JPS5914704B2 - Refrigeration circuit of multi-room air conditioner - Google Patents

Refrigeration circuit of multi-room air conditioner

Info

Publication number
JPS5914704B2
JPS5914704B2 JP14881580A JP14881580A JPS5914704B2 JP S5914704 B2 JPS5914704 B2 JP S5914704B2 JP 14881580 A JP14881580 A JP 14881580A JP 14881580 A JP14881580 A JP 14881580A JP S5914704 B2 JPS5914704 B2 JP S5914704B2
Authority
JP
Japan
Prior art keywords
solenoid valve
gas side
pipe
pipes
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14881580A
Other languages
Japanese (ja)
Other versions
JPS5773363A (en
Inventor
正孝 山根
鎮雄 大滝
信吾 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14881580A priority Critical patent/JPS5914704B2/en
Publication of JPS5773363A publication Critical patent/JPS5773363A/en
Publication of JPS5914704B2 publication Critical patent/JPS5914704B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は1台の室外ユニットに複数台の室内ユニットを
接続したいわゆる多室形空気調和機に関するもので、静
しゆ(な暖房運転を行なえるようにすることをその目的
のひとつとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit. This is one of its purposes.

従来の多室形空気調和機にあって、圧縮機が運転されて
いる状態である室内ユニットが暖房運転されている時、
他の室内ユニットを追加して暖房運転する場合、この追
加暖房運転された室内ユニットの室内側熱交換器への冷
媒の流れを制御するガス側電磁弁と源側電磁弁を同時に
開放していた。
In a conventional multi-room air conditioner, when the indoor unit is in heating operation with the compressor running,
When adding another indoor unit for heating operation, the gas-side solenoid valve and source-side solenoid valve that control the flow of refrigerant to the indoor heat exchanger of the indoor unit that is being operated for additional heating are opened at the same time. .

しかしこの追加暖房運転された室内ユニットの室内側熱
交換器は暖房運転される以前に、ガス側電磁弁と源側電
磁弁が閉止されていたことにより冷媒の流れを停止させ
られていた上、低圧となっている回路に連通されていた
ので圧力は圧縮機の吸入圧力とほぼ同じ低圧状態となっ
ていた。
However, in the indoor heat exchanger of the indoor unit that was subjected to this additional heating operation, the gas side solenoid valve and the source side solenoid valve were closed before the heating operation was started, and the flow of refrigerant was stopped. Since it was connected to a low-pressure circuit, the pressure was almost the same as the suction pressure of the compressor.

このため、ガス側電磁弁と源側電磁弁を同時に開放する
と低圧の室内側熱交換器に高圧ガスが高速で流れ込むこ
とになり、この流れ込んだ冷媒により大きい衝撃音を発
生させたりガス側電磁弁のパイロット弁部を急激に移動
させることによりカチツという弁当り音を発生させたり
する。
Therefore, if the gas side solenoid valve and the source side solenoid valve are opened at the same time, high pressure gas will flow into the low pressure indoor heat exchanger at high speed, and this flowing refrigerant will generate a loud impact noise and cause the gas side solenoid valve to open. By rapidly moving the pilot valve part of the valve, a clicking sound may be generated.

これら衝撃音や弁当り音は室内ユニットで拡大され、室
内ユニットの据付けられている床や壁からも大きい騒音
や振動を発生させるという大きい問題を有している。
These impact noises and lunchbox noises are amplified by the indoor unit, creating a serious problem in that they generate large noises and vibrations from the floor and walls on which the indoor unit is installed.

またこれら欠点は同一状態において源側電磁弁のみを開
放した場合でも同様に生ずる。
Further, these drawbacks similarly occur even when only the source-side solenoid valve is opened in the same state.

本発明は上記の如き欠点を除去するもので、以下に七の
一実施例について図面をもとに説明する。
The present invention is intended to eliminate the above-mentioned drawbacks, and seven embodiments thereof will be described below with reference to the drawings.

第1図は本発明による多室形空気調和機の一実施例の冷
凍サイクル図で、室外ユニット1は、圧縮機2、吐出マ
フラー3、四方弁4、熱源側熱交換器5、数個主管6、
数個主管6を分岐点13で分岐してできた数個支管7
a 、7 b ) 7 c、この数個支管7 a s
7 b s 7 cと同数だけあるガス側支管8a、8
b、8c、これらガス側支管8a。
FIG. 1 is a refrigeration cycle diagram of an embodiment of a multi-chamber air conditioner according to the present invention. 6,
Several branch pipes 7 formed by branching several main pipes 6 at branch points 13
a, 7 b) 7 c, these several branches 7 a s
The same number of gas side branch pipes 8a and 8 as 7 b s 7 c
b, 8c, these gas side branch pipes 8a.

8b、8cを集合してできたガス側主管9、アキュムレ
ータ10、数個主管6中に設けた暖房用絞り機構11と
この暖房用絞り機構11と並列でがつ暖房運転時の冷媒
の流れを阻止側となるように設けた逆止弁12、数個主
管6の暖房用絞り機構11と数個支管7a、7b、7c
の分岐部13との間に設けた受液器14、各数個支管7
a 27 b s7c中に双方向性の絞り機構22
a s 22 b 。
A gas side main pipe 9 made by collecting 8b and 8c, an accumulator 10, several heating throttling mechanisms 11 provided in the main pipe 6, and a heating throttling mechanism 11 in parallel to control the flow of refrigerant during heating operation. A check valve 12 provided on the blocking side, several heating throttle mechanisms 11 of the main pipe 6, and several branch pipes 7a, 7b, 7c.
A liquid receiver 14 is provided between the branch part 13 and the branch pipe 7.
a 27 b bidirectional aperture mechanism 22 during s7c
a s 22 b.

22cと直列に設けた双方向流通性の電磁弁15a。A two-way solenoid valve 15a is provided in series with 22c.

15b、15c、各電磁弁15a、15b115cと暖
房用絞り機構11との間の各数個支管7a。
15b, 15c, several branch pipes 7a between each electromagnetic valve 15a, 15b115c and the heating throttle mechanism 11.

7b、7c、または数個主管6と、各室内ユニット30
a、30b、30cの利用側熱交換器31a。
7b, 7c, or several main pipes 6 and each indoor unit 30
a, 30b, 30c use side heat exchanger 31a.

31 b s 31 cと各ガス側の電磁弁21a、2
1b。
31 b s 31 c and each gas side solenoid valve 21a, 2
1b.

21cの間のガス側支管8 a 、8 b 、8 c間
をそれぞれ結ぶバイパス管23 a s 23 b s
23 c。
Bypass pipes 23 a s 23 b s connecting gas side branch pipes 8 a , 8 b , and 8 c between 21 c
23 c.

このバイパス管23a、23b、23c中に設けられガ
ス側支管8 a s 8 b 、8 cへ向かう冷媒流
を通電時許容し、非通電時阻止するように配設したバイ
パス用の直動式の電磁弁25a=25b*25c、この
バイパス電磁弁25 a s 25 b 。
A direct-acting type for bypass is provided in the bypass pipes 23a, 23b, 23c and is arranged to allow the flow of refrigerant toward the gas side branch pipes 8a, 8b, 8c when energized and to block it when energized. Solenoid valve 25a=25b*25c, this bypass solenoid valve 25 a s 25 b.

25cとそれぞれのガス側支管8a、8b、8cの間の
バイパス管23a、23b、23c中にガス側支管8a
、8b、8cへ向う冷媒の流れを許容する如(設けた逆
止弁26a * 26b、26cm暖房運転時の低圧回
路20側への冷媒流れを許す方向に設けた逆止弁17
a s 17 b z 17 cと絞り18a、18b
s18cとをそれぞれ直列接続してでき前記電磁弁15
a、15b、15cと各室内ユニット30a、30b、
30cとの接続口16a、16b、16cの間の数個支
管7 a s7 b ) 7 cと暖房運転時の低圧回
路20とを結ぶバイパス管19 a 、19 b s
19 c、ガス側支管8 a s 8 b 、a c中
にそれぞれ設けた双方向流通性の電磁弁21 a 、2
1 b s 21 cよりなる。
25c and the gas side branch pipes 8a, 8b, 8c in the bypass pipes 23a, 23b, 23c.
, 8b, 8c (check valves 26a * 26b, 26cm) Check valves 17 (provided in a direction that allows refrigerant to flow toward the low pressure circuit 20 side during heating operation)
a s 17 b z 17 c and apertures 18a, 18b
The solenoid valve 15 can be made by connecting the solenoid valves s18c and s18c in series, respectively.
a, 15b, 15c and each indoor unit 30a, 30b,
Bypass pipes 19 a, 19 b s connecting several branch pipes 7 a s 7 b ) 7 c and the low pressure circuit 20 during heating operation
19c, two-way flow solenoid valves 21a, 2 provided in the gas side branch pipes 8a, 8b, and ac, respectively.
1 b s 21 c.

なお、室外ユニット1は、熱源側熱交換器5に送風機を
備えている。
Note that the outdoor unit 1 includes a blower in the heat source side heat exchanger 5.

また室内ユニット30 a ) 30b −30cはそ
れぞれ利用側熱交換器31 a 、3 l b 。
Moreover, the indoor units 30a) 30b-30c are user-side heat exchangers 31a and 3lb, respectively.

31c及び各利用側熱交換器31a、31b、31cに
て熱交換器した空気を室内に送り込む室内送風機とから
なる。
31c, and an indoor blower that sends the air heat-exchanged by the user-side heat exchangers 31a, 31b, and 31c into the room.

また、ここで用いられている直動式電磁弁は第2図に示
す如く構成されている。
Furthermore, the direct acting solenoid valve used here is constructed as shown in FIG.

第2図に8いて電磁弁25は、入口管a、出口管すおよ
び位置の固定されている弁体50と、電磁コイル51に
より引き上げられるプランジャー52とこのプランジャ
ー52を押し下げるスプリング53等を納める筒体54
より構成され、以下のような動作を行なう。
2, the solenoid valve 25 includes an inlet pipe a, an outlet pipe, a valve body 50 whose position is fixed, a plunger 52 that is pulled up by an electromagnetic coil 51, a spring 53 that pushes down this plunger 52, etc. Cylindrical body 54 to accommodate
It is composed of the following operations.

全電磁コイル51が非通電状態であるとすると、筒体5
4とプランジャー52との間には若干の隙間があるため
入口管a内部の圧力Paと筒体54とプランジャー52
のスプリング53と接する面トチ作られる空間の圧力P
cは等しくなっている。
Assuming that all the electromagnetic coils 51 are in a non-energized state, the cylindrical body 5
4 and the plunger 52, the pressure Pa inside the inlet pipe a and the cylinder body 54 and the plunger 52
The pressure P in the space created by the surface in contact with the spring 53
c are equal.

そしてプランジャー52がスプリング53と接する面の
面積をApとし、弁本体50の穴55の断面積をAvと
し、スプリング53のプランジャー52の押し下げ力を
Fs、プランジャーの自重をFpとすると、プランジャ
ー52の押し下げ力F1はF1=F s 十Fp +A
v P aとなる。
Then, if the area of the surface where the plunger 52 contacts the spring 53 is Ap, the cross-sectional area of the hole 55 of the valve body 50 is Av, the force of the spring 53 to push down the plunger 52 is Fs, and the weight of the plunger is Fp, The downward force F1 of the plunger 52 is F1=F s 1 Fp +A
v P a.

一方プランジャー52を上方に押し上げようとする力F
2は出口管す内の圧力をpbとすればF2二Avpb
となる。
On the other hand, a force F trying to push the plunger 52 upward
2 is F22 Avpb if the pressure inside the outlet pipe is pb
becomes.

したがって少(とも圧力Paとpbの関係がPa>Pb
の場合F、とF2の関係はFl〉F2となるためプラン
ジャー52は下方に強い力で押し下げられることになり
、弁本体50の穴55はプランジャー52の先端部で塞
さがれ、入口管aと出口管すは連通しない。
Therefore, the relationship between pressures Pa and pb is Pa>Pb
In this case, the relationship between F and F2 is Fl>F2, so the plunger 52 is pushed downward with a strong force, and the hole 55 of the valve body 50 is blocked by the tip of the plunger 52, and the inlet is closed. Pipe a and the outlet pipe do not communicate with each other.

この状態から電磁コイル51に通電すると、電磁コイル
51の磁力によりプランジャー52は力Fcにより引き
上げられるので、FlくF2+FCという関係になりプ
ランジャー52は上方に引き上げられ、弁本体50の穴
55は入口管aと出口管すを連通ずる。
When the electromagnetic coil 51 is energized from this state, the plunger 52 is pulled up by the force Fc due to the magnetic force of the electromagnetic coil 51, so the relationship Fl + F2 + FC is established, the plunger 52 is pulled upward, and the hole 55 of the valve body 50 is pulled up. The inlet pipe a and the outlet pipe A are communicated with each other.

一方電磁コイル51の非通電時、出口管す内の圧力pb
が入口管a内の圧力Paよりある程度太き(なると、F
2〉F、という状態が生じ、プランジャー52が上方に
押し上げられることになり、電磁コイル51を非通電と
しても出口管すから入口管aへの流れを止めることがで
きない。
On the other hand, when the electromagnetic coil 51 is de-energized, the pressure inside the outlet pipe pb
is thicker than the pressure Pa in the inlet pipe a to some extent (then F
2>F occurs, the plunger 52 is pushed upward, and even if the electromagnetic coil 51 is de-energized, the flow from the outlet pipe to the inlet pipe a cannot be stopped.

すなわち一方向の流れに対して流通および停止が可能で
あるが、逆方向の流れに対しては流通はできても停止で
きない場合が多く生ずるということになる。
In other words, it is possible to start and stop the flow in one direction, but there are many cases where the flow in the opposite direction cannot be stopped even if the flow is possible.

第3図は本発明による多室形空気調和機の電気回路の一
実施例で、電磁弁15aのコイルSvLaと電EB弁2
1 aのコイル5VGaとリレー接点46aとを直列接
続した回路と電磁開閉器MRaとは、それぞれ室内ユニ
ツ)30aの運転スイッチ40aを介して電源45に並
列接続され、同様に電磁弁15bのコイル5VLbと電
磁弁21bのコイル5VGbとリレー接点46bとを直
列接続した回路と電磁開閉器MRb とはそれぞれ室内
ユニツ)30bの運転スイッチ40bを介して電源45
に並列接続され、さらに同様に電磁弁15cのコイル5
VL8と電磁弁21cのコイル5VGcとリレー接点4
6cとを直列接続した回路と電磁開閉器MRc とはそ
れぞれ室内ユニツ)30cの運転スイッチ40cとを介
して電源45に並列接続されている。
FIG. 3 shows an embodiment of the electric circuit of the multi-room air conditioner according to the present invention, showing the coil SvLa of the solenoid valve 15a and the electric EB valve 2.
The circuit in which the coil 5VGa of 1a and the relay contact 46a are connected in series and the electromagnetic switch MRa are respectively connected in parallel to the power supply 45 via the operation switch 40a of the indoor unit 30a, and similarly the coil 5VLb of the solenoid valve 15b. The circuit in which the coil 5VGb of the solenoid valve 21b and the relay contact 46b are connected in series, and the solenoid switch MRb are connected to the power supply 45 via the operation switch 40b of the indoor unit 30b.
Similarly, the coil 5 of the solenoid valve 15c is connected in parallel to the coil 5 of the solenoid valve 15c.
VL8 and solenoid valve 21c coil 5VGc and relay contact 4
6c connected in series and the electromagnetic switch MRc are each connected in parallel to the power source 45 via the operation switch 40c of the indoor unit 30c.

また圧縮機2のモータMCは電磁開閉器MRa 1MR
b 5MRcの常開接点MRa8゜MRc8を並列接続
した回路と直列に結ばれて電源45に接続され、さらに
並線されたバイパス用の直動式の電磁弁25a、25b
、25cのコイルVa、Vb、VCとそれぞれ直列に接
続されたリレー接点43a、43b、43cと四方弁4
のコイル41とから成る回路は冷暖切換スイッチ42の
暖房側接点48を介してそれぞれ電源45に並列接続さ
れ、さらにマイクロコンピュータ−等よりなり運転スイ
ッチ40a、40b、40cのON、OFF等を検知す
ることによりリレー接点43as43bs43c 、4
6a 、46b、46cを制御する制御装置44は電源
45に接続されている。
In addition, the motor MC of compressor 2 is an electromagnetic switch MRa 1MR.
b Direct-acting solenoid valves 25a and 25b for bypass, which are connected in series to the circuit in which the normally open contacts MRa8° and MRc8 of 5MRc are connected in parallel, and connected to the power supply 45, and further connected in parallel.
, 25c, and relay contacts 43a, 43b, 43c connected in series with the coils Va, Vb, VC, respectively, and the four-way valve 4.
The circuit consisting of the coil 41 is connected in parallel to the power supply 45 through the heating side contact 48 of the cooling/heating changeover switch 42, and is further comprised of a microcomputer or the like and detects ON/OFF, etc. of the operation switches 40a, 40b, 40c. Possibly relay contact 43as43bs43c, 4
A control device 44 for controlling 6a, 46b, and 46c is connected to a power source 45.

ここで上記構成に8いて本発明による多室形空気調和機
の暖房運転時の動作を説明する。
Here, the operation of the multi-room air conditioner according to the present invention in the heating operation will be explained based on the above configuration.

今、冷暖切換スイッチ42が暖房側接点48側にたSさ
れている状態で室内ユニツ)30aの運転スイッチ40
aが投入されたとすると、マイクロコンピュータ−等よ
り成る制御装置44は、室内ユニツ)30aが停止して
いた圧縮機2のモーターMCを回転させるための初めて
の信号を出したことを検出することにより電fm弁21
aのコイル5vLaと電磁開閉器MRaと制御装置4
4の働らきにより閉じられたリレー接点46aを介し電
磁弁15aのコイル5vGaに電圧を印加し、電磁弁1
5a、21aを同時開放し電磁開閉器MRaの常開接点
MRa8を閉じて圧縮機2のモーターMCを回転させる
Now, with the cooling/heating selector switch 42 set to the heating side contact 48 side, the operation switch 40 of the indoor unit 30a
If the compressor 2 is turned on, the control device 44 consisting of a microcomputer etc. detects that the indoor unit 30a has issued the first signal to rotate the motor MC of the compressor 2 which had been stopped. electric fm valve 21
Coil 5vLa of a, electromagnetic switch MRa and control device 4
A voltage is applied to the coil 5vGa of the solenoid valve 15a through the relay contact 46a, which is closed by the action of the solenoid valve 1.
5a and 21a at the same time, the normally open contact MRa8 of the electromagnetic switch MRa is closed, and the motor MC of the compressor 2 is rotated.

この時、先にも述べた様に制御装置44は室内ユニツ)
30aが停止していrs圧縮機2のモータMCを回転さ
せるための初めての制御信号を出したことを検出してい
るので、リレー接点43a、43b、43cの常開接点
を開いたままにしてお(こととなり、バイパス用の直動
式の電磁弁25a、25b、25cのコイルVa、Vb
、Vcには通電されない。
At this time, as mentioned earlier, the control device 44 is an indoor unit)
30a is stopped and the first control signal to rotate the motor MC of the RS compressor 2 is detected, so the normally open contacts of the relay contacts 43a, 43b, and 43c are kept open. (In this case, the coils Va and Vb of the direct-acting solenoid valves 25a, 25b, and 25c for bypass
, Vc are not energized.

こうして四方弁4のコイル41に通電されているため圧
縮機2から吐出された冷媒ガスは四方弁4を通りガス側
主管9、ガス側支管8a、電磁弁21aを通って室内ユ
ニツ)30aの室内側熱交換器31aに至って放熱し液
化し、さらに接続口16a、電磁弁15a、数個支管7
a、絞り装置22a、分岐点13、受液器14を通って
暖房用絞り機構11で減圧され、暖房運転時の低圧回路
20を通って熱源側熱交換器5で蒸発し再び四方弁4を
通過してアキュムレータ10を経て圧縮機2に戻るとい
う冷凍サイクルを形成し、室内ユニツ)30aは暖房運
転を行なう。
Since the coil 41 of the four-way valve 4 is energized in this way, the refrigerant gas discharged from the compressor 2 passes through the four-way valve 4, the gas side main pipe 9, the gas side branch pipe 8a, and the solenoid valve 21a to the indoor unit 30a. The heat is radiated and liquefied to the inner heat exchanger 31a, and the connection port 16a, solenoid valve 15a, and several branch pipes 7
a, through the throttle device 22a, the branch point 13, and the liquid receiver 14, the pressure is reduced by the heating throttle mechanism 11, the water passes through the low-pressure circuit 20 during heating operation, is evaporated in the heat source side heat exchanger 5, and is then returned to the four-way valve 4. A refrigeration cycle is formed in which the air passes through the accumulator 10 and returns to the compressor 2, and the indoor unit 30a performs heating operation.

なお、この場合、室外送風機及び室内ユニツ)30a内
の室内送風機が作動していることは当然である。
Incidentally, in this case, it goes without saying that the outdoor blower and the indoor blower in the indoor unit 30a are operating.

またこの室内ユニツ)30aの暖房運転時に、他の室内
ユニット30b、30cは運転スイッチ40b、40c
の接点を開放しているため暖房運転は行なわれず、電磁
弁15b、21b、15c、21 cのコイル5VLb
s 5VGb −5VLc −5VGcには通電され
ていないから電磁弁15a、21b、15e。
Also, when this indoor unit) 30a is in heating mode, the other indoor units 30b and 30c are switched to operation switches 40b and 40c.
Since the contacts of the solenoid valves 15b, 21b, 15c, and 21c are open, heating operation is not performed, and the coils 5VLb of the solenoid valves 15b, 21b, 15c, and 21c are open.
s 5VGb -5VLc -5VGc is not energized, so the solenoid valves 15a, 21b, 15e.

21cはその通路を閉止している。21c closes the passage.

従って電磁弁21bおよび電磁弁15bにより閉塞され
室内側熱交換器31bを含む冷凍回路32bおよび電磁
弁21cおよび電磁弁15cにより閉塞され室内側熱交
換器31cを含む冷凍回路32cは冷媒が流れない状態
にある。
Therefore, the refrigerating circuit 32b, which is closed by the solenoid valves 21b and 15b and includes the indoor heat exchanger 31b, and the refrigeration circuit 32c, which is closed by the solenoid valves 21c and 15c and includes the indoor heat exchanger 31c, are in a state in which no refrigerant flows. It is in.

しかし実際には電磁弁21a。21b、21c、15a
、15b、15c等は完全に冷媒の流通を停止できる若
干の洩れがあるので、停止中の室内ユニッ)30b、3
0cの室内側熱交換器31 b s 31 c内に徐々
に冷媒が溜り込んでい(ことになる。
However, it is actually the solenoid valve 21a. 21b, 21c, 15a
, 15b, 15c, etc. have a slight leakage that can completely stop the flow of refrigerant, so if the indoor units (30b, 3) are stopped,
The refrigerant gradually accumulates in the indoor heat exchanger 31 b s 31 c (this happens).

ところが室内側熱交換器31b、31cに冷媒かた(さ
ん溜り込んでい(と運転中の室内ユニッ)30aの室内
側熱交換器31affi流れる冷媒量が減少するため暖
房能力の低下を来たしたり、圧縮機2の横規をまねいた
りするという問題が生ずる。
However, if the refrigerant accumulates in the indoor heat exchangers 31b and 31c (and the indoor unit in operation), the amount of refrigerant flowing through the indoor heat exchanger 31affi of the indoor unit 30a decreases, resulting in a decrease in heating capacity. A problem arises in that the compressor 2 is distorted.

そこで一端を暖房運転時の低圧回路20に接続したバイ
パスW 19 b 、19 cにより室内側熱交換器3
1 c s 31 b内に溜り込んだ冷媒を抜き出すよ
うにしている。
Therefore, the indoor heat exchanger 3 is connected to the indoor heat exchanger 3 by bypasses W 19 b and 19 c, one end of which is connected to the low pressure circuit 20 during heating operation.
The refrigerant that has accumulated inside the 1cs31b is extracted.

従って停止中の室内ユニット30b、30cの室内側熱
交換器31b、31c内の冷媒圧力は暖房運転時の低圧
回路20と同じ低圧状態となっている。
Therefore, the refrigerant pressure in the indoor heat exchangers 31b, 31c of the indoor units 30b, 30c that are stopped is in the same low pressure state as the low pressure circuit 20 during heating operation.

こうした状況下において、他の室内ユニット30bを追
加運転する場合、従来の制御方法では電磁弁21bと1
5bを同時に開放していたため低圧の室内側熱交換器3
Ib中に圧力差により高圧の冷媒ガスが高速で流れ込む
ため大きい冷媒衝撃音や振動、激しい電磁弁21bの弁
当り音等が発生していた。
Under these circumstances, when additionally operating another indoor unit 30b, the conventional control method
5b was open at the same time, so the indoor heat exchanger 3 was at low pressure.
Because high-pressure refrigerant gas flows into Ib at high speed due to the pressure difference, large refrigerant impact noises, vibrations, and intense valve punching noises of the solenoid valve 21b were generated.

そこで本発明の場合は第4図の弁動作タイミングチャー
トに示す通り、室内ユニッ)30bの運転2イツチ40
bを投入すると、マイクロコンピュータ等より成る制御
装置44は、運転スイッチ40aがすでに投入されてい
ることから運転スイッチ40bが圧縮機2のモーターM
Cの運転中に投入されたことを検出し、リレー接点46
bの接点を開いたままにしさらにリレー接点43bの常
開接点を閉じてバイパス用の直動式の電磁弁25bコイ
ルvbに電圧をかけると高圧の液が流れている数個支管
22aや数個主管6と今迄停止してい7、:T、:め低
圧となっていた冷凍回路32bはバイパス管23bによ
り連通され、液冷媒が侵入することにより冷凍回路32
bの圧力は徐々に上昇してい(。
Therefore, in the case of the present invention, as shown in the valve operation timing chart in FIG.
When turning on the motor M of the compressor 2, the control device 44 consisting of a microcomputer etc. switches the operation switch 40b to the motor M of the compressor 2 since the operation switch 40a has already been turned on.
It is detected that C is turned on during operation, and relay contact 46
When contact b is kept open and the normally open contact of relay contact 43b is closed to apply voltage to bypass direct-acting solenoid valve 25b coil vb, several branch pipes 22a and several pipes in which high-pressure liquid is flowing. The main pipe 6 and the refrigeration circuit 32b, which had been stopped and at a low pressure until now, are communicated through the bypass pipe 23b, and the liquid refrigerant enters the refrigeration circuit 32b.
The pressure at b is gradually increasing (.

ここでバイパス管23bを通って冷凍回路32bに流れ
込む冷媒は液状であるため流入スピードは遅く衝撃音等
は発生しない。
Here, since the refrigerant flowing into the refrigeration circuit 32b through the bypass pipe 23b is in liquid form, the inflow speed is slow and no impact noise or the like is generated.

また電磁弁25bのコイルvbへの通電と同時に、追加
運転された室内ユニッ)30b用の液態の電磁弁15b
のコイル5vLbにも通電するので、数個主管6中の高
圧の液冷媒も冷凍回路32bを通って室内側熱交換器3
1bへ流れ込むことになるため、室内側熱交換器3Ib
内の圧力を速(上昇させることが出来る。
Also, at the same time as the coil vb of the solenoid valve 25b is energized, the liquid solenoid valve 15b for the indoor unit 30b which is additionally operated.
Since the coil 5vLb is also energized, the high-pressure liquid refrigerant in several main pipes 6 also passes through the refrigeration circuit 32b to the indoor heat exchanger 3.
1b, so the indoor heat exchanger 3Ib
It is possible to quickly (increase) the internal pressure.

従って衝撃音を発生させずかつ急速に室内側熱交換器3
1b内の圧力を上昇させることができる。
Therefore, the indoor heat exchanger 3 can be quickly
The pressure within 1b can be increased.

こうして冷凍回路32 b s 32 c内の圧力があ
る程度上昇し、電磁弁21bを開放した時室内側熱交換
器31bに流入する冷媒圧力とガス側支管8b内の圧力
との圧力差が小さくなったと思われる時点で制御装置4
4によりリレー接点43bの接点を開き、リレー46b
の常閉接点を閉じると室内ユニット30bに冷媒を供給
する冷凍回路32b中の電磁弁21bのコイル5VGb
に通電され電磁弁21bの通路が開放されるので、電磁
弁21bを通って流入する冷媒は小さな圧力差の冷凍回
路32b内にはいるので衝撃音も振動も発生しない。
In this way, the pressure inside the refrigeration circuits 32 b s 32 c increases to a certain extent, and when the solenoid valve 21 b is opened, the pressure difference between the pressure of the refrigerant flowing into the indoor heat exchanger 31 b and the pressure inside the gas side branch pipe 8 b becomes small. Control device 4 at the expected time
4 opens the contact of relay contact 43b, and relay 46b
Coil 5VGb of solenoid valve 21b in refrigeration circuit 32b that supplies refrigerant to indoor unit 30b when the normally closed contact of
Since the passage of the electromagnetic valve 21b is opened, the refrigerant flowing through the electromagnetic valve 21b enters the refrigeration circuit 32b with a small pressure difference, so that no impact noise or vibration is generated.

又電磁弁21bの弁も急激な弁当りをしないので弁をい
゛でめることがない。
Also, the solenoid valve 21b does not suddenly hit the valve, so there is no need to disturb the valve.

また本実施例のように直動式電磁弁25a。Also, as in this embodiment, a direct acting solenoid valve 25a is used.

25 b s 25 cと逆止弁26 a 、26 b
t 26 cの組み合わせは安価に冷媒の逆流を防止
できる。
25 b s 25 c and check valves 26 a, 26 b
The combination of t 26 c can prevent refrigerant backflow at low cost.

従ってガス側支管8a、8b、8c側の圧力が数個主管
6側の圧力より高(ても冷媒の流通を阻止してお(こと
ができる。
Therefore, even if the pressure on the gas side branch pipes 8a, 8b, and 8c is higher than the pressure on the main pipe 6 side, it is possible to prevent the flow of refrigerant.

従って直動式電磁弁25a。25b 、25 cを冷媒
が流れてしまい運転中の室内ユニットの能力が低下した
りすることがない。
Therefore, the direct acting solenoid valve 25a. The refrigerant does not flow through 25b and 25c and the performance of the indoor unit during operation does not deteriorate.

ここで始めから運転されている室内ユニット30aおよ
び、運転されていない室内ユニット30cのガス側支管
に連らなるバイパスW23a。
Here, a bypass W23a is connected to the gas side branch pipes of the indoor unit 30a that has been operated from the beginning and the indoor unit 30c that has not been operated.

23c中のバイパス用の電磁弁25aと25cは、先の
図2で説明した通り、電磁弁25aの場合は出口管す側
から逆圧がかわるが、逆止弁26aによりバイパス管2
3a中をガス側支管8aから冷媒が数個主管6側へバイ
パスすることがない。
As explained above with reference to FIG. 2, the bypass solenoid valves 25a and 25c in 23c change the back pressure from the outlet pipe side in the case of the solenoid valve 25a, but the bypass pipe 2
There is no possibility that several refrigerants will bypass the gas side branch pipe 8a to the main pipe 6 through the gas side branch pipe 3a.

又電磁弁25cの場合は入口管a側の圧 が出口管す側
より高くなるのでこの電磁弁25cの本来の性能上冷媒
を流さない。
In the case of the solenoid valve 25c, since the pressure on the inlet pipe a side is higher than that on the outlet pipe side, refrigerant does not flow due to the original performance of the solenoid valve 25c.

こうして直動式の電磁弁と逆止弁の組み合わせで高価な
電磁弁を使う必要がな(なる。
In this way, the combination of a direct acting solenoid valve and a check valve eliminates the need to use expensive solenoid valves.

又本実施例では、バイパス管23a、23b、23c中
のバイパス用の直動式の電磁弁25 a z 25 b
Further, in this embodiment, direct acting solenoid valves 25 a z 25 b for bypass in the bypass pipes 23 a, 23 b, and 23 c are used.
.

25cの3個を設けているが、コストを安(するため電
磁弁25を1ケとし、バイパス管23a。
Although three solenoid valves 25c are provided, in order to reduce costs, only one solenoid valve 25 is provided, and the bypass pipe 23a is used.

23b、23cを1本にまとめた共通部分に取り付ける
ようにしてもよい。
23b and 23c may be attached to a common part where they are combined into one.

さらに第3図の電気回路にぢいて、運転スイッチ40a
、40bt40cと直列に温度調節器が設けられ、他室
内ユニットが運転され圧縮運転中に、運転スイッチが投
入され温度調節器が復起する場合に同様の制御を行なえ
ば、まった(同様の効果が得られることもいうまでもな
いことである。
Further, in the electric circuit shown in Fig. 3, the operation switch 40a is
, 40bt40c is installed in series with a temperature controller, and when the operation switch is turned on and the temperature controller is restarted while other indoor units are operating and compression operation is in progress, if similar control is performed, the same effect can be achieved. It goes without saying that this can be obtained.

さらにバイパス用の直動式の電磁弁25 a s 25
b 。
Furthermore, a direct-acting solenoid valve 25 a s 25 for bypass
b.

25cの開放時間はマイクロコンピュータにより種々の
条件を考慮に入れてその都度演算し決めさせてもよい。
The opening time of 25c may be calculated and determined each time by a microcomputer, taking various conditions into consideration.

即ち種々の条件とは例えば運転室内ユニット数、サモー
スタット温度、サーモスタット スイッチ等によりバイパス用の直動式の電磁弁を制御し
てもよい。
That is, the direct-acting solenoid valve for bypass may be controlled by various conditions such as the number of units in the operating room, thermostat temperature, thermostat switch, etc.

上述の如く本発明による多室形空気調和機は、圧縮機が
動いていて少(とも1台の室内ユニットが暖房運転中、
他の室内ユニットを追加暖房運転又はサーモスタット等
で復起運転させるとき、°暖房用絞り機構と源側電磁弁
の間の管路とガス側電磁弁と室内側熱交換器との間の管
路を結ぶバイパス管路中で冷媒直動式電磁弁次いで逆止
弁を経て室内側熱交換器に送り込みかつ、追加暖房運転
室の源側電磁弁を開放して休止していた室内ユニットの
室内側熱交換器内の圧力を上昇させた後ガス側電磁弁を
開放するようにしているので、室内ユニットから冷媒重
音や振動が出す静しゆく暖房運転が出来、かつ激しいガ
ス側電磁弁の弁当りも発生せずガス側電磁弁の寿命を長
(することが出来かつ安価な直動式電磁弁と逆止弁の組
み合わせでこういった効果が得られるという咎の大きな
効果がある。
As mentioned above, in the multi-room air conditioner according to the present invention, when the compressor is running and there are few
When performing additional heating operation or restart operation of other indoor units using a thermostat, etc., the pipe line between the heating throttle mechanism and the source side solenoid valve, and the line between the gas side solenoid valve and the indoor heat exchanger In the bypass pipe connecting the refrigerant, the refrigerant is sent to the indoor heat exchanger via a direct-acting solenoid valve and then a check valve, and the source-side solenoid valve of the additional heating operation room is opened to release the refrigerant to the indoor unit, which had been inactive. Since the gas side solenoid valve is opened after the pressure inside the heat exchanger has increased, it is possible to perform quiet heating operation that produces no refrigerant noise or vibrations from the indoor unit, and it also eliminates the harsh effects of the gas side solenoid valve. The combination of a direct-acting solenoid valve and a check valve, which are both inexpensive and do not generate any gas-side solenoid valves, has the great effect of prolonging the life of the gas-side solenoid valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多室形空気調和機の一実施例の冷
凍サイクル図、第2図は同回路の一部を構成する直動式
電磁弁の断面図、第3図は同多室形空気調和機の一実施
例の電気回路図、第4図は電磁弁の動作タイミングチャ
ート図である。 1・・・・・・室外ユニット、7a、7b、7c・・・
・・・数個支管、15a、15b、15c”=電磁弁、
19a、19b、19c・・・・・・バイパス管(液抜
き管)、21 a、21 b、21 c=電磁弁、22
a。 22 b s 22 c・・・・・419り装置、23
a、23b。 23 c ””バイパス管、25 a s 25 b
、25 c・・・・・・バイパス用の直動式の電磁弁、
30a、30b。 30c・・・・・・室内ユニット、44・・・・・・制
御装置、4L 46at 46b−46c”−・リレー
接点、MC−−−−−圧縮機のモータ、5VLa、5V
Lb 。 S V L c・−・−電磁弁15a、15b、15c
のコイル、5VGa 、5VGb 、SVG o・・−
−−−電磁弁21a、21b、21cのコイル、V a
、V b sVc・・・・・・電磁弁25a、25b
、25cのコイル。
Fig. 1 is a refrigeration cycle diagram of an embodiment of a multi-chamber air conditioner according to the present invention, Fig. 2 is a sectional view of a direct acting solenoid valve that constitutes a part of the circuit, and Fig. 3 is a refrigeration cycle diagram of an embodiment of the multi-chamber air conditioner according to the present invention. FIG. 4 is an electrical circuit diagram of an embodiment of the air conditioner, and FIG. 4 is an operation timing chart of a solenoid valve. 1...Outdoor unit, 7a, 7b, 7c...
...Several branch pipes, 15a, 15b, 15c" = solenoid valve,
19a, 19b, 19c... Bypass pipe (liquid drain pipe), 21 a, 21 b, 21 c = solenoid valve, 22
a. 22 b s 22 c...419 equipment, 23
a, 23b. 23 c ”” bypass pipe, 25 a s 25 b
, 25 c... Direct-acting solenoid valve for bypass,
30a, 30b. 30c...Indoor unit, 44...Control device, 4L 46at 46b-46c"--Relay contact, MC--Compressor motor, 5VLa, 5V
Lb. S V L c --- Solenoid valves 15a, 15b, 15c
coil, 5VGa, 5VGb, SVG o...-
--- Coils of solenoid valves 21a, 21b, 21c, Va
, V b sVc... Solenoid valves 25a, 25b
, 25c coil.

Claims (1)

【特許請求の範囲】[Claims] 11台の室外ユニットに複数台の室内ユニットを接続配
管により接続した多室形空気調和機において、前記室外
ユニットの数個主管を前記室内ユニットの数に分岐して
できた液筒支管中にそれぞれ源側電磁弁を設け、ガス側
主管を前記室内ユニットの数に分岐しててきたガス側支
管中にそれぞれガス側電磁弁を設け、前記液筒支管中の
源側電磁弁と前記室外ユニットの熱源側熱交換器との間
に絞り装置を設け、前記各液筒支管中の各源側電磁弁と
前記源側主管中の前記絞り装置との間の管路より、前記
それぞれのガス側電磁弁とそれぞれの室内ユニットの利
用側熱交換器の間のそれぞれのガス側支管へ連通するバ
イパス管をそれぞれ設け、該バイパス管のそれぞれに前
記源側支管から前記ガス側支管へ向う流れのみを通電時
許容しかつ非通電時停止できるように直動式電磁弁を介
設すると度に、前記バイパス管中における該直動式電磁
弁と前記ガス側支管の間に前記源側支管へ向う冷媒流を
阻止側となるように逆止弁を設けた多室形空気調和機の
冷凍回路。
In a multi-room air conditioner in which multiple indoor units are connected to 11 outdoor units by connection piping, each of the main pipes of the outdoor units is branched into the liquid cylinder branch pipes created by the number of indoor units. A source side solenoid valve is provided, and a gas side solenoid valve is provided in each of the gas side branch pipes that have branched the gas side main pipe to the number of the indoor units, and a gas side solenoid valve is provided in each of the gas side branch pipes, and the source side solenoid valve in the liquid cylinder branch pipe and the number of the outdoor units are connected to each other. A throttle device is provided between the heat exchanger on the heat source side, and each of the gas side solenoid valves is connected to the gas side solenoid valve in the liquid cylinder branch pipe and the throttle device in the source main pipe. Bypass pipes communicating with the respective gas side branch pipes are provided between the valves and the utilization side heat exchangers of the respective indoor units, and each of the bypass pipes is energized only for the flow from the source side branch pipes to the gas side branch pipes. Whenever a direct-acting solenoid valve is interposed so that it can be stopped when the power is not energized, the refrigerant flow toward the source-side branch pipe is provided between the direct-acting solenoid valve and the gas-side branch pipe in the bypass pipe. A refrigeration circuit for a multi-chamber air conditioner equipped with a check valve to prevent
JP14881580A 1980-10-22 1980-10-22 Refrigeration circuit of multi-room air conditioner Expired JPS5914704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14881580A JPS5914704B2 (en) 1980-10-22 1980-10-22 Refrigeration circuit of multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14881580A JPS5914704B2 (en) 1980-10-22 1980-10-22 Refrigeration circuit of multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPS5773363A JPS5773363A (en) 1982-05-08
JPS5914704B2 true JPS5914704B2 (en) 1984-04-05

Family

ID=15461329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14881580A Expired JPS5914704B2 (en) 1980-10-22 1980-10-22 Refrigeration circuit of multi-room air conditioner

Country Status (1)

Country Link
JP (1) JPS5914704B2 (en)

Also Published As

Publication number Publication date
JPS5773363A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
JPH0232546B2 (en)
JPS63210577A (en) Integrated heat pump and hot-water supply device
JP2000274838A (en) Freezing cycle having bypass pipe passage
US20210180802A1 (en) Air-conditioning system
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JPH11344263A (en) Refrigerating cycle with bypass tube
JPS5914704B2 (en) Refrigeration circuit of multi-room air conditioner
JPS6058377B2 (en) Air conditioner refrigeration cycle
JPS6341774A (en) Air conditioner
JPH03217771A (en) Air conditioner
KR100728708B1 (en) Air conditioner for electric vehicles
JP2002213839A (en) Multichamber air conditioner
JPS5914702B2 (en) Refrigeration circuit of multi-room air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPS5914703B2 (en) Refrigeration circuit of multi-room air conditioner
JPS6054574B2 (en) Air conditioner refrigeration cycle
JPS5914699B2 (en) Multi-room air conditioner
JPS6122749B2 (en)
JPS6152905B2 (en)
JPS5914700B2 (en) Multi-room air conditioner
JPS5914701B2 (en) Refrigeration circuit of multi-room air conditioner
JPS6250737B2 (en)
JPS6152913B2 (en)
JPH0510618A (en) Multi-chamber air conditioner
JPH06341695A (en) Operation control device for air conditioner