JPS6250737B2 - - Google Patents
Info
- Publication number
- JPS6250737B2 JPS6250737B2 JP8056280A JP8056280A JPS6250737B2 JP S6250737 B2 JPS6250737 B2 JP S6250737B2 JP 8056280 A JP8056280 A JP 8056280A JP 8056280 A JP8056280 A JP 8056280A JP S6250737 B2 JPS6250737 B2 JP S6250737B2
- Authority
- JP
- Japan
- Prior art keywords
- solenoid valve
- liquid
- gas
- pipe
- indoor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】
本発明は1台の室外ユニツトに複数台の室内ユ
ニツトを接続したいわゆる多室形空気調和機に関
するもので、静粛な暖房運転を行なえるようにす
ることをその目的の一つとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit, and its purpose is to enable quiet heating operation. It is to be one.
従来の多室形空気調和機にあつて、圧縮機が運
転されている状態である室内ユニツトが暖房運転
されている時、他の室内ユニツトを追加して暖房
運転する場合、この追加暖房運転された室内ユニ
ツトの室内側熱交換器への冷媒の流れを制御する
ガス側電磁弁と液側電磁弁を同時に開放してい
た。 In a conventional multi-room air conditioner, when an indoor unit whose compressor is running is in heating operation, when another indoor unit is added to perform heating operation, this additional heating operation is performed. The gas-side solenoid valve and liquid-side solenoid valve that control the flow of refrigerant to the indoor heat exchanger of the indoor unit were opened at the same time.
しかしこの追加暖房運転された室内ユニツトの
室内側熱交換器は暖房運転される以前、ガス側電
磁弁と液側電磁弁を閉止されることにより冷媒の
流れを停止されていた上、低圧となつている回路
に連通されていたので圧力は圧縮機の吸入圧力と
ほぼ同じ低圧状態となつていたため、ガス側電磁
弁と液側電磁弁を同時に開放すると低圧の室内熱
交換器に高圧ガスが高速に流れ込むことになり、
この流れ込んだ冷媒により大きい衝撃音を発生さ
せたりガス側電磁弁のパイロツト弁部を急激に移
動させることによりカチツという弁当り音を発生
したりする。これら衝撃音や弁当り音は室内ユニ
ツトで拡大され、室内ユニツトの据付けられてい
る床や壁からも大きい騒音や振動を発生させると
いう大きい問題を有している。またこれら欠点は
同一状態において液側電磁弁のみを開放した場合
でも同様に生ずる。 However, before heating operation was started, the indoor heat exchanger of the indoor unit subjected to additional heating operation had the gas side solenoid valve and liquid side solenoid valve closed, thereby stopping the flow of refrigerant, and the pressure was low. Since the pressure was almost the same as the suction pressure of the compressor, opening the gas-side solenoid valve and the liquid-side solenoid valve at the same time caused high-pressure gas to flow into the low-pressure indoor heat exchanger at high speed. It will flow into
This flowing refrigerant generates a loud impact sound, and the sudden movement of the pilot valve portion of the gas-side solenoid valve generates a clicking sound. These impact noises and lunchbox noises are amplified by the indoor unit, creating a serious problem in that they generate large noises and vibrations from the floor and walls on which the indoor unit is installed. Furthermore, these drawbacks similarly occur even when only the liquid-side solenoid valve is opened in the same state.
本発明は上記の如き欠点を除去するもので、以
下図面をもとにその説明をする。 The present invention is intended to eliminate the above-mentioned drawbacks, and will be explained below with reference to the drawings.
第1図は本発明による多室形空気調和機の一実
施例の冷凍サイクル図で、室外ユニツト1は圧縮
機2、吐出マフラー3、四方弁4、熱源側熱交換
器5、液側主管6、液側主管6を分岐点13で分
岐してできた液側支管7a,7b、液側支管7
a,7bと同数だけあるガス側支管8a,8b、
これらガス側支管8a,8bを集合してできたガ
ス側主管9、アキユームレータ10、液側主管6
中に設けた暖房用絞り機構11とこの暖房用絞り
機構11と並列でかつ暖房運転時の冷媒の流れを
阻止側となるように設けた逆止弁12、液側主管
6の暖房用絞り機構11と、液側支管7a,7b
の分岐部13との間に設けた受液器14、各液側
支管7a,7b中に設けた双方向流通性の電磁弁
15a,15b、各ガス側支管8a,8b中に設
けた双方向流通性の電磁弁21a,21b暖房運
転時の低圧回路20側を流れの阻止側とした逆止
弁17a,17bと絞り18a,18bをそれぞ
れ直列接続してでき、電磁弁15a,15bと各
室内ユニツト30a,30bの接続口16a,1
6bの間の液側支管7a,7bと暖房運転時の低
圧回路20とを結ぶバイパス管19a,19b、
ガス側支管8a,8b側の流れの阻止側とした逆
止弁22a,22bと、電磁弁23a,23bを
それぞれ直列に接続して液側主管6より電磁弁2
1a,21bの室内ユニツト30a,30b側の
ガス側支管8a,8bを結ぶバイパス管24a,
24bよりなる。又室内ユニツト30a,30b
はそれぞれ利用側熱交換器31a,31b、冷房
用絞り機構32a,32bと、この冷房用絞り機
構32a,32bと並列で、かつ冷房運転時の冷
媒の流れを阻止するように設けられた逆止弁33
a,33bよりなる。また室内ユニツト30a,
30b、ガス側配管35a,35bで接続されて
いる。 FIG. 1 is a refrigeration cycle diagram of an embodiment of the multi-chamber air conditioner according to the present invention, in which the outdoor unit 1 includes a compressor 2, a discharge muffler 3, a four-way valve 4, a heat source side heat exchanger 5, and a liquid side main pipe 6. , liquid side branch pipes 7a and 7b formed by branching the liquid side main pipe 6 at the branch point 13, and the liquid side branch pipe 7
The same number of gas side branch pipes 8a and 8b as a and 7b,
A gas side main pipe 9, an accumulator 10, and a liquid side main pipe 6 formed by collecting these gas side branch pipes 8a and 8b.
A heating throttle mechanism 11 provided therein, a check valve 12 provided in parallel with the heating throttle mechanism 11 and on the side that blocks the flow of refrigerant during heating operation, and a heating throttle mechanism for the liquid side main pipe 6. 11, and liquid side branch pipes 7a, 7b
A liquid receiver 14 provided between the branch part 13 of Flowable solenoid valves 21a, 21b are formed by connecting in series check valves 17a, 17b and throttles 18a, 18b with the low pressure circuit 20 side as the flow blocking side during heating operation, and the solenoid valves 15a, 15b and each room Connection ports 16a, 1 of units 30a, 30b
Bypass pipes 19a, 19b connecting the liquid side branch pipes 7a, 7b between 6b and the low pressure circuit 20 during heating operation,
Check valves 22a and 22b on the gas side branch pipes 8a and 8b side, which are on the flow blocking side, and solenoid valves 23a and 23b are connected in series, respectively, and the solenoid valve 2 is connected from the liquid side main pipe 6.
Bypass pipe 24a, which connects the gas side branch pipes 8a, 8b on the indoor units 30a, 30b side of 1a, 21b;
It consists of 24b. Also, indoor units 30a, 30b
are the user-side heat exchangers 31a, 31b, the cooling throttle mechanisms 32a, 32b, and the non-return check installed in parallel with the cooling throttle mechanisms 32a, 32b to prevent the flow of refrigerant during cooling operation. valve 33
It consists of a and 33b. In addition, the indoor unit 30a,
30b and gas side piping 35a, 35b.
第2図は本発明による多室形空気調和機の電気
回路の一実施例で電磁弁15aのコイル15a′と
電磁弁21aのコイル21a′と、電磁開閉器コイ
ル2aとはそれぞれ室内ユニツト30aの運転ス
イツチ40aとリレー接点45aを直列接続した
回路を介して電源50に並列に接続され、同様に
電磁弁15bのコイル15b′と電磁弁21bのコ
イル21b′と電磁開閉器2bとはそれぞれ室内ユ
ニツト30bの運転スイツチ40bとリレー接点
45bを直列接続した回路を介して電源50に並
列接続され、また圧縮機2のモータ2′は電磁開
閉器2a,2b、常開接点2a′,2b′を並列接続
した回路と直列に結ばれて電源50に接続され、
さらにリレー接点46aと、電磁弁23aのコイ
ル23a′が直列接続されたラインと電磁弁23b
のコイル23b′が直列接続されたラインと、四方
弁4のコイル4′とマイクロコンピユーター等よ
りなり運転スイツチ40a,40bのON、OFF
を検知することによりリレー接点45a,45
b,46a,46bを制御する制御装置44は冷
暖切換スイツチ42の暖房側接点48を介してそ
れぞれ電源50に並列接続されている。ここで制
御装置44はマイクロコンピユータ等より構成さ
れ、2つの室内ユニツト30a,30bの各電磁
弁15a,15b,21a,21b,23a,2
3bの開閉を制御する。具体的には、先に運転さ
れた一方の室内ユニツト30aの電磁弁15a,
21aを開放する第1のスイツチ手段と、他方の
室内ユニツト30bが追加されたとき、所定時間
バイパス管24bの電磁弁23bを開放する時限
スイツチ手段と、前記所定時間経過後バイパス管
24bの電磁弁23bを閉じ、追加運転された室
内ユニツト30bの電磁弁15b,21bを開放
する第2のスイツチ手段を具備している。 FIG. 2 shows an embodiment of the electric circuit of the multi-room air conditioner according to the present invention, in which the coil 15a' of the solenoid valve 15a, the coil 21a' of the solenoid valve 21a, and the solenoid switch coil 2a are connected to the indoor unit 30a. The operation switch 40a and the relay contact 45a are connected in parallel to the power supply 50 through a series-connected circuit, and similarly, the coil 15b' of the solenoid valve 15b, the coil 21b' of the solenoid valve 21b, and the solenoid switch 2b are each connected to an indoor unit. The motor 2' of the compressor 2 is connected in parallel to the power supply 50 through a circuit in which the operation switch 40b and the relay contact 45b of the compressor 30b are connected in series. connected in series with the connected circuit and connected to the power supply 50,
Further, a line in which the relay contact 46a and the coil 23a' of the solenoid valve 23a are connected in series and the solenoid valve 23b
The line in which the coil 23b' of the four-way valve 4 is connected in series, the coil 4' of the four-way valve 4, a microcomputer, etc. are used to turn the operation switches 40a and 40b ON and OFF.
By detecting the relay contacts 45a, 45
A control device 44 for controlling the air conditioners b, 46a, and 46b is connected in parallel to a power source 50 through a heating side contact 48 of a heating/cooling changeover switch 42, respectively. Here, the control device 44 is composed of a microcomputer, etc., and controls each solenoid valve 15a, 15b, 21a, 21b, 23a, 2 of the two indoor units 30a, 30b.
Controls the opening and closing of 3b. Specifically, the solenoid valve 15a of one of the indoor units 30a that was operated first,
21a, a time switch means that opens the solenoid valve 23b of the bypass pipe 24b for a predetermined time when the other indoor unit 30b is added, and a solenoid valve of the bypass pipe 24b after the predetermined time elapses. 23b and opens the solenoid valves 15b and 21b of the additionally operated indoor unit 30b.
ここで上記構成において本発明による多室形空
気調和機の暖房運転時の動作を説明する。 Here, the operation of the multi-room air conditioner according to the present invention in the above configuration during heating operation will be explained.
今、冷暖切換スイツチ42が暖房側接点48側
に投入されている状態で室内ユニツト30aの運
転スイツチ40aが投入されたとすると、マイク
ロコンピユーター等より成る制御装置44は、室
内ユニツト30aが停止していた圧縮機2のモー
ター2′が回転させる初めての信号を出したこと
を検出し、リレー接点45aを閉じたままにする
ため電磁弁15a,21aのコイル15a′,21
a′と電磁開閉器コイル2aに電圧を印加し、電磁
弁15a,21aの通路を開放し電磁開閉器コイ
ル2aの常開接点2a′を閉じて圧縮機2のモータ
ー2′を回転させる。この時先にも述べた様に制
御装置44は室内ユニツト30aが停止していた
圧縮機2のモータ2′を回転させる初めての制御
信号を出したことを検出しているのでリレー接点
46aを開いたままにしておくためバイパス電磁
弁23aのコイル23a′は通電されない。こうし
て四方弁4のコイル4′に通電されているため圧
縮機2から吐出された冷媒ガスは四方弁4を通り
ガス側主管9、ガス側支管8a、電磁弁21a、
ガス側配管35aを通つて室内ユニツト30aの
室内側熱交換器31aに至つて液化し、さらに逆
止弁33a、液側配管34a、電磁弁15a、液
側支管7a、分岐点13、受液器14を通つて暖
房用絞り機構11で減圧され、暖房運転時の低圧
回路20を通つて熱源側熱交換器5で蒸発し再び
四方弁4を通過してアキユムレータ10を経て圧
縮機2に戻る冷凍サイクルを形成し、室内ユニツ
ト30aは暖房運転を行なう。またこの室内ユニ
ツト30aの暖房運転時、他の室内ユニツト30
bは運転スイツチ40bの接点を開放しているた
め暖房運転は行なわれず、電磁弁15b,21b
のコイル15b′,21b′には通電されていないか
ら電磁弁15b,21bはその通路を閉止してい
る。 Now, if the operation switch 40a of the indoor unit 30a is turned on while the cooling/heating changeover switch 42 is turned on to the heating side contact 48 side, the control device 44 consisting of a microcomputer etc. will detect that the indoor unit 30a is stopped. The coils 15a', 21 of the solenoid valves 15a, 21a detect that the motor 2' of the compressor 2 issues the first signal to rotate, and keep the relay contact 45a closed.
A' and a voltage is applied to the electromagnetic switch coil 2a to open the passages of the electromagnetic valves 15a and 21a, close the normally open contact 2a' of the electromagnetic switch coil 2a, and rotate the motor 2' of the compressor 2. At this time, as mentioned earlier, the control device 44 detects that the indoor unit 30a has issued the first control signal to rotate the motor 2' of the compressor 2, which had been stopped, so it opens the relay contact 46a. The coil 23a' of the bypass solenoid valve 23a is not energized. Since the coil 4' of the four-way valve 4 is energized in this way, the refrigerant gas discharged from the compressor 2 passes through the four-way valve 4, the gas side main pipe 9, the gas side branch pipe 8a, the solenoid valve 21a,
The gas passes through the gas side pipe 35a to the indoor heat exchanger 31a of the indoor unit 30a, where it liquefies, and then the check valve 33a, the liquid side pipe 34a, the solenoid valve 15a, the liquid side branch pipe 7a, the branch point 13, and the liquid receiver. 14, is depressurized by the heating throttle mechanism 11, passes through the low pressure circuit 20 during heating operation, evaporates in the heat source side heat exchanger 5, passes through the four-way valve 4 again, and returns to the compressor 2 via the accumulator 10. A cycle is formed, and the indoor unit 30a performs heating operation. Also, during heating operation of this indoor unit 30a, other indoor units 30a
Since the contact point of the operation switch 40b is open, heating operation is not performed and the solenoid valves 15b and 21b are closed.
Since the coils 15b', 21b' are not energized, the solenoid valves 15b, 21b close the passages.
従つて電磁弁21bおよび電磁弁15bにより
閉塞され室内側熱交換器31b含む冷凍回路34
bは冷媒が流れない状態にある。 Therefore, the refrigeration circuit 34 including the indoor heat exchanger 31b is closed by the solenoid valve 21b and the solenoid valve 15b.
b is in a state where the refrigerant does not flow.
しかし実際には電磁弁21a,21b,15
a,15b等は完全に冷媒の流通を停止できず若
干の洩れがあるので、停止中の室内ユニツト30
b、の室内側熱交換器31b内に徐々に冷媒が留
り込んでいくことになる。ところが室内側熱交換
器31bに冷媒がたくさん溜り込んでいくと運転
中の室内ユニツト30aの室内側熱交換器31a
を流れる冷媒量が減少するため暖房能力の低下を
来たしたり、圧縮機2の損焼をまねいたりすると
いう問題がある。 However, in reality, the solenoid valves 21a, 21b, 15
A, 15b, etc. cannot completely stop the flow of refrigerant and there is some leakage, so if the indoor unit 30 is stopped,
The refrigerant gradually stays in the indoor heat exchanger 31b. However, when a large amount of refrigerant accumulates in the indoor heat exchanger 31b, the indoor heat exchanger 31a of the indoor unit 30a during operation
Since the amount of refrigerant flowing through the compressor 2 decreases, there is a problem that the heating capacity decreases and the compressor 2 burns out.
そこで一端を暖房運転時の低圧回路20に接続
したバイパス管19bにより室内側熱交換器31
b内り溜り込んだ冷媒を抜き出すようにしてい
る。従つて停止中の室内ユニツト30bの室内側
熱交換器31b内の冷媒圧力は暖房運転時の低圧
回路20と同じ低圧状態となつている。 Therefore, the indoor heat exchanger 31 is connected to the bypass pipe 19b whose one end is connected to the low pressure circuit 20 during heating operation.
b The refrigerant that has accumulated inside the tank is removed. Therefore, the refrigerant pressure in the indoor heat exchanger 31b of the indoor unit 30b that is stopped is at the same low pressure state as in the low pressure circuit 20 during heating operation.
こうした状況下において、他の室内ユニツト3
0bを追加運転する場合、従来の制御方法では電
磁弁21bと15bを同時に開放していたため低
圧の室内側熱交換器31b中に圧力差により高圧
の冷媒ガスが高速で流れ込むため大きい冷媒衝撃
音や振動、激しい電磁弁21bの弁当り音等が発
生していた。 Under these circumstances, other indoor units 3
When 0b is additionally operated, the conventional control method opens the solenoid valves 21b and 15b at the same time, which causes high-pressure refrigerant gas to flow at high speed into the low-pressure indoor heat exchanger 31b due to the pressure difference, resulting in loud refrigerant impact noise and Vibrations, intense noise from the electromagnetic valve 21b, etc. were occurring.
そこで本発明の場合は第3図の弁動タイミング
チヤートに示す通り、室内ユニツト30bの運転
スイツチ40bを投入すると、マイクロコンピユ
ータ等より成る制御装置44は運転スイツチ40
aがすでに投入されていることから運転スイツチ
40bが圧縮機2のモーター2′の運転中に投入
されたことを検出し、リレー接点45bを開きさ
らにリレー接点46bを閉じて電磁バイパス弁2
3bのコイル23b′に電圧をかけると、高圧の液
が流れている冷凍回路6と今迄停止していたため
低圧となつていた冷凍回路35bはバイパス管2
4bにより連通され、液冷媒が侵入することによ
り冷凍回路35bの圧力は徐々に上昇していき、
ガス側配管34bに液冷媒が溜り込んでくる。こ
こでバイパス管24bを通つて冷凍回路35bに
流れ込む冷媒は液状であるため流入速度は遅く、
衝撃音等は発生しない。こうして冷凍回路35b
内の圧力がある程度上昇し、電磁弁21bを開放
した時室内側熱交換器31bに流入する冷媒圧力
と余り圧力差がなくなると思われる時点で制御装
置44によりリレー接点46bを開き、リレー接
点45bを閉じると室内ユニツト30bに冷媒を
供給する冷凍回路35b,34b中の電磁弁21
b,15bのコイル21b′,15b′に通電され電
磁弁21b,15bの通路が開放される。この時
電磁弁21bを通つて流入する冷媒は小さな圧力
差で冷凍回路34b内に入りかつガス側配管35
b内の冷媒量が多い為圧力差によるエネルギーの
多くが、運動エネルギーに変更されるので衝撃者
も振動も発生しない。又電磁弁21bも急激な弁
当りをしないので弁を損傷することがない。又バ
イパス電磁弁23a,23bの開放時、今迄停止
中の冷凍回路34a,34bの圧力上昇を促進す
るため、電磁弁15a,15bを開放するような
電気回路としてもよい。 Therefore, in the case of the present invention, as shown in the valve timing chart in FIG.
a is already turned on, the operation switch 40b detects that the motor 2' of the compressor 2 is turned on while the motor 2' of the compressor 2 is in operation, opens the relay contact 45b, closes the relay contact 46b, and closes the electromagnetic bypass valve 2.
When voltage is applied to the coil 23b' of 3b, the refrigeration circuit 6 in which high-pressure liquid is flowing and the refrigeration circuit 35b, which has been stopped and has been at low pressure, are connected to the bypass pipe 2.
As the liquid refrigerant enters the refrigeration circuit 35b, the pressure in the refrigeration circuit 35b gradually increases.
Liquid refrigerant accumulates in the gas side pipe 34b. Here, since the refrigerant flowing into the refrigeration circuit 35b through the bypass pipe 24b is liquid, the inflow speed is slow;
No impact noise etc. will be generated. In this way, the refrigeration circuit 35b
When the internal pressure rises to a certain extent and there is no significant pressure difference between the refrigerant pressure flowing into the indoor heat exchanger 31b when the solenoid valve 21b is opened, the control device 44 opens the relay contact 46b, and the relay contact 45b Solenoid valves 21 in the refrigeration circuits 35b and 34b supply refrigerant to the indoor unit 30b when closed.
The coils 21b' and 15b' of the coils 21b and 15b are energized, and the passages of the solenoid valves 21b and 15b are opened. At this time, the refrigerant flowing through the solenoid valve 21b enters the refrigeration circuit 34b with a small pressure difference and enters the gas side piping 35.
Since there is a large amount of refrigerant in b, much of the energy due to the pressure difference is changed into kinetic energy, so no impactor or vibration occurs. Also, the solenoid valve 21b does not undergo sudden valve punching, so the valve will not be damaged. Further, when the bypass solenoid valves 23a, 23b are opened, the solenoid valves 15a, 15b may be opened in order to promote pressure rise in the refrigeration circuits 34a, 34b, which have been stopped up to now.
さらに第2図の電気回路において、室温調節を
行うために運転スイツチ40a,40bと直列に
温度調節器を設けることも考えられる。しかしそ
の場合においても、同様に後から運転が開始ある
いは再開される側の運転スイツチの投入、温度調
節器のON動作に連動して同様の制御を行うこと
によつて同様の作用効果が得られることはいうま
でもない。 Furthermore, in the electric circuit shown in FIG. 2, it is conceivable to provide a temperature controller in series with the operation switches 40a, 40b in order to adjust the room temperature. However, even in that case, the same effects can be obtained by performing the same control in conjunction with turning on the operation switch on the side where operation is to be started or restarted later and turning on the temperature controller. Needless to say.
さらにバイパス電磁弁23a,23bの開放時
間はマイクロコンピユータにより種々の条件を考
慮に入れてその都度演算し決めさせてもよい。即
ち種々の条件とは例えば運転室内ユニツト数、サ
ーモスタツト温度、サーモスタツトOFF時間等
の種々の要因である。又圧力スイツチ等によりバ
イパス電磁弁を制御してもよい。 Furthermore, the opening time of the bypass solenoid valves 23a, 23b may be calculated and determined each time by a microcomputer, taking various conditions into account. That is, the various conditions include various factors such as the number of units in the driver's room, thermostat temperature, thermostat OFF time, and the like. Alternatively, the bypass solenoid valve may be controlled by a pressure switch or the like.
上述の如く本発明による多室形空気調和機は、
圧縮機が動いていて少くとも1台の室内ユニツト
が暖房運転中、他の室内ユニツトを追加暖房運転
又はサーモスタツト等で復帰運転させるとき液側
管路よりガス側電磁弁と室内ユニツトとの間のガ
ス側支管に高圧冷媒をバイパスし、休止していた
室内ユニツトの室内側熱交換器内の圧力を上昇さ
せた後ガス側電磁弁及び液側電磁弁を開放するよ
うにしているので、室内ユニツトから冷媒衝撃音
や振動が出ず静粛暖房運転が完全に出来、かつ激
しいガス側電磁弁の弁当りも発生せずガス側電磁
弁の寿命を著しく長くすることが出来る。さらに
追加運転される室内ユニツトへは、所定の冷凍サ
イクルを形成する前の所定時間、すでに運転され
ている室内ユニツトを通過した冷媒が流れ込むた
め、すでに運転されている室内ユニツトを流れる
冷媒量が減少してその室内ユニツトの能力が急激
に低下することもなく、合理的な冷媒衝撃音、振
動対策が行える効果を奏する。 As mentioned above, the multi-chamber air conditioner according to the present invention has the following features:
When the compressor is running and at least one indoor unit is in heating operation, and other indoor units are to be put into additional heating operation or returned to operation by a thermostat, etc., between the gas side solenoid valve and the indoor unit from the liquid side pipe. By bypassing the high-pressure refrigerant to the gas side branch pipe of the indoor unit and increasing the pressure inside the indoor heat exchanger of the indoor unit that was inactive, the gas side solenoid valve and liquid side solenoid valve are opened. Completely quiet heating operation is possible with no refrigerant impact noise or vibration emitted from the unit, and the life of the gas side solenoid valve can be significantly extended without causing severe valve hitting of the gas side solenoid valve. Furthermore, the refrigerant that has passed through the indoor units that are already in operation flows into the additionally operated indoor units for a predetermined period of time before forming the predetermined refrigeration cycle, so the amount of refrigerant flowing through the indoor units that are already in operation decreases. As a result, the capacity of the indoor unit does not drop suddenly, and reasonable countermeasures against refrigerant impact noise and vibration can be achieved.
第1図は本発明による多室形空気調和機の一実
施例の冷凍サイクル図、第2図は本発明による多
室形空気調和機の一実施例の電気回路図、第3図
は電磁弁の動作タイミングチヤートである。
1……室外ユニツト、15a,15b……電磁
弁、21a,21b……電磁弁、24a,24b
……電磁弁、30a,30b……室内ユニツト、
44……制御装置、40a,40b,45a,4
5b,46a,46b……リレー。
Fig. 1 is a refrigeration cycle diagram of an embodiment of the multi-chamber air conditioner according to the present invention, Fig. 2 is an electric circuit diagram of an embodiment of the multi-chamber air conditioner according to the present invention, and Fig. 3 is a solenoid valve. This is an operation timing chart. 1... Outdoor unit, 15a, 15b... Solenoid valve, 21a, 21b... Solenoid valve, 24a, 24b
... Solenoid valve, 30a, 30b ... Indoor unit,
44...control device, 40a, 40b, 45a, 4
5b, 46a, 46b...Relay.
Claims (1)
を接続配管により接続した多室形空気調和機にお
いて、前記室外ユニツトの液側主管に前記室内ユ
ニツトの数に分岐してできた液側支管を接続し、
この各液側支管中に液側電磁弁を設け、またガス
側主管に前記室内ユニツトの数に分岐してできた
ガス側支管を接続し、この各ガス側支管中にガス
側電磁弁を設け、前記液側主管と前記室外ユニツ
トの室外熱交換器との間に減圧装置を設け、前記
液側電磁弁と、前記減圧装置を接続する管路よ
り、前記ガス側電磁弁とそれぞれの室内ユニツト
の熱交換器との間の支管へ連通するバイパス管を
それぞれ設け、前記バイパス管中にそれぞれバイ
パス電磁弁を設け、さらに前記各液側電磁弁と前
記各室内ユニツトの前記各室内熱交換器の間の液
側支管からそれぞれ暖房運転中低圧となる管路に
それぞれ液抜き管を接続し、さらに前記液側電磁
弁、ガス側電磁弁、バイパス電磁弁の開閉を制御
する制御装置を設け、この制御装置は、運転して
いる一方の室内ユニツトに加えて他方の室内ユニ
ツトを運転する場合に追加運転する側のバイパス
電磁弁を所定時間開放する時限スイツチ手段と、
前記所定時間経過後追加運転する側の液側電磁
弁、ガス側電磁弁を開放するスイツチ手段を有す
る多室形空気調和機。1. In a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit by connection piping, liquid side branch pipes formed by branching to the number of indoor units are connected to the liquid side main pipe of the outdoor unit. death,
A liquid-side solenoid valve is provided in each of these liquid-side branch pipes, and gas-side branch pipes branched as many times as the number of indoor units are connected to the gas-side main pipe, and a gas-side solenoid valve is provided in each gas-side branch pipe. , a pressure reducing device is provided between the liquid side main pipe and the outdoor heat exchanger of the outdoor unit, and a pipe connecting the liquid side solenoid valve and the pressure reducing device is connected to the gas side solenoid valve and each indoor unit. A bypass pipe is provided which communicates with the branch pipe between the heat exchanger of each indoor unit, a bypass solenoid valve is provided in each of the bypass pipes, and a bypass solenoid valve is provided between each of the liquid side solenoid valves and each of the indoor heat exchangers of each of the indoor units. A liquid drain pipe is connected from the liquid side branch pipe in between to each pipe line which becomes low pressure during heating operation, and a control device is provided to control the opening and closing of the liquid side solenoid valve, the gas side solenoid valve, and the bypass solenoid valve. The control device includes a time switch means for opening the bypass solenoid valve on the side to be additionally operated for a predetermined time when the other indoor unit is operated in addition to the one indoor unit being operated;
A multi-room air conditioner comprising a switch means for opening a liquid-side solenoid valve and a gas-side solenoid valve to be additionally operated after the predetermined period of time has elapsed.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8056280A JPS576270A (en) | 1980-06-13 | 1980-06-13 | Multichamber type airconditioner |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8056280A JPS576270A (en) | 1980-06-13 | 1980-06-13 | Multichamber type airconditioner |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS576270A JPS576270A (en) | 1982-01-13 |
| JPS6250737B2 true JPS6250737B2 (en) | 1987-10-27 |
Family
ID=13721772
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8056280A Granted JPS576270A (en) | 1980-06-13 | 1980-06-13 | Multichamber type airconditioner |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS576270A (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1053265C (en) * | 1993-04-22 | 2000-06-07 | 北京市西城区新开通用试验厂 | Digitally controlled wind power unit with rotary wings |
-
1980
- 1980-06-13 JP JP8056280A patent/JPS576270A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS576270A (en) | 1982-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR970011768A (en) | High latent heat refrigerant control circuit for air conditioning system | |
| RU2347985C2 (en) | Cooling device | |
| JPH0527018B2 (en) | ||
| JPS6250737B2 (en) | ||
| JPH04324069A (en) | Refrigerating plant | |
| JPH03217771A (en) | Air conditioner | |
| JPS6152913B2 (en) | ||
| JP2003042585A (en) | Air conditioner | |
| JPS6152912B2 (en) | ||
| JPH10129244A (en) | Air conditioner provided with cold accumulator | |
| JPS6152905B2 (en) | ||
| JPS6337866B2 (en) | ||
| JP3242217B2 (en) | Air conditioner | |
| JPH03122460A (en) | Operating controller for refrigerating machine | |
| JPH0439578B2 (en) | ||
| JPS5984063A (en) | Heat pump type refrigeration cycle | |
| JPS6040786B2 (en) | Multi-room air conditioner | |
| JPH03158664A (en) | Air conditioner | |
| JPS5914700B2 (en) | Multi-room air conditioner | |
| JPH0222874B2 (en) | ||
| JPS5914699B2 (en) | Multi-room air conditioner | |
| JPS5914701B2 (en) | Refrigeration circuit of multi-room air conditioner | |
| JPS5849006Y2 (en) | Hot water supply and cooling equipment | |
| JPH07294041A (en) | Refrigerator | |
| JPS5914703B2 (en) | Refrigeration circuit of multi-room air conditioner |