JPS6122749B2 - - Google Patents

Info

Publication number
JPS6122749B2
JPS6122749B2 JP9093380A JP9093380A JPS6122749B2 JP S6122749 B2 JPS6122749 B2 JP S6122749B2 JP 9093380 A JP9093380 A JP 9093380A JP 9093380 A JP9093380 A JP 9093380A JP S6122749 B2 JPS6122749 B2 JP S6122749B2
Authority
JP
Japan
Prior art keywords
refrigerant
heating
valve
capillary
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9093380A
Other languages
Japanese (ja)
Other versions
JPS5716767A (en
Inventor
Shunsuke Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9093380A priority Critical patent/JPS5716767A/en
Publication of JPS5716767A publication Critical patent/JPS5716767A/en
Publication of JPS6122749B2 publication Critical patent/JPS6122749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は空気調和機の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in air conditioners.

本発明において第1の目的とするところは、従
来冷房時の2相流冷媒の分配が困難な場合又はこ
の分配が理想的に行われた場合においても、空調
機の負荷或は室内ユニツトの据付位置の差による
冷媒の圧力損失差等により円滑に操作しえない冷
房時の負荷に見合つた制御を可能にするものであ
る。
The first objective of the present invention is to reduce the load of air conditioners or the installation of indoor units even when distribution of two-phase refrigerant during cooling is difficult or even when this distribution is ideally performed. This enables control appropriate to the load during cooling, which cannot be operated smoothly due to differences in refrigerant pressure loss due to differences in position.

又第2の目的は暖房時は冷媒循環量も少なく凝
縮しやすいためキヤピラリにて制御し、同時に戻
しキヤピラリを兼用させることで冷媒システムを
簡略明解にしコストダウンにしたことである。
The second purpose is to simplify and simplify the refrigerant system and reduce costs by using a capillary to control the amount of refrigerant being circulated and condensation easily during heating, and at the same time also using a return capillary.

而して従来の空気調和機の1例を説明すると、
まず冷房運転について第1図に示す如く圧縮機1
から吐出した高圧ガス冷媒は四方弁15(図示破
線)に入り、凝縮器として作動する室外コイル1
6にて室外フアン14にて冷却され、ここで凝縮
し、液冷媒となり逆止弁13を経てレシーバー1
0に入り、ここで不凝縮分のガス冷媒或は余剰の
冷媒を残し、液側電磁弁4A,4B,4Cを経て
液側操作弁7A,7B,7cから液配管17A,
17B,17Cを経て各室内ユニツトA,B,C
に接続している。次いで各室内ユニツトに流入し
た高圧液冷媒は液側操作弁24A,24B,24
Cを経て膨脹弁20A,20B,20Cにて断熱
膨脹し、蒸発器として働く各室内コイル23A,
23B,23Cで室内フアン22A,22B,2
2Cにより加熱され、自身は蒸発しガス冷媒とな
り室内空気から蒸発潜熱をうばうため、室内にい
わゆる冷房される。次いでガス側操作弁26A,
26B,26Cからガス配管18A,18B,1
8Cを経て室外ユニツトに接続される。ガス側操
作弁8A,8B,8Cを経て室外ユニツトに戻つ
た低圧ガス冷媒はガス側電磁弁5A,5B,5C
を経て四方弁15を通りアキユムレータ11を経
て圧縮機1に吸入されてサイクルを形成する。
To explain one example of a conventional air conditioner,
First, regarding the cooling operation, as shown in Fig. 1, the compressor 1
The high-pressure gas refrigerant discharged from the 4-way valve 15 (broken line in the figure) enters the outdoor coil 1 which operates as a condenser.
6, it is cooled by an outdoor fan 14, where it is condensed and becomes a liquid refrigerant, passing through a check valve 13 to the receiver 1.
0, leaving the non-condensable gas refrigerant or surplus refrigerant, and passing through the liquid side solenoid valves 4A, 4B, 4C, and from the liquid side operation valves 7A, 7B, 7c to the liquid piping 17A,
Each indoor unit A, B, C via 17B, 17C
is connected to. Next, the high pressure liquid refrigerant flowing into each indoor unit passes through the liquid side operation valves 24A, 24B, 24.
Each indoor coil 23A, which expands adiabatically through expansion valves 20A, 20B, and 20C through C, and works as an evaporator.
Indoor fans 22A, 22B, 2 with 23B and 23C
It is heated by 2C and evaporates to become a gas refrigerant, absorbing the latent heat of vaporization from the indoor air, thereby cooling the room. Next, the gas side operation valve 26A,
Gas piping 18A, 18B, 1 from 26B, 26C
Connected to the outdoor unit via 8C. The low pressure gas refrigerant returned to the outdoor unit via the gas side operating valves 8A, 8B, 8C is passed through the gas side solenoid valves 5A, 5B, 5C.
It passes through the four-way valve 15, the accumulator 11, and is sucked into the compressor 1 to form a cycle.

なお、上記液側電磁弁4A,4B,4Cは室内
ユニツトA,B,Cの運転に応じ開閉するもので
あり、ガス側電磁弁5A,5B,5Cと同時に開
閉する。又液側操作弁7A,7B,7Cはガス側
電磁弁5A,5B,5Cが逆止弁を内蔵するよう
な場合必ずしも開く必要はない。
The liquid side solenoid valves 4A, 4B, and 4C are opened and closed according to the operation of the indoor units A, B, and C, and are opened and closed simultaneously with the gas side solenoid valves 5A, 5B, and 5C. Further, the liquid side operation valves 7A, 7B, and 7C do not necessarily need to be opened when the gas side solenoid valves 5A, 5B, and 5C have built-in check valves.

又暖房については基本的な冷凍サイクルは前記
冷房と同一であるが、室外コイル16が蒸発器と
して働くこと、各室内コイル23A,23B,2
3Cが凝縮器として働くこと、及び四方弁15が
図示実線側に連絡されることが主に異るものであ
る。
Regarding heating, the basic refrigeration cycle is the same as that for cooling, but the outdoor coil 16 acts as an evaporator, and each indoor coil 23A, 23B, 2
The main differences are that 3C functions as a condenser and that the four-way valve 15 is connected to the solid line side in the figure.

而して圧縮機1から吐出された冷媒は四方弁1
5からガス側電磁弁5A,5B,5C及びガス側
操作弁8A,8B,8Cを経てガス配管18A,
18B,18Cにより室内ユニツトA,B,Cの
ガス側操作弁26A,26B,26Cに接続さ
れ、室内コイル23A,23B,23Cにて室内
フアン22A,22B,22Cにて冷却され自身
は凝縮液化し、ここで室内空気へ凝縮潜熱を放出
するため、室内はいわゆる暖房される。次いで逆
止弁21A,21B,21Cを通つて液側操作弁
24A,24B,24C、液配管17A,17
B,17C、室外ユニツトの液側操作弁7A,7
B,7C、液側電磁弁4A,4B,4Cを経てレ
シーバー10を通り膨脹弁12により断熱膨脹
し、室外コイル16に入つて室外フアン14によ
り加熱され蒸発気化して低圧ガス冷媒となり四方
弁15を通りアキユムレータ11を経て圧縮機1
に吸入されてサイクルを形成する。
Then, the refrigerant discharged from the compressor 1 passes through the four-way valve 1.
5 to gas side solenoid valves 5A, 5B, 5C and gas side operation valves 8A, 8B, 8C to gas piping 18A,
It is connected to the gas side operation valves 26A, 26B, 26C of the indoor units A, B, C through 18B, 18C, and is cooled by the indoor fans 22A, 22B, 22C through the indoor coils 23A, 23B, 23C, and is condensed and liquefied. Here, the latent heat of condensation is released to the indoor air, so the indoor room is heated. Next, through the check valves 21A, 21B, 21C, the liquid side operation valves 24A, 24B, 24C, and the liquid pipes 17A, 17.
B, 17C, outdoor unit liquid side operation valve 7A, 7
B, 7C, through the liquid side solenoid valves 4A, 4B, 4C, passes through the receiver 10, expands adiabatically by the expansion valve 12, enters the outdoor coil 16, is heated by the outdoor fan 14, evaporates, and becomes a low-pressure gas refrigerant.Four-way valve 15 to the compressor 1 via the accumulator 11
is inhaled to form a cycle.

なお冷房運転時において各室内コイル出口の過
熱度を一定に保つため膨脹弁20A,20B,2
0Cを用いるのであるがこの過熱度調節のため室
内コイル23A,23B,23Cの出口配管温度
を検出する膨脹弁の感温筒28A,28B,28
Cを室内コイル出口配管27A,27B,27C
に取付ける。この感温筒は膨脹弁20A,20
B,20Cとキヤピラリチユーブ29A,29
B,29Cにて連結している。
In order to keep the degree of superheat at the outlet of each indoor coil constant during cooling operation, expansion valves 20A, 20B, 2 are provided.
0C is used, and in order to adjust the degree of superheating, the temperature sensing cylinders 28A, 28B, 28 of the expansion valve detect the temperature of the outlet pipes of the indoor coils 23A, 23B, 23C.
C to indoor coil outlet piping 27A, 27B, 27C
Attach to. This temperature-sensitive cylinder has expansion valves 20A, 20
B, 20C and capillary tube 29A, 29
B, connected at 29C.

なお暖房運転において例えば室内ユニツトAの
みを運転する場合、ガス側電磁弁5B,5C及び
液側電磁弁4B,4Cは閉じられているが、室内
ユニツトB及びCはガス側電磁弁5B,5C、液
側電磁弁4B,4Cからの洩れによる冷媒が凝縮
し徐々にこれが進めば冷媒サイクルの冷媒不足と
なる。その理由は室内ユニツトの室内コイル温度
は20℃程度であり、これに比して高圧冷媒の凝縮
温度は40℃程度であるので温度差があり室内ユニ
ツト内に冷媒は凝縮する。
Note that when operating only indoor unit A during heating operation, for example, gas side solenoid valves 5B, 5C and liquid side solenoid valves 4B, 4C are closed, but indoor units B and C close gas side solenoid valves 5B, 5C, If the refrigerant leaks from the liquid-side solenoid valves 4B and 4C and condenses, this will gradually progress, resulting in a refrigerant shortage in the refrigerant cycle. The reason for this is that the indoor coil temperature of the indoor unit is about 20°C, whereas the condensation temperature of high-pressure refrigerant is about 40°C, so there is a temperature difference and the refrigerant condenses inside the indoor unit.

又上記は室内ユニツトAのみを運転する場合に
ついて述べたが例えば室内ユニツトAを運転し室
内ユニツトBに切替える場合にはユニツトA中に
はかなりの量の液冷媒が運転中に貯溜され、この
状態のままユニツトBの運転が継続された場合ユ
ニツトBは冷媒不足の運転となり、能力不足、圧
縮機損傷等の問題を生ずる。これを防止するため
運転を行つていない室内ユニツトを冷凍サイクル
の低圧側膨脹手段以後の配管機器に接続するため
液側操作弁7A,7B,7Cと液側電磁弁4A,
4B,4Cとの間からバイパス回路をとり逆止弁
9A,9B,9Cと冷媒戻し用キヤピラリ6A,
6B,6Cを夫々直列に接続しそれらを前記膨脹
弁12と室外コイル16との間の低圧配管部分に
接続する。
Furthermore, the above description has been made regarding the case where only indoor unit A is operated, but for example, when operating indoor unit A and switching to indoor unit B, a considerable amount of liquid refrigerant is stored in unit A during operation, and this state If unit B continues to operate as it is, unit B will operate with a lack of refrigerant, resulting in problems such as insufficient capacity and damage to the compressor. To prevent this, in order to connect the indoor unit that is not in operation to the piping equipment after the low pressure side expansion means of the refrigeration cycle, the liquid side operating valves 7A, 7B, 7C and the liquid side solenoid valve 4A,
Take a bypass circuit from between 4B and 4C and connect the check valves 9A, 9B, 9C and the refrigerant return capillary 6A,
6B and 6C are connected in series, respectively, and connected to the low pressure piping section between the expansion valve 12 and the outdoor coil 16.

このとき運転中の室内ユニツト例えばユニツト
Aの場合、液側操作弁7Aから液側電磁弁4Aを
経てレシーバ10、膨脹弁12をでるまでの通常
運転における圧力低下に比べ冷媒戻し用キヤピラ
リ6Aによる圧力低下は大きくなるよう選定され
ることから液側操作弁7Aから冷媒戻し用キヤピ
ラリ6Aに流れる冷媒は非常に少くなり、冷媒戻
し用キヤピラリ6A,6Bは休止ユニツトB,C
の冷媒のみが回収されることとなる。その理由は
膨脹弁12は負荷に応じて開度(抵抗)を変化さ
せ、任意に開度(抵抗)を選定することはできな
い。一方冷媒戻し用キヤピラリーは通常運転にお
ける膨脹弁開度に比べ大きな抵抗となるよう選定
することは任意に出来る。
At this time, in the case of the indoor unit in operation, for example, unit A, the pressure due to the refrigerant return capillary 6A is higher than the pressure drop in normal operation from the liquid side operation valve 7A through the liquid side solenoid valve 4A to the receiver 10 and the expansion valve 12. Since the drop is selected to be large, the amount of refrigerant flowing from the liquid side operation valve 7A to the refrigerant return capillary 6A is very small, and the refrigerant return capillaries 6A and 6B are connected to the rest units B and C.
of refrigerant will be recovered. The reason is that the expansion valve 12 changes its opening degree (resistance) depending on the load, and the opening degree (resistance) cannot be arbitrarily selected. On the other hand, the refrigerant return capillary can be arbitrarily selected to provide greater resistance than the degree of opening of the expansion valve in normal operation.

この場合室内ユニツトに膨脹弁20A,20
B,20Cを有することから冷房時騒音(冷媒流
動音)、振動(冷媒膨脹に伴うもの)が生じ特に
近時室内機の全体の騒音レベルが下つてきている
こともあり大きな問題となる。又冷房用の膨脹弁
20A,20B,20Cと暖房用の膨脹弁12の
バイパス側に用いる逆止弁13,21A,21
B,21Cを必要とすると共に小型室内ユニツト
にするためには膨脹弁、逆止弁が障害となる等の
欠点があつた。
In this case, the indoor unit has expansion valves 20A and 20.
B, 20C, noise (refrigerant flow noise) and vibration (accompanied by refrigerant expansion) occur during cooling, which becomes a big problem especially as the overall noise level of indoor units has been decreasing recently. In addition, check valves 13, 21A, 21 are used on the bypass side of the expansion valves 20A, 20B, 20C for cooling and the expansion valve 12 for heating.
B and 21C were required, and the expansion valve and check valve were an obstacle to making it into a small indoor unit.

本発明はかかる欠点を改善するために鋭意研究
を行つた結果、室内ユニツトA,B,Cから膨脹
弁及び逆止弁を除去し且つ室外ユニツトの中に膨
脹弁を取付けたものである。
The present invention was developed as a result of intensive research to improve these drawbacks, and as a result, the expansion valves and check valves were removed from the indoor units A, B, and C, and the expansion valves were installed in the outdoor units.

即ち本発明は圧縮機、室外熱交換器を設けてな
る1個の室外ユニツトと、室内熱交換器を設けた
複数個の室内ユニツトとを接続してなるヒートポ
ンプ式空気調和機において、室外ユニツトに冷房
用膨脹弁及び遮断弁を夫々設けた冷房用膨脹機構
と、暖房用キヤピラリ及び逆止弁とを夫々設けた
暖房用膨脹機構とを並列に接続してなる膨脹ユニ
ツトを、上記室内ユニツトと同数に並列して冷媒
配管に接続したことを特徴とするものである。
That is, the present invention provides a heat pump air conditioner in which one outdoor unit equipped with a compressor and an outdoor heat exchanger is connected to a plurality of indoor units equipped with indoor heat exchangers. The same number of expansion units as the above-mentioned indoor units are constructed by connecting in parallel a cooling expansion mechanism equipped with a cooling expansion valve and a shutoff valve, and a heating expansion mechanism equipped with a heating capillary and a check valve, respectively. It is characterized by being connected to the refrigerant pipe in parallel with the refrigerant pipe.

本発明の実施例を示して詳細に説明する。 Examples of the present invention will be shown and explained in detail.

実施例 1 冷房運転について第2図に示す如く、圧縮機1
から吐出された高圧ガス冷媒は四方弁15(図示
破線)に入り、室外コイル16にて室外フアン1
4によつて冷却され凝縮し液冷媒となりレシーバ
10に入り逆止弁19を通つて液側電磁弁4A,
4B,4Cを通り、膨脹弁2A,2B,2Cで断
熱膨脹し液側操作弁7A,7B,7Cを介し液側
配管17A,17B,17Cを経て室内ユニツト
A,B,Cに接続し液側操作弁24A,24B,
24Cを通つて室内コイル23A,23B,23
Cにて室内フアン22A,22B,22Cにより
加熱され蒸発しガス冷媒となりガス側操作弁26
A,26B,26Cを介してガス側配管18A,
18B,18Cを経て室外ユニツトに接続されガ
ス側操作弁8A,8B,8Cからガス側電磁弁5
A,5B,5Cを通つた後合流し四方弁15から
アキユムレータ11を経て圧縮機1に吸入され
る。
Example 1 Regarding cooling operation As shown in Fig. 2, the compressor 1
The high pressure gas refrigerant discharged from
4, the refrigerant becomes a liquid refrigerant, enters the receiver 10, passes through the check valve 19, and enters the liquid side solenoid valve 4A,
4B, 4C, expands adiabatically with expansion valves 2A, 2B, 2C, connects to indoor units A, B, C via liquid side operation valves 7A, 7B, 7C, liquid side pipes 17A, 17B, 17C, and connects to indoor units A, B, C. Operation valves 24A, 24B,
Indoor coils 23A, 23B, 23 through 24C
At C, it is heated by indoor fans 22A, 22B, and 22C and evaporates, becoming a gas refrigerant and gas side operation valve 26.
Gas side piping 18A via A, 26B, 26C,
It is connected to the outdoor unit via 18B and 18C, and the gas side solenoid valve 5 is connected to the gas side operating valves 8A, 8B, and 8C.
After passing through A, 5B, and 5C, they join together and are sucked into the compressor 1 through the four-way valve 15 and the accumulator 11.

又膨脹弁の感温筒28A,28B,28Cは室
外ユニツト内のガス側操作弁8A,8B,8Cと
ガス側電磁弁5A,5B,5Cとの配管に取付け
る。
The temperature sensing tubes 28A, 28B, and 28C of the expansion valves are attached to the piping between the gas side operating valves 8A, 8B, and 8C and the gas side solenoid valves 5A, 5B, and 5C in the outdoor unit.

なお上記において逆止弁19は必ずしも取付け
なくてもよく、且つ電磁弁4としては冷媒の流れ
を遮断する弁であればよい。又膨脹弁2と電磁弁
4とはその取付においてどちらを先にしてもよく
且つ膨脹弁2は冷媒を膨脹させるものであれば絞
りキヤピラリチユーブでもよい。
Note that in the above, the check valve 19 does not necessarily need to be installed, and the solenoid valve 4 may be any valve that blocks the flow of refrigerant. Further, the expansion valve 2 and the electromagnetic valve 4 may be installed first, and the expansion valve 2 may be a throttle capillary tube as long as it expands the refrigerant.

このように室内ユニツトA,B,Cの運転状況
によつて例えば室内ユニツトAのみを運転する場
合液側電磁弁4A、ガス側電磁弁5Aが通電さ
れ、室内ユニツトAのみに冷媒が流れる。又2室
運転として例えば室内ユニツトA,Bの場合液側
電磁弁4A,4B、ガス側電磁弁5A,5Bが開
口する。
In this manner, depending on the operating status of indoor units A, B, and C, for example, when only indoor unit A is operated, the liquid side solenoid valve 4A and the gas side solenoid valve 5A are energized, and the refrigerant flows only to indoor unit A. In the case of two-room operation, for example, in the case of indoor units A and B, the liquid side solenoid valves 4A and 4B and the gas side solenoid valves 5A and 5B are opened.

又本発明においては圧縮機1は空調機の負荷の
状況に応じて能力可変のものが好ましく例えば1
台のみの室内ユニツトの運転では圧縮機モータを
4極運転、2台又は3台の室内ユニツトの同時運
転では2極運転というようにモータの極数の変換
できる圧縮機について述べたが、公知の冷媒バイ
パス方式による容量制御方式でもよい。又容量の
変化ができない圧縮機を用いた場合においても応
用出来るものである。
Further, in the present invention, the compressor 1 is preferably one whose capacity is variable according to the load condition of the air conditioner, for example.
We have described a compressor in which the number of poles of the motor can be changed, such as operating the compressor motor with four poles when operating only one indoor unit, and operating with two poles when operating two or three indoor units simultaneously. A capacity control method using a refrigerant bypass method may also be used. It can also be applied when using a compressor whose capacity cannot be changed.

次に暖房運転について述べると冷房の場合とは
逆に四方弁15は図示実線の回路となり、圧縮機
1から吐出された高圧ガス冷媒は四方弁15によ
りガス側電磁弁5A,5B,5Cを通りガス側操
作弁8A,8B,8Cを介してガス配管18A,
18B,18Cを経て室内ユニツトA,B,Cに
接続されガス側操作弁26A,26B,26Cを
通つて室内コイル23A,23B,23Cにより
室内フアン22A,22B,22Cにて冷却され
凝縮し液冷媒となり液側操作弁24A,24B,
24Cを介して液側配管17A,17B,17C
を経て室外ユニツトに接続し、液側操作弁7A,
7B,7Cを通つた後液側電磁弁4A,4B,4
Cは暖房時非励磁にしておくため、暖房キヤピラ
リ3A,3B,3C側に流れ、逆止弁9A,9
B,9Cを通り、レシーバ10から室外ユニツト
16に入つて室外フアン14によつて加熱蒸発し
四方弁15からアキユムレータ11を経て圧縮機
1に吸入される。
Next, regarding heating operation, contrary to the case of cooling, the four-way valve 15 becomes the circuit shown by the solid line in the diagram, and the high-pressure gas refrigerant discharged from the compressor 1 passes through the gas-side solenoid valves 5A, 5B, and 5C by the four-way valve 15. Gas piping 18A, via gas side operation valves 8A, 8B, 8C.
It is connected to indoor units A, B, C through gas side operation valves 26A, 26B, 26C through indoor coils 23A, 23B, 23C, and is cooled by indoor fans 22A, 22B, 22C and condensed into liquid refrigerant. The liquid side operation valves 24A, 24B,
Liquid side piping 17A, 17B, 17C via 24C
Connected to the outdoor unit via the liquid side operation valve 7A,
After passing through 7B, 7C, liquid side solenoid valves 4A, 4B, 4
Since C is de-energized during heating, it flows to the heating capillary 3A, 3B, 3C side, and the check valves 9A, 9
B and 9C, enters the outdoor unit 16 from the receiver 10, is heated and evaporated by the outdoor fan 14, and is sucked into the compressor 1 from the four-way valve 15 via the accumulator 11.

なお上記において逆止弁9は冷媒を室外コイル
方向へのみ流すことを許容する。又逆止弁9と暖
房用キヤピラリチユーブ3とはその順序を逆にし
てもよい。
Note that in the above, the check valve 9 allows the refrigerant to flow only in the direction of the outdoor coil. Further, the order of the check valve 9 and the heating capillary tube 3 may be reversed.

次に室内ユニツトを1台例えばユニツトAを運
転する場合、電磁弁はガス側電磁弁5Aのみを開
口し5B,5Cは閉口する。四方弁15から吐出
したた冷媒はガス側電磁弁5Aのみを通過し、そ
の後ガス側操作弁8A、ガス配管18A、ガス側
操作弁26A、室内コイル23A、液側操作弁2
4A、液配管17A、液側操作弁7A、暖房用キ
ヤピラリ3A、逆止弁9A、レシーバ10、室外
コイル16、四方弁15、アキユムレータ11を
経て圧縮機1に吸入する。
Next, when one indoor unit, for example unit A, is operated, only the gas side solenoid valve 5A is opened and the solenoid valves 5B and 5C are closed. The refrigerant discharged from the four-way valve 15 passes only through the gas side solenoid valve 5A, and then passes through the gas side operating valve 8A, gas piping 18A, gas side operating valve 26A, indoor coil 23A, and liquid side operating valve 2.
4A, liquid piping 17A, liquid side operation valve 7A, heating capillary 3A, check valve 9A, receiver 10, outdoor coil 16, four-way valve 15, and accumulator 11.

一方室内ユニツトB及びC中に電磁弁5B,5
Cの洩れ或は室内ユニツトの切換によつて室内ユ
ニツトB,C内に残つて冷媒は、暖房用キヤピラ
リ3B,3Cが前述の第1図6B,6C戻しキヤ
ピラリと同様な働きをして逆止弁9B,9Cを介
し逆止弁19とレシーバ10との間の冷媒サイク
ルの低圧回路に接続されることによつて運転中の
冷凍サイクル中に戻されるのである。
On the other hand, solenoid valves 5B and 5 are installed in indoor units B and C.
If refrigerant remains in indoor units B and C due to leakage of C or switching of indoor units, the heating capillaries 3B and 3C function in the same way as the return capillaries 6B and 6C in FIG. By being connected to the low pressure circuit of the refrigerant cycle between the check valve 19 and the receiver 10 via the valves 9B and 9C, it is returned to the refrigeration cycle in operation.

本発明はこのような機構によるため次の如き効
果を有する。
Since the present invention is based on such a mechanism, it has the following effects.

(1) 冷房運転時の冷媒絞り機構として膨脹弁を室
内ユニツトから室外ユニツトにもつていくこと
ができ、冷媒の断熱膨脹に伴う騒音を除去する
ことが可能になつた。又騒音は室外ユニツト側
で発生するが室外ユニツトには圧縮機、室外フ
アン等室内ユニツトに対し遥に大きい騒音レベ
ルの音の発生源があるためこれらの音に混合吸
収され、外には殆んど聞えてこないため不都合
はない。
(1) The expansion valve can be moved from the indoor unit to the outdoor unit as a refrigerant throttling mechanism during cooling operation, making it possible to eliminate noise caused by adiabatic expansion of the refrigerant. Also, noise is generated on the outdoor unit side, but since the outdoor unit has sources such as compressors and outdoor fans that generate much higher noise levels than the indoor unit, it is mixed and absorbed by these sounds, and almost no noise is heard outside. There is no inconvenience because I don't hear anything.

(2) 暖房運転時において膨脹弁をキヤピラリに変
更することにより製品価格を低下し、キヤピラ
リを運転ユニツトに対しては暖房用キヤピラリ
(絞り機構)として作動し、運転していない休
止用ユニツトがある場合休止ユニツト内への冷
媒の寝込み滞溜防止用の戻しキヤピラリとして
兼用することができるため冷凍サイクルの簡略
化することが出来る。
(2) The product price is reduced by changing the expansion valve to a capillary during heating operation, and the capillary acts as a heating capillary (throttling mechanism) for the operating unit, and there is a rest unit that is not operating. In this case, the refrigeration cycle can be simplified because it can also be used as a return capillary to prevent refrigerant from accumulating in the rest unit.

実施例 2 第3図に示す如く、暖房運転時の冷媒の絞り量
を室内ユニツトの運転台数に応じて、きめ細かく
制御するようにしたものである。
Embodiment 2 As shown in FIG. 3, the amount of refrigerant throttling during heating operation is finely controlled in accordance with the number of operating indoor units.

即ち暖房用キヤピラリ(休止ユニツトに対して
は戻りキヤピラリ)が暖房用主キヤピラリ3A,
3B,3Cと暖房用補助キヤピラリ3AB,3
BC,3ACの両者で構成されているものであり、
この暖房用主キヤピラリ3A,3B,3Cは第2
図のキヤピラリ3A,3B,3Cに比してその絞
り量(抵抗)が大きく冷媒通過流量は減少するも
のである。
That is, the heating capillary (return capillary for the rest unit) is connected to the heating main capillary 3A,
3B, 3C and heating auxiliary capillary 3AB, 3
It is composed of both BC and 3AC,
This heating main capillary 3A, 3B, 3C is the second
Compared to the capillaries 3A, 3B, and 3C shown in the figure, the amount of restriction (resistance) is larger and the flow rate of refrigerant passing therethrough is reduced.

而して暖房時のみについての作用は、室内ユニ
ツトAのみの場合、液側操作弁7を経て逆止弁9
を通つた高圧液冷媒はキヤピラリの絞り量に対応
して主に暖房用主キヤピラリ3Aに入るが同時に
暖房用補助キヤピラリ3AB,3ACを通つて暖房
用主キヤピラリ3B,3Cに入る。又このとき逆
止弁9Bと暖房用主キヤピラリ3Bとの間はほぼ
低圧に近い圧力になるため休止中の室内ユニツト
B内に残つた液冷媒は逆止弁9Bを通つてサイク
ル中に戻るのである。なお室内ユニツトCについ
ても同様である。
Therefore, in the case of indoor unit A only, the operation only during heating is performed by the check valve 9 via the liquid side operation valve 7.
The high-pressure liquid refrigerant that has passed through it mainly enters the main heating capillary 3A depending on the amount of restriction of the capillary, but at the same time enters the main heating capillaries 3B and 3C via the auxiliary heating capillaries 3AB and 3AC. Also, at this time, the pressure between the check valve 9B and the heating main capillary 3B becomes almost low pressure, so the liquid refrigerant remaining in the indoor unit B that is inactive returns to the cycle through the check valve 9B. be. The same applies to indoor unit C.

このように暖房用主キヤピラリ3Aと暖房用補
助キヤピラリ3ABと暖房用主キヤピラリ3Bを
直列に接続したもの、暖房用補助キヤピラリ3
ACと暖房用主キヤピラリ3Cを直列に接続した
ものの3者の合計したものとなる。
In this way, the main heating capillary 3A, the auxiliary heating capillary 3AB, and the main heating capillary 3B are connected in series, and the auxiliary heating capillary 3
This is the sum of the AC and heating main capillary 3C connected in series.

なお暖房用補助キヤピラリの前後ではほぼ同圧
であり暖房用補助キヤピラリ3BCには殆んど冷
媒は流れない。
Note that the pressure is almost the same before and after the heating auxiliary capillary, and almost no refrigerant flows into the heating auxiliary capillary 3BC.

又室内ユニツトB、室内ユニツトCのみの1台
運転についても上記と同様である。
The same applies to the operation of only indoor unit B and indoor unit C.

次に室内ユニツトA及びBの2台暖房運転の場
合について示すと、液側電磁弁7A,7Bを経て
逆止弁9A,9Bを通つた高圧液冷媒は主に暖房
用主キヤピラリ3A,3Bを通過するが、一部は
バイパスして暖房用主キヤピラリ3Cを通過す
る。即ち室内ユニツトAからの液冷媒は暖房用補
助キヤピラリ3ACを通り又室内ユニツトBから
の液冷媒は暖房用補助キヤピラリ3BCを通り合
流して暖房用主キヤピラリ3Cに入る。このとき
暖房用補助キヤピラリ3ABには殆んど冷媒は通
過しない。
Next, referring to the heating operation of two indoor units A and B, the high-pressure liquid refrigerant that passes through the liquid-side solenoid valves 7A and 7B and the check valves 9A and 9B mainly flows into the heating main capillaries 3A and 3B. However, a portion bypasses and passes through the heating main capillary 3C. That is, the liquid refrigerant from the indoor unit A passes through the auxiliary heating capillary 3AC, and the liquid refrigerant from the indoor unit B passes through the auxiliary heating capillary 3BC and enters the main heating capillary 3C. At this time, almost no refrigerant passes through the heating auxiliary capillary 3AB.

又休止している室内ユニツトCに残つている冷
媒は前記の1台運転のときと同様の理由(9C逆
止弁前後の圧力差)により逆止弁9C、暖房用主
キヤピラリ3Cを通つて冷凍サイクル中に戻る。
なお室内ユニツトB,C、室内ユニツトACにつ
いても同様である。
Also, the refrigerant remaining in the indoor unit C that is inactive is frozen through the check valve 9C and the heating main capillary 3C for the same reason as when one unit is in operation (pressure difference before and after the check valve 9C). Return during cycle.
The same applies to indoor units B, C, and indoor unit AC.

次いで室内ユニツトを3台運転の場合について
説明する。即ち実施例1においては室内ユニツト
が1台又は2台の運転時に暖房用キヤピラリが適
正なサイズになるように選択されているため、室
内ユニツトが3台運転時の場合、冷媒が暖房用キ
ヤピラリ3A,3B,3Cに同時に流れた場合そ
の絞り量が不足してやや液バツクの傾向となる。
Next, a case where three indoor units are operated will be explained. That is, in Example 1, the heating capillary is selected to have an appropriate size when one or two indoor units are operating, so when three indoor units are operating, the refrigerant is in the heating capillary 3A. , 3B, and 3C at the same time, the amount of throttling is insufficient and the liquid tends to back up a little.

然しながら第3図に示す暖房用主キヤピラリ3
A,3B,3Cは第2図の暖房用キヤピラリ3
A,3B,3Cに比べて絞り量が大きいため3者
のキヤピラリに同時に冷媒が流れた場合において
も液バツクにならないように絞り量を選択し圧縮
機の損傷のないようにしたものである。
However, the heating main capillary 3 shown in FIG.
A, 3B, 3C are heating capillary 3 in Figure 2.
Since the amount of throttling is larger than that of A, 3B, and 3C, the amount of throttling is selected so that even if refrigerant flows into the three capillaries at the same time, there will be no liquid backlash, thereby preventing damage to the compressor.

なお実施例1においても3者のキヤピラリ3
A,3B,3Cに冷媒を流す場合に最適になるよ
うに選択することは可能であるが、この場合は逆
に室内ユニツトが1台又は2台の運転時に冷媒循
環量が減り過熱気味となり圧縮機の損傷の原因と
なる。
In addition, in Example 1, the capillary 3 of the three
It is possible to select the best option when flowing refrigerant to A, 3B, and 3C, but in this case, conversely, when one or two indoor units are operating, the amount of refrigerant circulating decreases, causing overheating and compression. This may cause damage to the machine.

本実施例においては負荷に応じきめ細い制御が
出来るようにしたものである。
In this embodiment, fine control can be performed depending on the load.

実施例 3 第4図に示す如く第3図のものとは冷房運転サ
イクルは全く同じであり、暖房運転の場合でも室
内で凝縮した液冷媒が室外ユニツトに戻つてから
レシーバ10に入るまでの絞り機構を異にしてい
るものである。
Embodiment 3 As shown in FIG. 4, the cooling operation cycle is exactly the same as that in FIG. They have different mechanisms.

室内ユニツトAの1台暖房運転の場合 液側操作弁7Aを通つた冷媒の大半は暖房用主
キヤピラリ3Aを経て逆止弁9Aを通り一部は暖
房用補助キヤピラリ3AB,2ACと暖房用主キヤ
ピラリ3B,3Cを経て逆止弁9B,9Cを通
り、前記逆止弁9Aを通つて冷媒と合流しレシー
バ10に入るのである。室内ユニツトB,Cから
の冷媒は実施例2と同様に暖房用主キヤピラリ3
B,3Cを介してサイクル中にかえされる。
In the case of heating operation with one indoor unit A, most of the refrigerant that has passed through the liquid side operation valve 7A passes through the heating main capillary 3A, then the check valve 9A, and some of the refrigerant passes through the heating auxiliary capillary 3AB, 2AC and the heating main capillary. It passes through check valves 9B and 9C via check valves 9B and 3C, and then joins with the refrigerant through the check valve 9A and enters the receiver 10. The refrigerant from indoor units B and C is supplied to the heating main capillary 3 as in the second embodiment.
It is returned during the cycle via B and 3C.

室内ユニツトA,B2台の暖房運転の場合 暖房用主キヤピラリ3A,3Bを経て逆止弁9
A,9Bを通るものと暖房用補助キヤピラリ3
AC,3BCから暖房用主キヤピラリ3Cを経て逆
止弁9Cを通るものとに分れ又休止室内ユニツト
Cから戻る冷媒は暖房用主キヤピラリ3Cを介し
てサイクル中にかえされる。
In the case of heating operation of two indoor units A and B, the check valve 9 is connected to the heating main capillary 3A, 3B.
Passing through A and 9B and heating auxiliary capillary 3
The refrigerant is divided into those that pass through the heating main capillary 3C and the check valve 9C from AC and 3BC, and the refrigerant that returns from the idle indoor unit C is returned during the cycle via the heating main capillary 3C.

室内ユニツト3台の運転については暖房用主キ
ヤピラリ3A,3B,3Cから逆止弁9A,9
B,9Cを経て合流しレシーバ10に入るのであ
る。
For operation of three indoor units, check valves 9A, 9 are connected from heating main capillary 3A, 3B, 3C.
B and 9C, the signals merge and enter the receiver 10.

実施例 4 第5図に示す如く第4図における暖房用膨脹機
構を変形したものであり、冷媒の流れとして暖房
用補助キヤピラリ3AB,3AC,3BC、逆止弁
9A,9B,9C、暖房用主キヤピラリ3A,3
B,3Cの順に配列したものである。
Embodiment 4 As shown in FIG. 5, the heating expansion mechanism shown in FIG. Capillary 3A, 3
B and 3C are arranged in this order.

室内ユニツトAの1台暖房運転の場合 液側操作弁7Aを通つた液冷媒は大半が逆止弁
9Aを通つて暖房用主キヤピラリ3Aに入り、一
部は暖房用補助キヤピラリ3AB,3ACから逆止
弁9B,9Cを通つて暖房用補助キヤピラリ3
B,3Cに入り通過後主流と合流しレシーバ10
に戻る。休止室内ユニツトB,Cからの戻り冷媒
については実施例と同様にして逆止弁9B,9
C、暖房用主キヤピラリ3B,3Cを経て低圧側
に連絡されるためサイクル中にかえされる。
In the case of heating operation with one indoor unit A, most of the liquid refrigerant that has passed through the liquid side operation valve 7A passes through the check valve 9A and enters the heating main capillary 3A, and some of it is reversed from the heating auxiliary capillary 3AB, 3AC. Heating auxiliary capillary 3 passes through stop valves 9B and 9C.
B, 3C, after passing through, merges with the main stream and receiver 10
Return to Regarding the return refrigerant from the idle indoor units B and C, check valves 9B and 9 are connected in the same manner as in the embodiment.
C, it is connected to the low pressure side via the heating main capillaries 3B and 3C, so it is returned during the cycle.

又2台、3台運転についても前記と同様であ
る。
The same applies to the operation of two or three units.

以上詳述した如く本発明によれば冷媒コントロ
ールを室の外側に設けて冷凍サイクルの簡略化を
なしうると共に騒音を著しく低下せしめ且つ低価
格にて製品化する等空気調和機として極めて有用
なものである。
As detailed above, according to the present invention, the refrigerant control is provided outside the room, simplifying the refrigeration cycle, significantly reducing noise, and commercializing the product at a low price, making it extremely useful as an air conditioner. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和機の1例を示す機構説
明図、第2図乃至第4図は本発明空気調和機の1
例を示す機構説明図、第5図は第4図の暖房用膨
脹機構の変形説明図である。 A,B,C……室内ユニツト、1……圧縮機、
2A,2B,2C……膨脹弁、3A,3B,3C
……暖房キヤピラリ、4A,4B,4C……液側
電磁弁、5A,5B,5C……ガス側電磁弁、6
A,6B,6C……冷媒戻し用キヤピラリ、7
A,7B,7C……液側操作弁、8A,8B,8
C……ガス側操作弁、9A,9B,9C……逆止
弁、10……レシーバ、15……四方弁、18
A,18B,18C……ガス配管、20A,20
B,20C……膨脹弁、21A,21B,21C
……逆止弁、22A,22B,22C……フア
ン、23A,23B,23C……室内コイル、2
4A,24B,24C……液側操作弁、26A,
26B,26C……ガス側操作弁、27A,27
B,27C……配管、28A,28B,28C…
…感温筒、29A,29B,29C……キヤピラ
リチユーブ。
FIG. 1 is a mechanical explanatory diagram showing an example of a conventional air conditioner, and FIGS. 2 to 4 are an illustration of an example of the air conditioner of the present invention.
FIG. 5 is a diagram illustrating a modification of the heating expansion mechanism shown in FIG. 4. A, B, C... Indoor unit, 1... Compressor,
2A, 2B, 2C...Expansion valve, 3A, 3B, 3C
... Heating capillary, 4A, 4B, 4C ... Liquid side solenoid valve, 5A, 5B, 5C ... Gas side solenoid valve, 6
A, 6B, 6C...Refrigerant return capillary, 7
A, 7B, 7C...Liquid side operation valve, 8A, 8B, 8
C...Gas side operation valve, 9A, 9B, 9C...Check valve, 10...Receiver, 15...Four-way valve, 18
A, 18B, 18C...Gas piping, 20A, 20
B, 20C...Expansion valve, 21A, 21B, 21C
... Check valve, 22A, 22B, 22C ... Fan, 23A, 23B, 23C ... Indoor coil, 2
4A, 24B, 24C...liquid side operation valve, 26A,
26B, 26C...Gas side operation valve, 27A, 27
B, 27C...Piping, 28A, 28B, 28C...
...Temperature tube, 29A, 29B, 29C... Capillary tube.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、室外熱交換器を設けてなる1個の室
外ユニツトと室内熱交換器を設けた複数個の室内
ユニツトとを接続してなるヒートポンプ式空気調
和機において、室外ユニツトに冷房用膨脹弁及び
遮断弁を夫々設けた冷房用膨脹機構と、暖房用キ
ヤピラリ及び逆止弁とを夫々設けた暖房用膨脹機
構とを並列に接続してなる膨脹ユニツトを、上記
室内ユニツトと同数に並列して冷媒配管に接続し
たことを特徴とする空気調和機。
1. In a heat pump air conditioner that connects one outdoor unit equipped with a compressor and an outdoor heat exchanger to multiple indoor units equipped with indoor heat exchangers, the outdoor unit is equipped with a cooling expansion valve. The same number of expansion units as the above-mentioned indoor units are arranged in parallel, in which a cooling expansion mechanism each having a shutoff valve and a heating expansion mechanism each having a heating capillary and a check valve are connected in parallel. An air conditioner characterized by being connected to refrigerant piping.
JP9093380A 1980-07-03 1980-07-03 Airconditioner Granted JPS5716767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9093380A JPS5716767A (en) 1980-07-03 1980-07-03 Airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9093380A JPS5716767A (en) 1980-07-03 1980-07-03 Airconditioner

Publications (2)

Publication Number Publication Date
JPS5716767A JPS5716767A (en) 1982-01-28
JPS6122749B2 true JPS6122749B2 (en) 1986-06-02

Family

ID=14012242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9093380A Granted JPS5716767A (en) 1980-07-03 1980-07-03 Airconditioner

Country Status (1)

Country Link
JP (1) JPS5716767A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182054U (en) * 1983-05-20 1984-12-04 松下精工株式会社 Heat pump multi-room air conditioner
JPH0452188Y2 (en) * 1985-03-07 1992-12-08
JPS6384025U (en) * 1986-11-21 1988-06-02
JPH01187121A (en) * 1988-01-19 1989-07-26 Sanyo Electric Co Ltd Substrate transfer device
JP6407522B2 (en) * 2013-12-02 2018-10-17 三菱重工サーマルシステムズ株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS5716767A (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US9429345B2 (en) Heat-pump chiller with improved heat recovery features
US7124595B2 (en) Multi-type air conditioner with plurality of distributor able to be shutoff
US7360372B2 (en) Refrigeration system
JP4643135B2 (en) Multi air conditioner
US20120006048A1 (en) Compressor with vapor injection system
WO2014141375A1 (en) Air conditioner
US7257964B2 (en) Air conditioner
WO2014141374A1 (en) Air conditioner
JPH04263758A (en) Heat pump hot-water supplier
JP2008513725A (en) Heat pump with reheat and economizer functions
KR101146460B1 (en) A refrigerant system
JP2804527B2 (en) Air conditioner
JP2001349623A (en) Freezer device
JP3324420B2 (en) Refrigeration equipment
JPS6122749B2 (en)
JP3791090B2 (en) Heat pump equipment
JP2944507B2 (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
JPH10176869A (en) Refrigeration cycle device
JP2000028186A (en) Air conditioner
JP2765970B2 (en) Air conditioner
KR101146783B1 (en) Refrigerant system
KR100215038B1 (en) Indoor device connection structure of multi-airconditioner
JPH09264632A (en) Heat pump for supplying hot-water
JPH10141815A (en) Air conditioner