JPS6152913B2 - - Google Patents

Info

Publication number
JPS6152913B2
JPS6152913B2 JP55085722A JP8572280A JPS6152913B2 JP S6152913 B2 JPS6152913 B2 JP S6152913B2 JP 55085722 A JP55085722 A JP 55085722A JP 8572280 A JP8572280 A JP 8572280A JP S6152913 B2 JPS6152913 B2 JP S6152913B2
Authority
JP
Japan
Prior art keywords
solenoid valve
liquid
indoor
indoor unit
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55085722A
Other languages
Japanese (ja)
Other versions
JPS5712265A (en
Inventor
Masataka Yamane
Shizuo Ootaki
Shingo Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8572280A priority Critical patent/JPS5712265A/en
Publication of JPS5712265A publication Critical patent/JPS5712265A/en
Publication of JPS6152913B2 publication Critical patent/JPS6152913B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は1台の室外ユニツトに複数台の室内ユ
ニツトを接続したいわゆる多室形空気調和機に関
するもので、静粛な暖房運転を行なえるようにす
ることをその目的のひとつとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit, and its purpose is to enable quiet heating operation. It is to be one.

従来の多室形空気調和機にあつて、圧縮機が運
転されている状態である室内ユニツトが暖房運転
されている時、他の室内ユニツトを追加して暖房
運転する場合、この追加暖房運転された室内ユニ
ツトの室内側熱交換器への冷媒の流れを制御する
ガス側電磁弁と液側電磁弁を同時に開放してい
た。しかしこの追加暖房運転された室内ユニツト
の室内側熱交換器は暖房運転される以前に、ガス
側電磁弁と液側電磁弁が閉止されることにより冷
媒の流れを停止させていた上、低圧となつている
回路に連通されていたので圧力は圧縮機の吸入圧
力とほぼ同じ低圧状態となつていた。このため、
ガス側電磁弁と液側電磁弁を同時に開放すると低
圧の室内熱交換器に高圧ガスが高速で流れ込むこ
とになり、この流れ込んだ冷媒により大きい衝撃
音を発生させたりガス側電磁弁のパイロツト弁部
を急激に移動させることによりカチツという弁当
り音を発生させたりする。これら衝撃音や弁当り
音は室内ユニツトで拡大され、室内ユニツトの据
付けられている床や壁からも大きい騒音や振動を
発生させるという大きい問題を有している。また
これら欠点は同一状態において液測電磁弁のみを
開放した場合でも同様に生ずる。
In a conventional multi-room air conditioner, when an indoor unit whose compressor is running is in heating operation, when another indoor unit is added to perform heating operation, this additional heating operation is performed. The gas-side solenoid valve and liquid-side solenoid valve that control the flow of refrigerant to the indoor heat exchanger of the indoor unit were opened at the same time. However, the indoor heat exchanger of the indoor unit that was subjected to this additional heating operation stopped the flow of refrigerant by closing the gas side solenoid valve and the liquid side solenoid valve before the heating operation was started. Since it was connected to a connected circuit, the pressure was at a low level, almost the same as the suction pressure of the compressor. For this reason,
If the gas-side solenoid valve and the liquid-side solenoid valve are opened at the same time, high-pressure gas will flow into the low-pressure indoor heat exchanger at high speed, and this flowing refrigerant may generate a loud impact noise or damage the pilot valve section of the gas-side solenoid valve. By moving the lunch box rapidly, a clicking sound can be generated. These impact noises and lunchbox noises are amplified by the indoor unit, creating a serious problem in that they generate large noises and vibrations from the floor and walls on which the indoor unit is installed. Further, these drawbacks similarly occur even when only the liquid measuring solenoid valve is opened in the same state.

本発明は上記の如き欠点を除去するもので、以
下にその一実施例について図面をもとに説明す
る。
The present invention is intended to eliminate the above-mentioned drawbacks, and one embodiment thereof will be described below with reference to the drawings.

第1図は本発明による多室形空気調和機の一実
施例の冷凍サイクル図で、室外ユニツト1は、圧
縮機2、吐出マフラー3、四方弁4、熱源側熱交
換器5、液側主管6、液側主管6を分岐点13で
分岐してできた液側支管7a,7b,7c、この
液側支管7a,7b,7cと同数だけあるガス側
支管8a,8b,8c、これらガス側支管8a,
8b,8cを集合してできたガス側主管9、アキ
ユムレータ10、液側主管6中に設けた暖房用絞
り機構11とこの暖房用絞り機構11と並列でか
つ暖房運転時の冷媒の流れを阻止側となるように
設けた逆止弁12、液側主管6の暖房用絞り機構
11と液側支管7a,7b,7cの分岐部13と
の間に設けた受液器14、各液側支管7a,7
b,7c中に双方向性の絞り機構22a,22
b,22cと直列に設けた双方向流通性の電磁弁
15a,15b,15c、各電磁弁15a,15
b,15cと接続口16a,16b,16cの間
の各液側支管7a,7b間および、7b,7c間
をそれぞれ結ぶバイパス管23,24、このバイ
パス管23,24中に設けられた双方向流通性の
バイパス電磁弁25,26、暖房運転時の低圧回
路20側への冷媒流れを許す方向に設けた逆止弁
17a,17b,17cと絞り18a,18b,
18cとをそれぞれ直列接続してでき前記電磁弁
15a,15b,15cと各室内ユニツト30
a,30b,30cとの接続口16a,16b,
16cの間の液側支管7a,7b,7cと暖房運
転時の低圧回路20とを結ぶバイパス管19a,
19b,19c、ガス側支管8a,8b,8c中
にそれぞれ設けた双方向流通性の電磁弁21a,
21b,21cよりなる。なお、室外ユニツト1
は、熱源側熱交換器5に送風する送風機を備えて
いる。また室内ユニツト30a,30b,30c
はそれぞれ利用側熱交換器31a,31b,31
c及び各利用側熱交換器31a,31b,31c
にて熱交換した空気を室内に送り込む室内送風機
とからなる。
FIG. 1 is a refrigeration cycle diagram of an embodiment of a multi-room air conditioner according to the present invention, in which an outdoor unit 1 includes a compressor 2, a discharge muffler 3, a four-way valve 4, a heat source side heat exchanger 5, and a liquid side main pipe. 6. Liquid side branch pipes 7a, 7b, 7c created by branching the liquid side main pipe 6 at the branch point 13, gas side branch pipes 8a, 8b, 8c, which have the same number as the liquid side branch pipes 7a, 7b, 7c, and these gas side Branch pipe 8a,
A heating throttle mechanism 11 provided in the gas side main pipe 9, the accumulator 10, and the liquid side main pipe 6, which are made by collecting 8b and 8c, is parallel to the heating throttle mechanism 11 and prevents the flow of refrigerant during heating operation. A check valve 12 provided so as to be on the side, a liquid receiver 14 provided between the heating throttle mechanism 11 of the liquid side main pipe 6 and the branch part 13 of the liquid side branch pipes 7a, 7b, 7c, and each liquid side branch pipe. 7a, 7
Bidirectional aperture mechanisms 22a, 22 in b, 7c
bidirectional flow solenoid valves 15a, 15b, 15c provided in series with b, 22c, each solenoid valve 15a, 15
Bypass pipes 23, 24 connecting each liquid side branch pipe 7a, 7b between b, 15c and connection ports 16a, 16b, 16c and between 7b, 7c, bidirectional pipes provided in these bypass pipes 23, 24 Flowable bypass solenoid valves 25, 26, check valves 17a, 17b, 17c and throttles 18a, 18b provided in a direction that allows refrigerant to flow toward the low pressure circuit 20 during heating operation.
The solenoid valves 15a, 15b, 15c and each indoor unit 30 are connected in series with each other.
Connection ports 16a, 16b with a, 30b, 30c,
Bypass pipe 19a, which connects the liquid side branch pipes 7a, 7b, 7c between 16c and the low pressure circuit 20 during heating operation.
19b, 19c, bidirectional flow solenoid valves 21a provided in the gas side branch pipes 8a, 8b, 8c, respectively.
It consists of 21b and 21c. In addition, outdoor unit 1
is equipped with an air blower that blows air to the heat source side heat exchanger 5. In addition, the indoor units 30a, 30b, 30c
are the user side heat exchangers 31a, 31b, 31, respectively.
c and each user side heat exchanger 31a, 31b, 31c
It consists of an indoor blower that blows the heat-exchanged air into the room.

第2図は本発明による多室形空気調和機の電気
回路の一実施例で、電磁弁15aのコイルSVLa
と電磁弁21aのコイルSVGaとリレー接点46
aとを直列接続した回路と電磁開閉器MRaとは、
それぞれ室内ユニツト30aの運転スイツチ40
aを介して電源45に並列接続され、同様に電磁
弁15bのコイルSVLbと電磁弁21bのコイル
SVGbとリレー接点46bとを直列接続した回路
と電磁開閉器MRbとはそれぞれ室内ユニツト30
bの運転スイツチ40bを介して電源45に並列
接続され、さらに同様に電磁弁15cのコイル
SVLcと電磁弁21cのコイルSVGcとリルー接点
46cとを直列接続した回路と電磁開閉器MRc
はそれぞれ室内ユニツト30cの運転スイツチ4
0cとを介して電源45に並列接続されている。
また圧縮機2のモータMCは電磁開閉器MRa
MRb,MRcの常開接点MRas,MRbs,MRcsを並列
接続した回路と直列に結ばれて電源45に接続さ
れ、さらに並列接続されたバイパス電磁弁25,
26のコイルVa〜bとVb〜cと直列に接続された
リレー43と四方弁4のコイル41とから成る回
路は冷暖切換スイツチ42の暖房側接点48を介
してそれぞれ電源45に接続され、さらにマイク
ロコンピユータ等よりなり運転スイツチ40a,
40b,40cのON,OFF等を検知することに
よりリレー接点43,46a,46b,46cを
制御する制御装置44は、電源45に接続されて
いる。ここで、前記制御装置44において、運転
スイツチ40a,40b,40cは、スイツチ手
段と、液側電磁弁15a,15b,15cの第1
の開放手段を兼ね、リレー接点43がバイパス電
磁弁25,26の開閉を制御する第2の開放手段
に相当し、リレー接点46a,46b,46cが
電磁弁21a,21b,21cの開閉を制御する
第3の開放手段に相当する。又前記制御装置44
は、自身が持つタイマ機能で、第1、第2の開放
手段の作動後、第3の開放手段を遅延して作動さ
せる遅延手段を具備している。
FIG. 2 shows an embodiment of the electric circuit of the multi-room air conditioner according to the present invention, in which the coil SV La of the solenoid valve 15a is shown.
and the coil SV Ga of the solenoid valve 21a and the relay contact 46
The circuit in which A is connected in series with the electromagnetic switch MR a is,
Each operation switch 40 of the indoor unit 30a
Similarly, the coil SV Lb of the solenoid valve 15b and the coil of the solenoid valve 21b are connected in parallel to the power supply 45 via a.
The circuit in which SV Gb and relay contact 46b are connected in series and the electromagnetic switch MR b are connected to the indoor unit 30, respectively.
b is connected in parallel to the power supply 45 via the operation switch 40b, and similarly the coil of the solenoid valve 15c.
The circuit in which the SV Lc , the coil SV Gc of the solenoid valve 21c, and the relou contact 46c are connected in series, and the solenoid switch MR c are respectively connected to the operation switch 4 of the indoor unit 30c.
It is connected in parallel to the power supply 45 via 0c.
In addition, the motor MC of the compressor 2 has an electromagnetic switch MR a ,
The normally open contacts MR as , MR bs , and MR cs of MR b and MR c are connected in series to the power supply 45, and the bypass solenoid valve 25 is further connected in parallel.
A circuit consisting of a relay 43 connected in series with the 26 coils V a to b and V b to c and a coil 41 of the four-way valve 4 is connected to a power source 45 via a heating side contact 48 of a cooling/heating changeover switch 42. , and an operation switch 40a, which is made up of a microcomputer, etc.
A control device 44 that controls the relay contacts 43, 46a, 46b, 46c by detecting ON, OFF, etc. of 40b, 40c is connected to a power source 45. Here, in the control device 44, the operation switches 40a, 40b, 40c are the switch means and the first
The relay contact 43 corresponds to a second opening means for controlling the opening and closing of the bypass solenoid valves 25 and 26, and the relay contacts 46a, 46b, and 46c control the opening and closing of the solenoid valves 21a, 21b, and 21c. This corresponds to the third opening means. Further, the control device 44
has a timer function, and is equipped with a delay means for activating the third opening means with a delay after the first and second opening means are activated.

ここで上記構成において本発明による多室形空
気調和機の暖房運転時の動作を説明する。
Here, the operation of the multi-room air conditioner according to the present invention in the above configuration during heating operation will be explained.

今、冷暖切換スイツチ42が暖房側接点48側
にたおされている状態で室内ユニツト30aの運
転スイツチ40aが投入されたとすると、マイク
ロコンピユーター等より成る制御装置44は、室
内ユニツト30aが停止していた圧縮機2のモー
ターMCを回転させるための初めての信号を出し
たことを検出することにより電磁弁21aのコイ
ルSVLaと電磁開閉器MRaと制御装置44の働き
により閉じられたリレー接点46aを介し電磁弁
15aのコイルSVGaに電圧を印加し、電磁弁1
5a,21aを同時開放し電磁開閉器MRaの常開
接点MRasを閉じて圧縮機2のモーターMCを回転
させる。この時、先にも述べた様に制御装置44
は室内ユニツト30aが停止していた圧縮機2の
モータMCを回転させるための初めての制御信号
を出したことを検出しているので、リレー接点4
3の常開接点を開いたままにしておくこととな
り、バイパス電磁弁25,26のコイルVa〜b
b〜cには通電されない。こうして四方弁4のコ
イル41に通電されているため、圧縮機2から吐
出された冷媒ガスは四方弁4を通りガス側主管
9、ガス側支管8a、電磁弁21aを通つて室内
ユニツト30aの室内側熱交換器31aに至つて
放熱し液化し、さらに接続口16a、電磁弁15
a、液側支管7a、絞り装置22a、分岐点1
3、受液器14を通つて暖房用絞り機構11で減
圧され、暖房運転時の低圧回路20を通つて熱源
側熱交換器5で蒸発し再び四方弁4を通過してア
キユムレータ10を経て圧縮機2に戻るという冷
凍サイクルを形成し、室内ユニツト30aは暖房
運転を行なう。なお、この場合、室外送風機及び
室内ユニツト30a内の室内送風機が作動してい
ることは当然である。またこの室内ユニツト30
aの暖房運転時に、他の室内ユニツト30b,3
0cは運転スイツチ40b,40cの接点を開放
しているため暖房運転は行なわれず、電磁弁15
b,21b,15c,21cのコイルSVLb
SVGb,SVLc,SVGcには通電されていないから電
磁弁15b,21b,15c,21cはその通路
を閉止している。従つて電磁弁21bおよび電磁
弁15bにより閉塞され室内側熱交換器31bを
含む冷凍回路32bおよび電磁弁21cおよび電
磁弁15cにより閉塞され室内側熱交換器31c
を含む冷凍回路32cは冷媒が流れない状態にあ
る。しかし実際には電磁弁21a,21b,21
c,15a,15b,15c等は完完全に冷媒の
流通を停止できず若干の洩れがあるので、停止中
の室内ユニツト30b,30cの室内側熱交換器
31b,31c内に徐々に冷媒が溜り込んでいく
ことになる。ところが室内側熱交換器31b,3
1cに冷媒がたくさん溜り込んでいくと運転中の
室内ユニツト30aの室内側熱交換器31aを流
れる冷媒量が減少するため暖房能力の低下をを来
たしたり、圧縮機2の損焼をまねいたりするとい
う問題が生じる。
Now, if the operation switch 40a of the indoor unit 30a is turned on with the cooling/heating changeover switch 42 turned to the heating side contact 48 side, the control device 44 consisting of a microcomputer etc. will detect that the indoor unit 30a is stopped. By detecting that the first signal for rotating the motor MC of the compressor 2 has been issued, the relay contact 46a is closed by the action of the coil SV La of the solenoid valve 21a, the solenoid switch MR a , and the control device 44. A voltage is applied to the coil SV Ga of the solenoid valve 15a through the solenoid valve 1.
5a and 21a at the same time, the normally open contact MR as of the electromagnetic switch MR a is closed, and the motor MC of the compressor 2 is rotated. At this time, as mentioned earlier, the control device 44
detects that the indoor unit 30a has issued the first control signal to rotate the motor MC of the compressor 2, which had been stopped, so the relay contact 4
The normally open contacts of No. 3 are kept open, and the coils V a - b of the bypass solenoid valves 25 and 26 are
V b - c are not energized. Since the coil 41 of the four-way valve 4 is energized in this way, the refrigerant gas discharged from the compressor 2 passes through the four-way valve 4, the gas side main pipe 9, the gas side branch pipe 8a, and the solenoid valve 21a, and enters the indoor unit 30a. The heat is radiated and liquefied to the inner heat exchanger 31a, and further to the connection port 16a and the solenoid valve 15.
a, liquid side branch pipe 7a, throttle device 22a, branch point 1
3. Passes through the liquid receiver 14, is depressurized by the heating throttle mechanism 11, passes through the low pressure circuit 20 during heating operation, evaporates in the heat source side heat exchanger 5, passes through the four-way valve 4 again, and is compressed via the accumulator 10. A refrigeration cycle is formed in which the air returns to the air conditioner 2, and the indoor unit 30a performs heating operation. Note that in this case, it goes without saying that the outdoor blower and the indoor blower in the indoor unit 30a are operating. Also, this indoor unit 30
During heating operation of unit a, other indoor units 30b, 3
0c, the contacts of the operation switches 40b and 40c are open, so heating operation is not performed, and the solenoid valve 15 is closed.
Coils SV Lb of b, 21b, 15c, 21c,
Since SV Gb , SV Lc , and SV Gc are not energized, the solenoid valves 15b, 21b, 15c, and 21c close their passages. Therefore, the refrigeration circuit 32b including the indoor heat exchanger 31b is closed by the solenoid valve 21b and the solenoid valve 15b, and the indoor heat exchanger 31c is closed by the solenoid valve 21c and the solenoid valve 15c.
The refrigerating circuit 32c including the refrigerant is in a state where no refrigerant flows. However, in reality, the solenoid valves 21a, 21b, 21
c, 15a, 15b, 15c, etc. cannot completely stop the flow of refrigerant and there is some leakage, so refrigerant gradually accumulates in the indoor heat exchangers 31b, 31c of the indoor units 30b, 30c that are stopped. It's going to get complicated. However, the indoor heat exchanger 31b, 3
If a large amount of refrigerant accumulates in the compressor 1c, the amount of refrigerant flowing through the indoor heat exchanger 31a of the indoor unit 30a during operation will decrease, resulting in a decrease in the heating capacity and damage to the compressor 2. A problem arises.

そこで一端を暖房運転時の低圧回路20に接続
したバイパス管19b,19cにより室内側熱交
換器31c,31b内に溜り込んだ冷媒を抜き出
すようにしている。従つて停止中の室内ユニツト
30b,30cの室内側熱交換器31b,31c
内の冷媒圧力は暖房運転時の低圧回路20と同じ
低圧状態となつている。
Therefore, the refrigerant accumulated in the indoor heat exchangers 31c, 31b is extracted by bypass pipes 19b, 19c, one end of which is connected to the low pressure circuit 20 during heating operation. Therefore, the indoor heat exchangers 31b, 31c of the indoor units 30b, 30c that are stopped
The pressure of the refrigerant inside is at the same low pressure state as in the low pressure circuit 20 during heating operation.

こうした状況下において、他の室内ユニツト3
0bを追加運転する場合、従来の制御方法では電
磁弁21bと15bを同時に開放してたため低圧
の室内側熱交換器31b中に圧力差により高圧の
冷媒ガスが高速で流れ込むため大きい冷媒衝撃音
や振動、激しい電磁弁21bの弁当り音等が発生
していた。
Under these circumstances, other indoor units 3
When 0b is additionally operated, the conventional control method opens the solenoid valves 21b and 15b at the same time, which causes high-pressure refrigerant gas to flow at high speed into the low-pressure indoor heat exchanger 31b due to the pressure difference, resulting in loud refrigerant impact noise and Vibrations, intense noise from the electromagnetic valve 21b, etc. were occurring.

そこで本発明の場合は第3図の弁動作タイミン
グチヤートに示す通り、室内ユニツト30bの運
転スイツチ40bを投入すると、マイクロコンピ
ユータ等より成る制御装置44は、運転スイツチ
40aがすでに投入されていることから運転スイ
ツチ40bが圧縮機2のモーターMCの運転中に
投入されたことを検出し、リレー接点46bの接
点を開いたままにしさらにリレー接点43の常開
接点を閉じてバイパス電磁弁25,26のコイル
a〜b,Vb〜cに電圧をかけると電圧の液が流れ
ている冷媒回路32aと今迄停止していたため低
圧となつていた冷凍回路32b,32cはバイパ
ス管23,24により連通され、液冷媒が侵入す
ることにより冷凍回路32b,32cの圧力は
徐々に上昇していく。ここでバイパス管24を通
つて冷凍回路32bに流れ込む冷媒は液状である
ため流入スピードは遅く衝撃音は発生しない。ま
た電磁弁25,26のコイルSVa〜b,SVb〜c
の通電と同時に、追加運転された室内ユニツト3
0b用の液側の電磁弁15bのコイルSVLbにも
通電するので、液側主管6中の高圧の液冷媒も冷
凍回路32bを通つて室内側熱交換器31bへ流
れ込むことになる。そのため室内側熱交換器31
b内の圧力を速く上昇させることが出来る。従つ
て衝撃音を発生させずかつ急速に、室内側熱交換
器31b内の圧力を上昇させることができる。
Therefore, in the case of the present invention, when the operation switch 40b of the indoor unit 30b is turned on, as shown in the valve operation timing chart in FIG. The operation switch 40b detects that the motor MC of the compressor 2 is turned on while it is in operation, keeps the relay contact 46b open, closes the normally open relay contact 43, and closes the bypass solenoid valves 25 and 26. When a voltage is applied to the coils V a to b and V b to c , the refrigerant circuit 32 a in which voltage liquid is flowing and the refrigeration circuits 32 b and 32 c, which have been stopped and have a low pressure until now, are communicated through bypass pipes 23 and 24. As the liquid refrigerant enters, the pressure in the refrigeration circuits 32b and 32c gradually increases. Here, since the refrigerant flowing into the refrigeration circuit 32b through the bypass pipe 24 is in liquid form, the inflow speed is slow and no impact noise is generated. Also, at the same time as the coils SV a to b and SV b to c of the solenoid valves 25 and 26 are energized, the indoor unit 3 that is additionally operated is
Since the coil SV Lb of the liquid-side electromagnetic valve 15b for 0b is also energized, the high-pressure liquid refrigerant in the liquid-side main pipe 6 also flows into the indoor heat exchanger 31b through the refrigeration circuit 32b. Therefore, the indoor heat exchanger 31
It is possible to quickly increase the pressure inside b. Therefore, the pressure inside the indoor heat exchanger 31b can be rapidly increased without generating impact noise.

こうして冷媒回路32b,32c内の圧力があ
る程度上昇し、電磁弁21bを開放した時室内側
熱交換器31bに流入する冷媒圧力と余り圧力差
がなくなると思われる時点で制御装置44により
リレー接点43の接点を開き、リレー46bの常
閉接点を閉じると室内ユニツト30bに冷媒を供
給する冷凍回路32b中の電磁弁21bのコイル
SVGbに通電され電磁弁21bの通路が開放され
るので、電磁弁21bを通つて流入する冷媒は小
さな圧力差の冷凍回路32b内にはいるので衝撃
音も振動も発生しない。又電磁弁21bの弁も急
激な弁当りをしないので弁をいためることがな
い。この冷凍回路中に設けられているバイパス電
磁弁25,26は、どの室内ユニツトが運転され
ている時どの室内ユニツトが追加運転されるかわ
からないので、例えばバイパス管24において冷
凍回路32a側から冷凍回路32b側へ、又ある
時は冷凍回路32b側から冷凍回路32a側へ流
れることがあるので双方向流通性の電磁弁である
ことが必要である。又本実施例では、バイパス管
23,24の2本しか設けていないが、必要によ
つては冷凍回路32aと32cを結ぶ3本目のバ
イパス管を設け、このバイパス管に双方向性の電
磁弁を介設してもよい。
In this way, the pressure in the refrigerant circuits 32b, 32c increases to a certain extent, and at a point when it is thought that there will be no significant pressure difference between the pressure of the refrigerant flowing into the indoor heat exchanger 31b when the solenoid valve 21b is opened, the control device 44 closes the relay contact 43. When the contact of the relay 46b is opened and the normally closed contact of the relay 46b is closed, the coil of the solenoid valve 21b in the refrigeration circuit 32b supplies refrigerant to the indoor unit 30b.
Since SV Gb is energized and the passage of the solenoid valve 21b is opened, the refrigerant flowing through the solenoid valve 21b enters the refrigeration circuit 32b with a small pressure difference, so that no impact noise or vibration is generated. Also, the solenoid valve 21b does not suddenly hit the valve, so the valve will not be damaged. Bypass solenoid valves 25 and 26 provided in this refrigeration circuit are used to operate the refrigeration circuit from the refrigeration circuit 32a side in the bypass pipe 24, for example, since it is not known which indoor unit is being operated and which indoor unit will be additionally operated. Since it may flow from the refrigeration circuit 32b side to the refrigeration circuit 32a side, or from the refrigeration circuit 32b side to the refrigeration circuit 32a side, the solenoid valve must be bidirectional. Further, in this embodiment, only two bypass pipes 23 and 24 are provided, but if necessary, a third bypass pipe connecting the refrigeration circuits 32a and 32c is provided, and a bidirectional solenoid valve is installed in this bypass pipe. may also be provided.

又バイパス管の位置も電磁弁15a,15b,
15cと接続口16a,16b,16cの間の液
側支管7a,7b,7cどうしを結んでいるが、
電磁弁15a,15b,15c及びバイパス電磁
弁25,26の流通抵抗の小さい場合は、絞り装
置22a,22b,22cと電磁弁15a,15
b,15cを結ぶ間の液側支管7a,7b,7c
どうしを結んでもまつたく同様の効果を期待でき
ることはいうまでもない。
Moreover, the position of the bypass pipe is also the same as that of the solenoid valves 15a, 15b,
Liquid side branch pipes 7a, 7b, 7c between 15c and connection ports 16a, 16b, 16c are connected,
When the flow resistance of the solenoid valves 15a, 15b, 15c and the bypass solenoid valves 25, 26 is small, the throttle devices 22a, 22b, 22c and the solenoid valves 15a, 15
Liquid side branch pipes 7a, 7b, 7c between connecting b, 15c
It goes without saying that even if they are tied together, the same effect can be expected.

さらに本実施例では室内ユニツト30a運転中
に室内ユニツト30cを運転するときにはバイパ
ス電磁弁25,26の双方を開放する必要がある
が、室内ユニツト30a運転中に室内ユニツト3
0bを運転する場合はバイパス電磁弁25のみを
開放するような電気回路としておいてもよい。さ
らに第2図の電気回路において、運転スイツチ4
0a,40b,40cと直列に温度調節器が設け
られ、他室内ユニツトが運転され圧縮運転中に、
運転スイツチが投入され温度調節器が復帰する場
合に同様の制御を行なえば、まつたく同様の効果
が得られることもいうまでもないことである。さ
らにバイパス電磁弁25,26の開放時間はマイ
クロコンピユータにより種々の条件を考慮に入れ
てその都度演算し決めさせてもよい。即ち種々の
条件とは例えば運転室内ユニツト数、サーモスタ
ツト温度、サーモスタツトOFF時間等の種々の
要因である。又、圧力スイツチ等によりバイパス
電磁弁を制御してもよい。
Furthermore, in this embodiment, when operating the indoor unit 30c while the indoor unit 30a is operating, it is necessary to open both the bypass solenoid valves 25 and 26;
When operating 0b, the electric circuit may be configured such that only the bypass solenoid valve 25 is opened. Furthermore, in the electric circuit shown in FIG.
A temperature controller is installed in series with 0a, 40b, and 40c, and when other indoor units are in operation and compression operation is in progress,
It goes without saying that if similar control is performed when the operating switch is turned on and the temperature regulator is reset, the same effect can be obtained. Further, the opening time of the bypass solenoid valves 25 and 26 may be calculated and determined each time by a microcomputer, taking various conditions into account. That is, the various conditions include various factors such as the number of units in the driver's room, thermostat temperature, thermostat OFF time, and the like. Alternatively, the bypass solenoid valve may be controlled by a pressure switch or the like.

上述の如く本発明による多室形空気調和機は、
圧縮機が動いていて少くとも1台の室内ユニツト
が暖房運転中、他の室内ユニツトを追加暖房運転
又はサーモスタツト等で復帰運転させるとき、絞
り装置より室内ユニツト側の液側支管どうしをバ
イパスしかつ追加暖房運転室の液側電磁弁を開放
して休止していた室内ユニツトの室内側熱交換器
内の圧力を上昇させた後ガス側電磁弁を開放する
ようにしているので、室内ユニツトから冷媒衝撃
音や振動が出ず静粛な暖房運転が出来、かつ激し
いガス側電磁弁の弁当りも発生せずガス側電磁弁
の寿命を長くすることが出来る等の大きな効果が
ある。
As mentioned above, the multi-chamber air conditioner according to the present invention has the following features:
When the compressor is running and at least one indoor unit is in heating operation, when other indoor units are to be brought into additional heating operation or returned to operation by a thermostat, etc., bypass the liquid side branch pipes on the indoor unit side from the throttle device. In addition, the liquid side solenoid valve in the additional heating operation room is opened to increase the pressure in the indoor heat exchanger of the indoor unit that has been inactive, and then the gas side solenoid valve is opened. It has great effects such as quiet heating operation without refrigerant impact noise or vibration, and the ability to prolong the life of the gas side solenoid valve without causing severe gas side solenoid valve punching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多室形空気調和機の一実
施例の冷凍サイクル図、第2図は同多室形空気調
和機の一実施例の電気回路図、第3図は電磁弁の
動作タイミングチヤート図である。 1……室外ユニツト、7a,7b,7c……液
側支管、15a,15b,15c……電磁弁、1
9a,19b,19c……バイパス管(液抜き
管)、21a,21b,21c……電磁弁、22
a,22b,22c……絞り装置、23,24…
…バイパス管、25,26……バイパス電磁弁、
30a,30b,30c……室内ユニツト、44
……制御装置、43,46a,46b,46c…
…リレー接点、MC……圧縮機のモータ、SVLa
SVLb,SVLc……電磁弁15a,15b,15c
のコイル、SVGa,SVGb,SVGc……電磁弁21
a,21b,21cのコイル、Va〜b……電磁弁
25のコイル、Vb〜c……電磁弁26のコイル。
Fig. 1 is a refrigeration cycle diagram of an embodiment of the multi-chamber air conditioner according to the present invention, Fig. 2 is an electric circuit diagram of an embodiment of the multi-chamber air conditioner, and Fig. 3 is the operation of the solenoid valve. It is a timing chart diagram. 1... Outdoor unit, 7a, 7b, 7c... Liquid side branch pipe, 15a, 15b, 15c... Solenoid valve, 1
9a, 19b, 19c...Bypass pipe (liquid drain pipe), 21a, 21b, 21c...Solenoid valve, 22
a, 22b, 22c... diaphragm device, 23, 24...
...Bypass pipe, 25, 26...Bypass solenoid valve,
30a, 30b, 30c...indoor unit, 44
...control device, 43, 46a, 46b, 46c...
...Relay contact, MC...Compressor motor, SV La ,
SV Lb , SV Lc ... Solenoid valves 15a, 15b, 15c
coils, SV Ga , SV Gb , SV Gc ...Solenoid valve 21
Coils a, 21b, 21c, V a - b ... Coils of the solenoid valve 25, V b - c ... Coils of the solenoid valve 26.

Claims (1)

【特許請求の範囲】[Claims] 1 1台の室外ユニツトに配管接続された複数台
の室内ユニツトと、前記室外ユニツトの液側主管
を前記室内ユニツトの数に分岐してできた液側支
管中に直列に設けられた絞り装置および液側電磁
弁と、前記それぞれの絞り装置と前記それぞれの
室内ユニツトの室内側熱交換器との間の前記それ
ぞれの液側支管を連通するバイパス管と、前記バ
イパス管を連通遮断するバイパス電磁弁と、前記
室外ユニツトのガス側主管を前記室内ユニツトの
数に分岐してできたガス側支管中に設けられたガ
ス側電磁弁と、前記それぞれの液側支管と暖房運
転時低圧となる管路とをそれぞれ接続する液抜き
管と、いずれかの室内ユニツトが暖房運転されて
いる時に他の室内ユニツトを復帰運転又は追加暖
房運転するスイツチ手段と、前記スイツチ手段が
投入された時前記他の室内ユニツトに対応する液
側電磁弁を開放する第1の開放手段と、前記暖房
運転中の室内ユニツトに対応する液側支管と前記
他の室内ユニツトに対応する液側支管とを連通す
る前記バイパス管に設けられた前記バイパス電磁
弁を開放する第2の開放手段と、前記他の室内ユ
ニツトに対応するガス側支管中のガス側電磁弁を
開放する第3の開放手段と、前記第1、第2の開
放手段の作動後所定時間経過して前記第3の開放
手段を作動する遅延装置を設けた多室形空気調和
機。
1. A plurality of indoor units pipe-connected to one outdoor unit, a throttling device installed in series in the liquid side branch pipes created by branching the liquid side main pipe of the outdoor unit to the number of indoor units, and a liquid-side solenoid valve, a bypass pipe that communicates each of the liquid-side branch pipes between each of the throttle devices and the indoor heat exchanger of each of the indoor units, and a bypass solenoid valve that connects and disconnects the bypass pipes. , a gas side solenoid valve installed in a gas side branch pipe created by branching the gas side main pipe of the outdoor unit to the number of indoor units, and a pipe line that becomes low pressure during heating operation with each of the liquid side branch pipes. and a switch means for returning or additionally heating the other indoor unit when one of the indoor units is in the heating operation, and a switch means that connects the other indoor unit to the other indoor unit when the switch means is turned on. a first opening means for opening a liquid-side solenoid valve corresponding to the unit; and the bypass pipe that communicates the liquid-side branch pipe corresponding to the indoor unit in heating operation with the liquid-side branch pipe corresponding to the other indoor unit. a second opening means for opening the bypass solenoid valve provided in the second indoor unit; a third opening means for opening the gas side solenoid valve in the gas side branch pipe corresponding to the other indoor unit; A multi-room air conditioner comprising a delay device that operates the third opening means after a predetermined period of time has elapsed after the second opening means is activated.
JP8572280A 1980-06-24 1980-06-24 Multichamber type airconditioner Granted JPS5712265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8572280A JPS5712265A (en) 1980-06-24 1980-06-24 Multichamber type airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8572280A JPS5712265A (en) 1980-06-24 1980-06-24 Multichamber type airconditioner

Publications (2)

Publication Number Publication Date
JPS5712265A JPS5712265A (en) 1982-01-22
JPS6152913B2 true JPS6152913B2 (en) 1986-11-15

Family

ID=13866727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8572280A Granted JPS5712265A (en) 1980-06-24 1980-06-24 Multichamber type airconditioner

Country Status (1)

Country Link
JP (1) JPS5712265A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538545Y2 (en) * 1986-06-12 1993-09-29

Also Published As

Publication number Publication date
JPS5712265A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
KR100791121B1 (en) Method for controlling stop operating of air conditioner
JP4069947B2 (en) Refrigeration equipment
JPH079331B2 (en) Operation control method for heat pump type air conditioner
JP3956784B2 (en) Refrigeration equipment
JP3199054B2 (en) Refrigeration equipment
JP3004676B2 (en) Refrigeration cycle device
JP2008209022A (en) Multi-air conditioner
JPS6152913B2 (en)
JP2877412B2 (en) Air conditioner
JP2003042585A (en) Air conditioner
JPH0519724Y2 (en)
JP4179365B2 (en) Air conditioner
JPS6152905B2 (en)
JPH0752031B2 (en) Heat pump type air conditioner
JPS6250737B2 (en)
JPH074766A (en) Air-conditioning device
JPH0694954B2 (en) Refrigerator superheat control device
JPS5914699B2 (en) Multi-room air conditioner
JP3059886B2 (en) Refrigeration equipment
JPS5914700B2 (en) Multi-room air conditioner
KR100800623B1 (en) Control method for air-conditioner
JPS5914701B2 (en) Refrigeration circuit of multi-room air conditioner
JPS6152912B2 (en)
JPS6221889Y2 (en)
JPS6025706B2 (en) Refrigerator control device