hydrogenation activity is higher than that of iron, and the catalytic activity is further improved. An even greater advantage is that the finely divided solids can act as catalysts and 1. After working in the hydrogenation process, the reactant residue goes into the metal bath gasification process and is reused as a &,w4 source in the metal bath gasifier.

なお、この方法はMo、 W、 Ni、 Cu、 Cr
等の高価な金属を含有する触媒を用いる場合、とくに大
きな長所をもつ。
Note that this method can be applied to Mo, W, Ni, Cu, Cr.
This is particularly advantageous when using catalysts containing expensive metals such as.

すなわち、高価であるが、高活性を有するM。。That is, M is expensive but has high activity. .

W、 Ni、 cr等を含む触媒類は液化系で触媒とし
て働いたのら、残渣とともに金属浴ガス化炉に入り、分
解して金属浴に金属として回収利用される。
After catalysts containing W, Ni, Cr, etc. act as catalysts in the liquefaction system, they enter the metal bath gasifier together with their residue, are decomposed, and are recovered and used as metals in the metal bath.

そして、一部が火点で蒸気化したり、飛沫として飛来す
るので、捕集rれば高活性な触媒として再利用できる。
A part of it vaporizes at the flash point or comes flying as droplets, so if it is collected, it can be reused as a highly active catalyst.

これにより、畠価な金属を含有する触媒の有幼利用がは
かられる。
As a result, the catalyst containing valuable metals can be utilized in its infancy.

以上金属浴ガス化炉から生成する微粉状固体類を重質油
の水素化分解用触媒として用いる利点を要約すると、■
系内で自給できるためコストが安価につく、■微粉末で
あるため粉砕コストがかからない、■高温下において還
元され、硫黄も含有し、比表面積も高いので、水素化分
解用触媒として高活性である、■使用後は金属炉により
回収され、再利用が可能であるためMoe W* N1
1 Cu等の高活性かつ高価な金属を含有する触媒を用
いることができる。
To summarize the advantages of using fine powder solids produced from a metal bath gasifier as a catalyst for hydrocracking heavy oil,
It can be self-sufficient within the system, resulting in low costs.■ It is a fine powder, so there is no grinding cost.■ It is reduced at high temperatures, contains sulfur, and has a high specific surface area, so it is highly active as a catalyst for hydrocracking. Yes, ■After use, it is collected in a metal furnace and can be reused, so Moe W* N1
Catalysts containing highly active and expensive metals such as 1Cu can be used.

−また、さらに触媒活性を高めるためにはFe、MO。- Also, in order to further increase the catalytic activity, Fe, MO.

Ni、 W等はすべて硫化物の形態で触媒活性を作った
め微粉状固体類のS含有社を高めることが望ましい。そ
の方法としては、水素化工程において該微粉状固体類と
ともに単体硫黄おるいは含硫黄化合物を添加するか、あ
るいは該微粉状固体類と単体硫黄もしくは含硫黄化合物
を反応させ、予備硫化した後触媒として用いればよい。
Since Ni, W, etc. all produce catalytic activity in the form of sulfides, it is desirable to increase the S content of fine powder solids. The method is to add elemental sulfur or a sulfur-containing compound together with the fine powder solids in the hydrogenation step, or to react the fine powder solids with elemental sulfur or a sulfur-containing compound, presulfurize the mixture, and then catalyze the reaction. It can be used as

ここで、含硫黄化合物としては硫化水素、硫化カルボニ
ル、二酸化炭素、メルカプタン等を指し、ガス状、ある
いは液状を問わない。
Here, the sulfur-containing compound refers to hydrogen sulfide, carbonyl sulfide, carbon dioxide, mercaptan, etc., and it does not matter whether it is gaseous or liquid.

ガス状の場合、水木、−酸化炭素、窒素等で希釈されて
いてもよい。従って、含硫黄化合物源として液化後ある
いけ水用1:程より生成する硫化水素を含んだ水素ガス
を用いることも当然可能である。
If it is in a gaseous state, it may be diluted with water, carbon oxide, nitrogen, or the like. Therefore, as a source of sulfur-containing compounds, it is naturally possible to use hydrogen gas containing hydrogen sulfide, which is produced from the process 1: for irrigation after liquefaction.

予備硫化方法と1.てt[、例えば微粉状固体と単体硫
黄を1:1に混αイ身、水*實囲気のもと800″C以
下で保持する方法がおる。なお、微粉状固体類の触媒と
してのmS)Rlm k」特に限定するものではないが
、単体で使用t゛る場合も予備硫化して使用する場合も
重質油−の(1,8〜I(1wt%程度でよい。また、
水素化分解工程に微粉状固体を単体硫黄あるいは含硫黄
化合物と共に小川する場合は、硫黄と微粉状固体の貞に
比が0.1〜2程度になるようにすればよい。また、予
備硫化し゛C微粉状固体を使用する場合も、硫黄と微粉
状固体の重緻比が0.1〜2程度になるようにすればよ
い。
Pre-sulfurization method and 1. For example, there is a method in which a finely powdered solid and elemental sulfur are mixed at a ratio of 1:1 and maintained at a temperature of 800"C or less in an atmosphere of water and air. Note that mS as a catalyst for finely powdered solids )Rlmk'' Although not particularly limited, heavy oil (1,8 to I (about 1 wt% may be sufficient) whether used alone or pre-sulfurized.
When finely divided solids are mixed with elemental sulfur or sulfur-containing compounds in the hydrocracking process, the ratio of sulfur to finely divided solids may be approximately 0.1 to 2. Also, when pre-sulfurized C fine powder solid is used, the density ratio of sulfur to fine powder solid may be about 0.1 to 2.

図面にこの発明を実施するためのフローを示す。The drawings show a flow for implementing the invention.

前処f1「[程で1よ、石炭系重質油と触媒である微粉
状1i’、1体を混合1゜7、スラリーを調整する。こ
の時、単体硫黄または含硫黄化合物をFA/J11シて
調整してもよい。水素化工程における水素化分解の反応
温度としては、800〜500°Cでよく、水素の反応
圧力は50〜200 kg/cII程度でよい。分離工
程は一般に蒸留塔から構成されるが、触媒との分離を遠
心分離法、重力沈降法、臨界抽出法等の固液分離装置を
用いて行なってもよい。金属浴ガス化炉では反応残渣を
酸素、水蒸気と共に吹込む。この時生成するガスからの
微粉状固体の捕集方法については、バグフィルタ−、サ
イクロン等の乾式集塵法、ベンチュリースクラバー等の
湿式集塵法を用いることができる。また、生成ガスはC
070%。
Pre-treatment f1 "At step 1, mix coal-based heavy oil and fine powder 1i', which is a catalyst, to prepare a slurry. At this time, add elemental sulfur or sulfur-containing compounds to FA/J11. The reaction temperature for hydrogenolysis in the hydrogenation step may be 800 to 500°C, and the hydrogen reaction pressure may be approximately 50 to 200 kg/cII.The separation step is generally performed using a distillation column. However, separation from the catalyst may be performed using a solid-liquid separation device such as centrifugation, gravity sedimentation, or critical extraction.In a metal bath gasifier, the reaction residue is blown together with oxygen and water vapor. In order to collect fine powder solids from the gas generated at this time, dry dust collection methods such as bag filters and cyclones, and wet dust collection methods such as venturi scrubbers can be used. C
070%.

H226%程度を含有し、CO□は数−程度と少ないが
、−酸化炭素転化反応により水素ガス濃度を増せば、重
質油の水素化分解のための水素ガスとして十分使用可能
である。なお、水素ガスの製造のためには反応残渣のみ
ならず、原料重質油、石炭等を鉄浴ガス化炉へ吹込んで
もよい。
Although it contains about 26% H2 and a small amount of CO□, it can be sufficiently used as hydrogen gas for the hydrocracking of heavy oil if the hydrogen gas concentration is increased by the -carbon oxide conversion reaction. In addition, in order to produce hydrogen gas, not only the reaction residue but also raw material heavy oil, coal, etc. may be blown into the iron bath gasifier.

次にこの発明の実施例について説明する。Next, embodiments of this invention will be described.

〔実施例〕〔Example〕

第1表に示す性状を有する石油系重質油を原料として用
い、F ii+、lに示す設備および操業条件で水素化
実験を行なった。
Hydrogenation experiments were conducted using petroleum heavy oil having the properties shown in Table 1 as a raw material and using the equipment and operating conditions shown in F ii+,l.

第1表 慮質油原利の元素分析Iiijj(wt%)〈
使用設備および瀕偵条件〉 (1)  重質油水水化分解1&置 反応時間: 11Tr I7!     I釦 : 41目1°()圧  カニ
反応水水圧190 kg10j触媒添加触媒添加油に対
して1.5チ 触  媒:減11−蒸貿塔の底部に残る反応残(第 9
 頁) 渣を第2表に示すA、B2種類の 金属浴ガス化炉に吹込んで生成 したガスよりバグフィルタ−で 回収した微粉状固体を用いた。
Table 1 Elemental analysis of the crude oil Iiiijj (wt%)
Equipment used and conditions> (1) Heavy oil water hydrolysis 1 & reaction time: 11Tr I7! I button: 41st 1° () pressure Crab reaction water water pressure 190 kg 10j catalyst added 1.5 ts catalyst for 10j catalyst added oil: Reduction 11 - reaction residue remaining at the bottom of the distillation tower (9
Page) The residue was blown into two types of metal bath gasifiers, A and B shown in Table 2, and a fine powder solid was recovered from the generated gas using a bag filter.

この触媒の組成は第7表に示す。The composition of this catalyst is shown in Table 7.

なお、A浴より生成した微粉状 固体については予備硫化を行な った。In addition, the fine powder generated from bath A For solids, pre-sulfurization is performed. It was.

(2)減圧蒸留塔(分離工程) 10β規模で、常圧換算588°C(1000’F )
までを留出油として取出し、反応残渣を金属浴ガス化炉
にてガス化した。
(2) Vacuum distillation column (separation process) 10β scale, 588°C (1000'F) in terms of normal pressure
The reaction residue was gasified in a metal bath gasifier.

(3)  金属浴ガス化炉 6トン規模で、上記反応残渣を酸素・水蒸気共に浴上部
から吹込んだ。酸素は圧力11 kf/ctj 。
(3) In a 6-ton metal bath gasifier, the above reaction residue was blown in from the top of the bath along with oxygen and steam. The pressure of oxygen is 11 kf/ctj.

流ii 7. I N rr// Hr、水蒸気は温度
800″C9圧カ12 kg/c++I 、流量1.1
5 kp/Hrであった。金属浴の組成は第2表に示す
とおりである。金属浴の温度は1550°Cであった。
Ryu ii 7. I N rr// Hr, water vapor temperature: 800″C9 pressure: 12 kg/c++I, flow rate: 1.1
It was 5 kp/Hr. The composition of the metal bath is shown in Table 2. The temperature of the metal bath was 1550°C.

第2表 金属浴組成 以IZの方法で水素化、減圧蒸留、ガス化を繰返し、連
続操柴をイ〒な′つたところ、定常状態にしい′C以[
の結果となった。
Table 2 Metal bath composition After hydrogenation, vacuum distillation, and gasification were repeated using the IZ method, and continuous operation was carried out, a steady state was reached.
The result was

1  t4j賀油の物′に収積 精密蒸留rr J、す、水率化分解の物質収支をとると
第8表VC示すと↓?りになった。
1 Precise distillation rr J, S, If you take the mass balance of water percentage decomposition, Table 8 VC shows ↓? It became

賠8表 物2丁収支 但し、残ピッチ鼠は触媒を含有しない社。Table 8: Balance of 2 items However, the remaining pitch does not contain any catalyst.

第8表より、従来のユリカプロセス等の収率に比べて残
ピッチ収率が大巾に少ないことがわかる。
From Table 8, it can be seen that the residual pitch yield is significantly lower than that of the conventional Eureka process.

また、油収率の中でも特にb−p 200〜480℃の
ガスオイルが多い。そして、触媒を硫化すれば、その効
果は一ヒがることがわかる。ナフサ収率は含Mo、Ni
浴の場合20%近くにまで増加することがわかる。
Also, among the oil yields, gas oil with a b-p of 200 to 480°C is particularly common. It can be seen that if the catalyst is sulfided, its effectiveness is greatly reduced. Naphtha yield includes Mo, Ni
It can be seen that in the case of bathing, it increases to nearly 20%.

また、第4表は各オイルの硫黄含有嵐をまとめたもので
ある。
Table 4 also summarizes the sulfur content of each oil.

thtr I Q百1 L!lj  l l  n) 第4表 生成1’lll (I)Ql、黄含有m (w
t%)第4六から明らかなどどく、原料の5.14チの
硫黄が大Ill K 1余失され、生成油中では非常に
低く、特に含Mu−Nl浴より生成した触媒を用いた場
合顕著である。また、除去された硫黄は■(2Sとして
ガス中に移行するので、そのガス中に移行した硫黄はよ
り脱硫率を求めると、A 60%、 885%と非常に
高く、既c丁の1a液脱硫なみか、それ以上の脱硫率が
再られた。士だ、原料筒中のバナジウム、(第113r
+) (劉うlt只ノ ニッケルはすべて除去され、除去されたバナジウム、ニ
ッケルは溶融金属浴にてスラグ中に移行し、脱金属法と
しても本発明法はすぐれていることがわかる。
thtr I Q101 L! lj l l n) Table 4 Generation 1'llll (I) Ql, yellow content m (w
t%) It is clear from Section 46 that more than 5.14% of the sulfur in the raw material is lost, which is very low in the produced oil, especially when using the catalyst produced from the Mu-Nl-containing bath. Remarkable. In addition, the removed sulfur migrates into the gas as (2S), so the desulfurization rate of the sulfur that migrated into the gas is very high at 60% and 885%, and the 1a liquid of the existing c. The desulfurization rate was again as high as or higher than desulfurization.
+) (All nickel was removed, and the removed vanadium and nickel were transferred to the slag in the molten metal bath, indicating that the method of the present invention is superior as a metal removal method.

2 発生ガス肘 水素化分解装置を24時間連続操業し、減圧蒸留して得
られた分解残渣(残ピッチ)を金属浴でガス化した。そ
の結果を第5表に示す。
2 The generated gas hydrocracker was operated continuously for 24 hours, and the decomposition residue (residual pitch) obtained by distillation under reduced pressure was gasified in a metal bath. The results are shown in Table 5.

第5表 発生ガス社 (第14頁) 8 ガス組成 ヒm1発生ガス0)平均組成は第6表に示すとおりであ
る。
Table 5 Generated Gas Company (page 14) 8 Gas Composition Him1 Generated Gas 0) The average composition is as shown in Table 6.

第6表 ノjス組成(val!%) 第6表より、−酸化炭素転化反応により水素ガス濃度を
増せば、水索旬解用水*ガスとして十分使用可能である
ことがわかる。また、1的にも単位重質油あた9、2.
5%の水ぶの製造が原理的には可能であり、前記第B、
Hの結果と考え合せると、水素ガスの糸内供組が用油で
ある。なお、水素ガスが不足する場合にt211い利I
&I質油、石炭等をガス化してtJ!1造すればよい1
. 4 触媒のmlお」:び組成 金属浴ノfス化カ、1でイけられた生成ガス中には約5
0P/N扉の微粉状固体が含有されてレリ、24時間の
水素化実験後には、Aの場合195y、Bの場合175
yの微粉状固体が得られ、次の水素化分解用触媒として
循環使用が可能である。なお、触媒の組成は第7表に示
すとおりであった。
Table 6: Gas composition (val!%) From Table 6, it can be seen that if the concentration of hydrogen gas is increased by the -carbon oxide conversion reaction, it can be sufficiently used as water*gas for water decomposition. In addition, 1.9 per unit of heavy oil, 2.
It is theoretically possible to produce 5% blisters, and the above-mentioned B.
Considering the result of H, the supply of hydrogen gas is the working oil. In addition, when there is a shortage of hydrogen gas, the t211 profit I
&I Gasify quality oil, coal, etc. and tJ! All you have to do is build one
.. 4 ml of catalyst: The composition of the metal bath is approximately 5 ml.
0P/N door contained fine powder solids, and after 24 hours of hydrogenation experiment, it was 195y for A and 175y for B.
A finely powdered solid of y is obtained, which can be recycled as a catalyst for subsequent hydrocracking. The composition of the catalyst was as shown in Table 7.

第7表 触媒組成(チ) 以上説明したごとく、この発明は硫黄含装置の低い軽質
油、ナフサを高収率で得ることができすぐれた方法であ
る。なお、この発明を石炭を乾留して得られるタールを
蒸留した後の重質残渣に適用したところ、はぼ同様の結
果を鴎た。従って、この発明は石油系、石炭系を問わず
、重質油全般に適用可能である。
Table 7 Catalyst Composition (H) As explained above, the present invention is an excellent method for obtaining light oil and naphtha with a low sulfur content at a high yield. When this invention was applied to the heavy residue after distilling tar obtained by carbonizing coal, similar results were obtained. Therefore, the present invention is applicable to all heavy oils, regardless of whether they are petroleum-based or coal-based.

(第 1fi貝)(1st fi shellfish)

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明法を実施するための設備フローである。 出願人  住友合属工柴株式会社 (第16頁) 第1頁の続き 0発 明 者 狩野拓夫 東京都千代田区丸の内1丁目3 番2号住友金属工業株式会社内 0発 明 者 白藤民雄 大阪市東区北浜5丁目15番地住 友金属工業株式会社内 自発手続補正書 昭和58年4 月26日 ! 特許庁長官若杉和夫殿 1事件の表示 昭和57年 特 許 願  第99646号2発明の名
称 重質油の水素化分解方法 3 補正をする者 事件との関係   出願人   :請噂詰#大阪市東区
北浜5丁目16番地 (211)  住友金属工業株式会社 4代理人 東京都中央区銀座3−3−12銀座ビル(561−53
86・0274)(7390)弁理士押 1)良 久 8、補正の内容   別紙のとおり 10本願の特許請求の範囲を次の通り補正する。 [水素含有ガスと触媒を用いる石油系あるいは石炭系重
質油の水素化分解方法において、水素化分解残渣f溶融
金属浴を用いてガス化し、その際tfスと同伴して金属
浴より生成する微粉状固体をガスから分離回収し、この
微粉状固体をそのまま、Iたは単体硫黄、含硫黄化合物
等を用いて硫化して、水素化分解用触媒として用いるこ
とを特徴とする重質油の水素化分解方法。」 2、同明細W第1η14〜15行「石油系重質油」を「
石油系あ6いIJ に炭系市質油」と補正する。 8、同明細1]fvAI頁19行「石油系重質油の・・
・・・・」油量あるいは石炭糸塩質411」と、同19
行「石油系重質油」を[”石7111糸あるいは石炭系
重質油」とそれぞれ補正する。 5、同明細書第9頁1行「石炭系重質油」を「石炭系あ
るいは石油系重質油」と補正する。 6、同明細書第9頁1行「〔実施例〕」を「〔実施例1
〕」と補正する。 7、同明細書第14頁8行「でガス化した。」 の次に
、以下の文章を挿入する。 [ただし、鉄浴(A)より生成した微粉状固体を触媒と
して使用した場合の水素化分解後の残ピッチは鉄浴でガ
ス化し、含MO,N1合金浴(B)より生成した微粉状
固体を触媒として使用した場合の水素化分解後の残ピッ
チは含Mo、Ni合金浴でそれぞれがヌ化した。」8、
同明細書第14頁の第5表中、含Mo、Ni合金浴(B
)の残ピッチ量「1.52kfJをrl、48kfJと
、同じ<(B)の残ピッチをガス化して得られるが月i
r8.5Nm’Jを[8゜41Nmlとそれぞれ補正す
る。 9、同明細書第16頁の第7表の次に、以下の文章(実
施例2)を挿入する。 「〔実施例2〕 石炭を乾留して得られるタールを蒸留して、第8表に示
す重質油(ロードタール)を得た。 第8表 ただし、溶剤抽出は遠心分離法による。 その後、1−紀嘴質油に、石炭系の重質油残渣をガス化
する際に鉄浴ガス化炉より生成した微粉状固体2.1%
と111体硫黄1.2%を添加した後、[1−Aに示す
反応条件で水素化分解した。なお、微粉状固体は85チ
の鉄と20係の炭素を含有1.−(−いた。 第9表 水素化分解後、常温まで急冷し、ガスをサンプリング、
ガス分析後、固液混合物の蒸留を実施し、物質収支を求
めた。その結果を第10表に示す。なお、水素ガス消費
は2wt%原料重質浦であった。 第1θ表 第1O表より、石炭系重質油についても、沸点450°
C以上のピッチ成分が水素化により大巾に減少している
ことがわかる。」10、同明細書第16頁14〜20行
「以上説明したごとく・・・・・・・・・適用可能であ
る。」を次の通り補正する。 「 以上説明したごとく、この発明は硫黄含有1の低い
軽質油、ナフサを高収率で得ることができすぐれたH法
である。従って、この発明は石油系、石炭系を問わず、
重質油全般に適用可能である。」 1同明細書添付図面を別紙の通り補正(石油系重質油→
石油系あるいは石炭系重質油)する。 添付書類の11録 (1)浦IE図面    1通 6一
The drawing shows the equipment flow for carrying out the method of this invention. Applicant: Sumitomo Gosei Koushiba Co., Ltd. (page 16) Continued from page 10 Inventor: Takuo Kano Sumitomo Metal Industries, Ltd., 1-3-2 Marunouchi, Chiyoda-ku, Tokyo0 Inventor: Tamio Shirafuji Higashi, Osaka City 5-15 Kitahama, Sumitomo Metal Industries, Ltd. Voluntary procedure amendment April 26, 1982! Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office 1 Display of the case 1982 Patent Application No. 99646 2 Name of the invention Hydrocracking method for heavy oil 3 Relationship with the person making the amendment case Applicant: Ukewazume #Higashi-ku, Osaka City 5-16 Kitahama (211) Sumitomo Metal Industries Co., Ltd. 4 Agent Ginza Building (561-53) 3-3-12 Ginza, Chuo-ku, Tokyo
86.0274) (7390) Patent attorney press 1) Yoshihisa 8. Contents of amendment As shown in the attached sheet, 10 the claims of the present application are amended as follows. [In the hydrocracking method of petroleum-based or coal-based heavy oil using a hydrogen-containing gas and a catalyst, the hydrocracking residue f is gasified using a molten metal bath, and at that time, it is generated from the metal bath along with tf gas. A method for producing heavy oil, which is characterized in that a fine powder solid is separated and recovered from a gas, and the fine powder solid is sulfurized as it is using I, elemental sulfur, a sulfur-containing compound, etc., and used as a catalyst for hydrocracking. Hydrocracking method. ” 2. Change “petroleum-based heavy oil” to “petroleum-based heavy oil” in lines 14 and 15 of η 1 of the same specification W.
Corrected to ``oil-based oil, 6 IJ, and coal-based municipal oil.'' 8, same specification 1] fvAI page 19 line “Petroleum heavy oil...
..."oil amount or coal yarn salt quality 411" and same 19
Correct the line “petroleum-based heavy oil” to “stone 7111 thread or coal-based heavy oil”. 5. On page 9, line 1 of the same specification, "coal-based heavy oil" is amended to "coal-based or petroleum-based heavy oil." 6. Change "[Example]" to "[Example 1]" on page 9, line 1 of the same specification.
]” and corrected it. 7. On page 14 of the same specification, line 8, insert the following sentence next to "It was gasified." [However, when the fine powder solid produced from the iron bath (A) is used as a catalyst, the residual pitch after hydrogenolysis is gasified in the iron bath, and the fine powder solid produced from the MO, N1 alloy bath (B) is The remaining pitch after hydrogenolysis when using the above as a catalyst was deoxidized in a Mo-containing and Ni-containing alloy bath, respectively. ”8,
In Table 5 on page 14 of the same specification, Mo and Ni alloy baths (B
) remaining pitch amount "1.52 kfJ rl, 48 kfJ, which is obtained by gasifying the remaining pitch of the same < (B), but month i
Correct r8.5Nm'J to [8°41Nml. 9. The following sentence (Example 2) is inserted next to Table 7 on page 16 of the same specification. [Example 2] Tar obtained by carbonizing coal was distilled to obtain heavy oil (road tar) shown in Table 8. However, solvent extraction was performed by centrifugation. 1-2.1% of fine powder solids generated from iron bath gasifier when gasifying coal-based heavy oil residues
After adding 1.2% of 111-sulfur, hydrogenolysis was carried out under the reaction conditions shown in [1-A]. The fine powder solid contains 85% iron and 20% carbon. -(-Table 9) After hydrogenolysis, the gas was rapidly cooled to room temperature, and the gas was sampled.
After gas analysis, the solid-liquid mixture was distilled to determine the mass balance. The results are shown in Table 10. Note that the hydrogen gas consumption was 2 wt% raw material heavy ura. From Table 1θ and Table 1O, the boiling point of coal-based heavy oil is 450°.
It can be seen that the pitch components of C or higher are significantly reduced by hydrogenation. 10, page 16, lines 14-20 of the same specification, ``As explained above......applicable.'' is amended as follows. "As explained above, this invention is an excellent H method that can obtain light oil with a low sulfur content of 1 and naphtha in high yield. Therefore, this invention can be applied to both oil-based and coal-based
Applicable to all heavy oils. ” 1. The drawings attached to the same specification have been amended as shown in the attached sheet (heavy petroleum oil →
petroleum-based or coal-based heavy oil). Attached documents 11 (1) Ura IE drawing 1 copy 61

Claims (1)

【特許請求の範囲】 水素含有ガスと触媒を用いる石油系重質油の水素化分解
方法において、水素化分解残渣を溶融金属浴を用いてガ
ス化し、その際ガスと同伴して金属浴より生成する微粉
状固体をガスから分離回収し、この微粉状固体をそのま
ま、または単体硫黄。 含硫黄化合物等を用いて硫化して、水素化分解用触媒と
して用いることを特徴とする重質油の水素化分解方法。
[Claims] In a method for hydrocracking petroleum heavy oil using a hydrogen-containing gas and a catalyst, the hydrocracking residue is gasified using a molten metal bath, and at that time, the residue is generated from the metal bath along with the gas. The fine powder solid is separated and recovered from the gas, and the fine powder solid is used as it is or as elemental sulfur. A method for hydrocracking heavy oil, characterized by sulfurizing it using a sulfur-containing compound or the like and using it as a catalyst for hydrocracking.
JP9964682A 1982-06-09 1982-06-09 Hydrocracking of heavy oil Granted JPS58215483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9964682A JPS58215483A (en) 1982-06-09 1982-06-09 Hydrocracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9964682A JPS58215483A (en) 1982-06-09 1982-06-09 Hydrocracking of heavy oil

Publications (2)

Publication Number Publication Date
JPS58215483A true JPS58215483A (en) 1983-12-14
JPH0376355B2 JPH0376355B2 (en) 1991-12-05

Family

ID=14252813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9964682A Granted JPS58215483A (en) 1982-06-09 1982-06-09 Hydrocracking of heavy oil

Country Status (1)

Country Link
JP (1) JPS58215483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211256A (en) * 1988-09-13 1990-08-22 Cri Ventures Inc Pre-sulfurization process of hydrogen treating catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211256A (en) * 1988-09-13 1990-08-22 Cri Ventures Inc Pre-sulfurization process of hydrogen treating catalyst

Also Published As

Publication number Publication date
JPH0376355B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US4050908A (en) Process for the production of fuel values from coal
DE69415728T2 (en) Partial oxidation process for the production of a stream of hot purified gas
US5401282A (en) Partial oxidation process for producing a stream of hot purified gas
US2614067A (en) Refining process and apparatus
GB1574371A (en) Process for the production of hydrocarbons from carbonaceous solids containing volatilisable hydrocarbons
JPH02187495A (en) Hydrocracking of heavy oil
JPS5822502B2 (en) coal liquefaction method
CN110819390B (en) Method and system for low-rank coal fractional conversion
US4087349A (en) Hydroconversion and desulfurization process
US4125452A (en) Integrated coal liquefaction process
US4452688A (en) Integrated coal liquefication process
DE68913501T2 (en) Partial oxidation of a solid sulfur-containing coal fuel.
US4141695A (en) Process for gas cleaning with reclaimed water
US4851152A (en) Prevention of formation of nickel subsulfide in partial oxidation of heavy liquid and/or solid fuels
AU740136B2 (en) Removal of soot in a gasification system
US4260472A (en) Process of producing hydrocarbons from coal
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
JPS58215483A (en) Hydrocracking of heavy oil
US4526676A (en) Integrated H-oil process including recovery and treatment of vent and purge gas streams and soot-naphtha stream
US4226698A (en) Ash removal and synthesis gas generation from heavy oils produced by coal hydrogenation
US3069251A (en) Synthesis gas generation with recovery of naturally-occurring metal values
CA1102551A (en) Conversion of solid fuels to fluid fuels
US4007108A (en) Converting solid fuels to gaseous and liquid fuels
JPS6359961B2 (en)
CS199271B2 (en) Process for preparing synthesis gas