JPS5914690A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5914690A
JPS5914690A JP57123869A JP12386982A JPS5914690A JP S5914690 A JPS5914690 A JP S5914690A JP 57123869 A JP57123869 A JP 57123869A JP 12386982 A JP12386982 A JP 12386982A JP S5914690 A JPS5914690 A JP S5914690A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
active layer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57123869A
Other languages
Japanese (ja)
Other versions
JPH0552072B2 (en
Inventor
Fujio Saito
斉藤 富士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57123869A priority Critical patent/JPS5914690A/en
Publication of JPS5914690A publication Critical patent/JPS5914690A/en
Publication of JPH0552072B2 publication Critical patent/JPH0552072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a light source which has no spectral noise by disposing one or more sets of diffraction gratings of corrugated periodic structure which is disposed in a plane parallel to the active layer and has apodized amplitude distribution on the boundary between two arbitrary layers of an active layer, a waveguide layer, a clad layer, and the first grown layer of substrate side. CONSTITUTION:A diffraction grating which has a corrugated periodic structure represented by N(lambda0/2ne) where N is integer number, lambda0 is wavelength in vacuum of laser light, ne is effective refractive index is provided on the boundary between two arbitrary layers of an active layer, a waveguide layer, a clad layer, and the first grown layer of a substrate side. In other words, an N type InP layer 73, N type, P type and I type In0.7Ga0.3As0.6P0.4 clad layers 71, 72, an In0.6Ga0.4As0.86P0.14 active layer 70, a P type InP layer 74, a P type In0.6Ga0.4 As0.86P0.14 cap layer 741, an SiO2 layer 79, an ohmic contacting Cd diffused layer 78, and electrodes 77, 791 are formed on an N type InP substrate 76, and a diffraction grating 75 is formed on the boundary between the layers 71 and 73.

Description

【発明の詳細な説明】 この発明は分布帰還型半導体レーザに関し、特に回折格
子にアボダイゼーシ、ンを捻どこLl)布帰還屋牛導体
レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed feedback semiconductor laser, and more particularly to a cloth feedback conductor laser in which a diffraction grating is twisted.

半導体レーザL光ファイバ通信用光源として広く実用さ
れているが、半導体1ノ−ザと多モード光ファイバとの
組合せにおいて、スペ、タル雑音による信号劣化を如伺
に、して除去するかとい511#が問題罠なっている。
Semiconductor laser L is widely used as a light source for optical fiber communication, but it is difficult to carefully remove signal deterioration due to spatial noise in a combination of a semiconductor laser and a multimode optical fiber.511 # has become a problem trap.

半導体レーザのモード制御技術の最近の進歩によって半
導体レーザ光のコヒーレンスは従来とくらべ著しく改善
され、また発捗スペクトルについても数十〜100Mb
/s以下の変調周波数に対しては、第1図に示す如く、
利得分布面ls1υOのほぼ中央に殆んど単−縦モード
発振に近い状態の発振スペクトル10が実現されている
。しかし、この様なコヒーレンスの良い半導体レーザ光
を多モード光ファイバ中を伝搬場せると元ファイバ中で
生する不規則なモード変換の結果として光フアイバ出射
端においては異った光路を通過して来た光が干渉し合い
、不規則な変動を示し、またパルス変調された光に対し
てはパルス波形の乱れを生ずる。この様なスペックル雑
音を除去する対策として現在、 (1)  高周波重畳変調の採用 (2)  光源として発光ダイオードの使用(3)モー
ドスクランブラの採用 03つの方法が知られている。このうち(1)の方法は
半導体レーザを数百MH,の面周波信号−で変調すると
1発振スペクトルがtR2図にボす様に利得゛分布20
0に対応するひろがりを有する多モード発振20,21
.22,23,24.・・・の状態tCなり、レーザ光
のコヒーレンスが低下する事を利用するものである。し
かし、この方法では半導体レーザを絶えず部局波信号で
変調しなければならない事が何と言ってもわずられしい
。(2)の方法はコヒーレットな半導体レーザ光のかわ
りに、発光ダイオードのインコヒーレント光を用いるも
ので。
Recent advances in mode control technology for semiconductor lasers have significantly improved the coherence of semiconductor laser light compared to conventional methods, and the development spectrum has improved from several tens to 100 Mb.
For modulation frequencies below /s, as shown in Figure 1,
An oscillation spectrum 10 in a state close to single-longitudinal mode oscillation is realized approximately at the center of the gain distribution surface ls1υO. However, when such a well-coherent semiconductor laser beam is propagated through a multimode optical fiber, it passes through different optical paths at the output end of the optical fiber as a result of irregular mode conversion that occurs in the original fiber. The incoming lights interfere with each other, exhibiting irregular fluctuations, and pulse waveform disturbances occur for pulse-modulated light. Currently, three methods are known to remove such speckle noise: (1) use of high frequency superimposed modulation, (2) use of a light emitting diode as a light source, and (3) use of a mode scrambler. Among these methods, method (1) modulates a semiconductor laser with a surface frequency signal of several hundred MHz, resulting in a gain distribution of 20 as shown in the tR2 diagram for one oscillation spectrum.
Multimode oscillation 20, 21 with a spread corresponding to 0
.. 22, 23, 24. . . , which takes advantage of the fact that the coherence of the laser beam decreases. However, this method is troublesome in that the semiconductor laser must be constantly modulated with a local wave signal. Method (2) uses incoherent light from a light emitting diode instead of coherent semiconductor laser light.

モーダル雑音除去には有効であるが、変調帯域が一々数
士Mb/s止りであり、また光ファイバへの結合光量も
大きく出来ないので中継間隔を余り長くとる事が出来な
い。(3)の方法は本発明に直接かかわりをもたないの
で説明は省略する。詳細については副、鵠、員淵著1元
ファイバ通信」、電気通信技術ニュース社刊、503〜
504頁を参照されたい。
Although it is effective in removing modal noise, the modulation band is only a few Mb/s each, and the amount of light coupled to the optical fiber cannot be increased, so the repeating interval cannot be made very long. Since the method (3) is not directly related to the present invention, its explanation will be omitted. For details, see "One-Year Fiber Communication" by Soe, Ku, and Yuanbuchi, published by Telecommunications Technology News, 503-
See page 504.

本発明の目的は、多モード光ファイバ通信システムにお
ける光源のコヒーレンスに起因スるスベ、タル雑音除去
に関する従来の方法の上で説明した如き欠点を取り除き
、スペックル雑音を生じない程度の低コヒーレンス度で
かつ、光フアイバ中に従来の半導体レーザの場合と同程
度のレベルの光を結合口」能な放射光分布を有する光源
を提供する事にある。
It is an object of the present invention to eliminate the above-described drawbacks of the conventional method for removing smooth and dull noise caused by the coherence of a light source in a multimode optical fiber communication system, and to achieve a low degree of coherence that does not cause speckle noise. The object of the present invention is to provide a light source having an emitted light distribution capable of coupling into an optical fiber the same level of light as that of a conventional semiconductor laser.

本発明の他の目的は定められたスペクトル帯域内におい
−t’ tit第3図31 Pc不す様な連続的な発振
スペクトルをイ(する半導体レータを提供する事にある
Another object of the present invention is to provide a semiconductor diode which exhibits a continuous oscillation spectrum within a defined spectral band.

本発明によれば活性層、導波路層、クラッド層、基板@
第1成長層の任意の2つの層の間の境界部に、活性ノー
に平行な面内においてアボタイズでれた振巾分布を有し
かつ光の出射方向にそってプルグー ト状の周期構造を
有する回折格子を1組以上形成した事を特徴とする分布
帰M型又は分布フラッグ反射器型ダブルへテロ接合半導
体レーザが得られる。
According to the present invention, the active layer, waveguide layer, cladding layer, substrate@
At the boundary between any two layers of the first growth layer, a Purgout-like periodic structure having an aborted amplitude distribution in a plane parallel to the active node and along the light emission direction is formed. A distributed M type or distributed flag reflector type double heterojunction semiconductor laser is obtained, which is characterized by forming one or more sets of diffraction gratings.

次に本発明の原理を図面および数式を用いて説明する。Next, the principle of the present invention will be explained using drawings and mathematical formulas.

一般に分布帰還屋(以下DPBと略記)又、は分布フラ
ッグ反射器型(以下DBR・と略記)半導体レーザと称
せられるものは、活性層、導波路層、クラ、ド層、基板
側第1成長層、の任意の2つの層の間の境界部に周期が ン 但し N=整数 λ=レーザ光の真空中での波長 ne−実効屈折率 で与えられるコルゲート状の周期構造を回折格子として
全面、又は一部分に形成したものである。
Generally, what is called a distributed feedback reflector (hereinafter abbreviated as DPB) or distributed flag reflector type (hereinafter abbreviated as DBR) semiconductor laser consists of an active layer, a waveguide layer, a layer, a layer, and a first layer on the substrate side. There is a period at the boundary between any two layers of the layers, where N = integer λ = wavelength of laser light in vacuum ne - effective refractive index. Or it is formed in one part.

DI”B又はDB几半導体レーザの特徴はレーザ内部で
の光のフィードバックをファ7す・ベロー型光共振器で
はなく、回折格子によるブラッグ同州を用いているため
に、発振波長は11)式で与えられるλ。
The characteristic of DI"B or DB semiconductor laser is that it uses optical feedback inside the laser. Since it uses a Bragg dome with a diffraction grating instead of a bellows optical resonator, the oscillation wavelength is determined by formula 11). λ given by.

に固定出来る事であり、常に単−鞠波数発指が得られる
。DFB又はDBI(、半導体レーザに関する史に詳細
な説明については工、チ・シー・ケージ−2世、エム・
ビー・バニッシュ共著1ヘテロストラクチ、7 レーサ
ース”、アカデミツクブレス刊、1978年、バートA
、90〜106頁を参照さ九たい。Dfi’B 又a 
DBI(、半導体レーザはコヒーレンスの良いレーザ光
を放射するので、スペックル雑音はかえって出易くなり
、そのままでは多モード光ファイバ通信には向かない。
It can be fixed to , and a single-major wave number fingering can always be obtained. DFB or DBI (For a detailed historical explanation of semiconductor lasers, see
Co-authored by Bee Vanish, 1 Heterostructure, 7 Racers”, Academic Press, 1978, Bart A.
, pp. 90-106. Dfi'B Mata
Since DBI (DBI) emits laser light with good coherence, speckle noise is more likely to occur, and it is not suitable for multimode optical fiber communication as it is.

所で、前述の様なコルゲート状同期構造は実効的にレー
ザの発光部分にぞって の形の屈折量分布が導入された事と等価である。
Incidentally, the above-mentioned corrugated synchronous structure is effectively equivalent to introducing a refraction amount distribution along the light emitting portion of the laser.

(2)式で与えられるn(X)  n、=△、 (、)
を7−リエ変換して得られるその空間周波数スペクトル
分布は丁度ω=2π/A の位置r(デルタ関数状の鋭
いピークを示し、この事が、単−周波敬発振が得られる
事を反映している。そこで△、 (、)の分布を(2)
式とは異った形にし、その空間周波数スペクトルがある
帯域内で連続スペクトルになる様に選んでおけば、その
帯域に対応する周波数帯域においてのみ連続的発振スペ
クトル分布を有するレーザ発振が実現出来る事になる。
n(X) n,=△, (,) given by formula (2)
The spatial frequency spectrum distribution obtained by performing the 7-lier transform shows a sharp peak in the form of a delta function exactly at the position r (ω = 2π/A), which reflects the fact that single-frequency oscillation can be obtained. Therefore, the distribution of △, (,) is expressed as (2)
If the form is different from the formula and the spatial frequency spectrum is selected to be a continuous spectrum within a certain band, it is possible to realize laser oscillation with a continuous oscillation spectrum distribution only in the frequency band corresponding to that band. It's going to happen.

即ち、半導体レーザの中心にX軸の原点を取ると△、 
(X)とその空間周波数スペクトルI’″(ω)とは の関係にある。またF←)と発振スペクトル分布S(ν
)との間にはほぼ の関係があると考えて差支えない。そこで8(ν)とし
て所望の分布を与えれば(5)式と(3)式を用いて実
現すべき、 (、)の分布が求められる。S(ν)とし
ては各柿の分布が選ひ得るが、我々の目的に適しだ分2
・ 布計≠キ最もm巣なものとして第3図31に示す様に半
導体レーザの利得曲線30にほぼ一杯にひろがった矩形
状の分布 S(ν)=1  ν。−Δνくνくν。+Δν(6) =0 ν〉ν。+△シ、又けνくν。−△νを採用する
。但しν。=C/λ。つξれと(5)式、と(3)式か
ら、 =。−ixωo、si口°徊       (7)とな
る。実際には(7)式の夷数部のみt考えれは良いから
屈折率分布として n (x)= n6 + nl cos (xω。、 
、(gxn (x ’ ”) )t8)の様なものを作
れば良い訳である。具体的に4第4図に不す様に関数0
0G(xω。)で与えられるフルゲート状周期構造の凹
凸の振巾が点?#41.42で示す様に関数’5in(
x・△ω)/Xによって変調された結果、曲@40に示
す様な形の屈1f1分イ6が実現されれば良い。この様
にある11d数に曲線40、あるいはそれに類似の形状
の分布をもたせる事を7ポダイゼーシヨンと呼ぶ。第5
図は曲線40に示すフルダート状周期構造の回折格子を
有するInGaAsP−DPB半導体レーザの一例の断
面図である。第5図に詔いて50はLie−11GaO
−4Aso−1@p11.14活性層、51と53はそ
れぞれpmおよ°’%nlL”0.?G80.8”0−
11pO−49う、ド層、54はn11.InP基板、
56 tj: p fli InP層、55 a p 
ff1I n6.@ oa(1,4Aso−s@po・
鵞4′?rヤツブ層であり、クラッド層51とp  I
nP層56の境界に7ボタイズされたフルゲート状周期
構造52が形成されている。
That is, if the origin of the X-axis is taken at the center of the semiconductor laser, △,
(X) and its spatial frequency spectrum I'''(ω) are in the following relationship.F←) and oscillation spectrum distribution S(ν
), it is safe to assume that there is a general relationship between the two. Therefore, if a desired distribution is given as 8(ν), the distribution of (,) to be realized using equations (5) and (3) can be found. As S(ν), the distribution of each persimmon can be selected, but the distribution of each persimmon is suitable for our purpose.
- As shown in FIG. 31, the most common distribution is a rectangular distribution S(ν)=1 ν that extends almost completely to the gain curve 30 of the semiconductor laser. −Δν×ν×ν. +Δν(6) =0 ν〉ν. +△shi, cross νkuν. −Δν is adopted. However, ν. =C/λ. From ξ, equation (5), and equation (3), =. -ixωo, simouth wandering (7). Actually, since only the factor part of equation (7) can be considered t, the refractive index distribution is n (x) = n6 + nl cos (xω.,
, (gxn (x ''') ) t8).Specifically, as shown in Figure 4, the function 0
Is the amplitude of the unevenness of the full-gate periodic structure given by 0G (xω.) a point? As shown in #41.42, the function '5in (
As a result of modulation by x・△ω)/X, it is sufficient to realize a bend 1f1 minute a6 as shown in song @40. Giving a certain 11d number a distribution of curve 40 or a shape similar to it in this way is called 7podization. Fifth
The figure is a cross-sectional view of an example of an InGaAsP-DPB semiconductor laser having a diffraction grating having a full-dart periodic structure shown by curve 40. In Figure 5, 50 is Lie-11GaO
-4Aso-1@p11.14 active layer, 51 and 53 are pm and °'%nlL"0.?G80.8"0-
11pO-49, 54 is n11. InP substrate,
56 tj: p fli InP layer, 55 a p
ff1I n6. @oa(1,4Aso-s@po・
Goose 4′? r layer, cladding layer 51 and p I
A full-gate periodic structure 52 is formed at the boundary of the nP layer 56 and is 7-voted.

造出来れば我々の目的に全<メクだものであるが、実際
には52の様な深さ方向に複炸な凸凸変化をするフルゲ
ート構造を加工する事ワ、橡めて困難である。
If it could be fabricated, it would be perfect for our purpose, but in reality, it is extremely difficult to fabricate a full gate structure like 52, which has multiple convex and convex changes in the depth direction.

本発明においてiL的述の困難を第6図に示す様な平面
内において7ボクイズされた回1ガ格子を採用する事に
よって解決している。第6図において60は活性層、導
波路層、クラッド層、基板側第1成!khAの任意の2
つの層の間の塊界面を上方から見た図であり、61と6
2はレーザ発振光の分布する範iyt示し、63は7ボ
タ1′ズ圓@ st++ (xbld/ x )の関数
形を、64は境界1fi60上に形成されたコルケート
状回折格子である。回折格子64の各itは現界面60
から上方に突出していでも、あるいは4−1Kに凸んで
いても、いずれでも差支えなく、その商さ、あるいは深
さについても絶対的な決定基準はなく、ふつう0.01
−1μmの範V@程度であればよい。第6図におい又た
とえはA −A’で示す部分を見ると、その部分での回
折格子64の振巾W′tユレーザ発振光の分布の1JW
よりは小もい。回折格子64のコルゲージ、ンのl)の
山に対応する実効屈折率振巾をn、とす、ると、A−A
’の部分では平均的に実効屈折率振巾がnI XVw 
’/WKなったと島える事が出来る。従って、結局M6
図に示した回折格子64は平均的に(8)式でボした様
な失効屈折率分布な実現しているものと考えてよい。回
折格子64の主要な部分の長さLは(7)式と(7Y式
から C L=□・ □ ・ 2π 2ne  Δν Δλ=20又とすると となり、半導体レーザ・チ、ブのふつうの寸法から見て
先ず妥当な値である。
In the present invention, the difficulty of iL-like description is solved by employing a 7-box grid in a plane as shown in FIG. In FIG. 6, 60 indicates the active layer, the waveguide layer, the cladding layer, and the first layer on the substrate side! any 2 of khA
6 is a view from above of the lump interface between two layers, 61 and 6.
2 indicates the range iyt in which the laser oscillation light is distributed, 63 the functional form of the 7-bottom 1'zu circle@st++ (xbld/x), and 64 a corrugated diffraction grating formed on the boundary 1fi60. Each it of the diffraction grating 64 is the current surface 60
It doesn't matter whether it protrudes upward from the surface or convexes to 4-1K, and there is no absolute criterion for determining its quotient or depth, and it is usually 0.01.
-1 μm range V@ may be sufficient. In FIG. 6, for example, if we look at the part indicated by A-A', the amplitude W't of the diffraction grating 64 in that part is 1JW of the distribution of the laser oscillation light.
It's smaller than that. If n is the effective refractive index amplitude corresponding to the peak of the corrugation of the diffraction grating 64, then A-A
' On average, the effective refractive index amplitude is nI XVw
'/When you become a WK, you can become an island. Therefore, in the end M6
The diffraction grating 64 shown in the figure can be considered to have an average lapsed refractive index distribution as shown in equation (8). The length L of the main part of the diffraction grating 64 is calculated from equation (7) and (7Y), assuming that C At first glance, this is a reasonable value.

次に本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

第7図は本発明による半導体レーザの1つの好ましい実
施例を一部を切り欠いて不しだ図である。
FIG. 7 is a partially cutaway view of one preferred embodiment of a semiconductor laser according to the present invention.

第7図において76はれmInP基板、73 B n 
m−InP層、71と72はそれぞれn m、およびp
BlI j’l o*y G a ops A liO
,I Po、4クラ、ド層、70はIno、eGao−
*Aso−aaPo、ta tA性層、74はp m 
InP層、741はP 聾I no、s Ga(1,4
AsO−all Po、t+キヤ、プ層、79はSin
、絶縁膜、78はオーミ、り接触用cd拡散部、77と
791はそれぞれAu−Z、およびAu −Ge  N
i電検である。751d、クラッド層71とn型InP
層73の境界面に形成されたアボダイズされた振巾分布
を仔するコルゲート状周期構造の回折格子である。第7
図に示す構造の半導体レーザは第8図にボす様な工程に
よって作る事が出来る。
In FIG. 7, 76 is a thin InP substrate, 73 B n
m-InP layers 71 and 72 are nm and p, respectively.
BlI j'l o*y G a ops A liO
, I Po, 4 Kura, Do layer, 70 is Ino, eGao-
*Aso-aaPo, ta tA layer, 74 is p m
InP layer, 741 is P deaf I no, s Ga(1,4
AsO-all Po, t+kya, p layer, 79 is Sin
, an insulating film, 78 is an ohmic contact CD diffusion part, 77 and 791 are Au-Z and Au-GeN, respectively.
It is an i-electronic test. 751d, cladding layer 71 and n-type InP
This is a diffraction grating with a corrugated periodic structure having an abodized amplitude distribution formed at the boundary surface of the layer 73. 7th
A semiconductor laser having the structure shown in the figure can be manufactured by the process shown in FIG.

先ず第8図(a)に不す様にn壓InP基板80の上に
n kl InP層81を液晶エピタキシャル成長する
First, as shown in FIG. 8(a), an n kl InP layer 81 is epitaxially grown as a liquid crystal on an n-inch InP substrate 80 .

次にその上に第8図(b)に示す様にS iO,膜81
2をつけ、更にその上に7t)レジスト膜813をスピ
ナーコートし焼しめ処理を行なう。次にこのクエ・・に
第8図(clに示す様に第7図の回折格子75の7ボダ
イズ関数の形状のパターンを形成したフォトマスク81
4を用いて施光・現像処理を行なうと第8図(d)の様
に7ポダイズ関数のパターンに対応する部分の8i0.
膜が露出したウニI・が得られる。
Next, as shown in FIG. 8(b), a SiO film 81 is placed on top of it.
2 is applied, and a resist film 813 (7t) is spinner coated on top of the resist film 813, and a baking process is performed. Next, as shown in Fig. 8 (cl) for this query, a photomask 81 is formed with a pattern in the shape of the 7-bodize function of the diffraction grating 75 in Fig. 7.
When the light exposure and development process is performed using 8i0.
Sea urchin I. with exposed membranes is obtained.

更にこのウェハをバッファ工、チンダ液で工、チングし
て島田した部分のSin、膜を除き、更にはくり剤でフ
オトレジスト層813も除くと第8図(#A)に示す様
なりエノ・が得られる。次に第8図(f)に示す様に、
更にこのウェハの上にフオトレジスト層815をスピナ
ー・コートし焼しめ処理を行なうた後K、第8図(g)
に示す様にArレーザ光又はHe−Cd レーザ光を用
いて、2光束816と817の干渉によって回折格子パ
ターンをフォトンンスト膜815内にホジグラム記録す
る。これを*象・・処理すると第8図(h)<p様なり
工I・が得られ、これを稀。
Furthermore, this wafer is treated with a buffer treatment, tinted liquid, etched to remove the Sin and film in the Shimada parts, and the photoresist layer 813 is also removed with a stripping agent. is obtained. Next, as shown in Figure 8(f),
Further, a photoresist layer 815 is spinner-coated on this wafer and subjected to a baking process, as shown in FIG. 8(g).
As shown in FIG. 3, a diffraction grating pattern is recorded in a hologram in a photon strike film 815 by interference of two beams 816 and 817 using an Ar laser beam or a He--Cd laser beam. When we process this, we obtain the formula I in Figure 8 (h) <p, which is rare.

塩酸で工、チングし、はくり剤で7オトレンスト膜81
5を取り除くと第8図(i)に示す様な回折格子82を
形成したウニI・が得られ、これを更にバッファ・工、
チング液でStO,膜812を取り除いて第8図(j)
に示す様なりエノ・が得られる。この上に、液相エピタ
キシャル成長によって順次n型InO,7G a 64
 A S 04 PG・4クラッド層83 、  In
o−sGao−4Aso−sgPO,t4活性層84、
p屋Z n 6.y G a O4A s 6.@I 
P6.4クラツ ド層85、pmInPmInP基板 
 p mIno、。G a 0.4人3゜、11+IP
0.14  キヤ、ブ層861を成長しC第8図(k)
)丸に8i0.絶縁膜8621につけca拡散(第8図
に示してない)した後にAu−z、電j1M87、Au
−Ge  Ni t& 88をつける事によって第8図
(1)に示す様なりエバが得られる。これを第6図のL
の1〜数倍のサイズにへき関する事によって第7図に示
す様な半導体レーザが得られる。
Process and etch with hydrochloric acid, and remove with a peeling agent.
5 is removed, a sea urchin I. having a diffraction grating 82 as shown in FIG. 8(i) is obtained, which is further buffered,
After removing the StO film 812 with a quenching solution, the film 812 is removed (Fig. 8(j)).
Eno is obtained as shown in . On top of this, n-type InO, 7G a 64 was sequentially grown by liquid phase epitaxial growth.
A S 04 PG・4 cladding layer 83, In
o-sGao-4Aso-sgPO, t4 active layer 84,
pya Z n 6. y G a O4A s 6. @I
P6.4 cladding layer 85, pmInPmInP substrate
p mIno,. Ga 0.4 people 3°, 11+IP
0.14 Grow layer 861 and C Fig. 8(k)
) Circle 8i0. After ca diffusion (not shown in Figure 8) on the insulating film 8621, Au-z, electric j1M87, Au
By adding -Ge Nit&88, an evaporator as shown in Fig. 8 (1) can be obtained. This is L in Figure 6.
A semiconductor laser as shown in FIG. 7 can be obtained by reducing the size to one to several times the size of the semiconductor laser.

第9図は本発明の他の実施例を一部を切り欠いて示した
図である。′第9肉において96はn型1、P基板、9
3 td、’ n fJ InP層、91と92Fiそ
れぞれn型2よびp W Ino、yGao、5Aso
−sPo−+クラッド層、90はIn(1−11Ga(
1−4A1i0−alIPo、14  活性層、94は
p型1nP層、941はp m I no、lI Ga
@、4As646 P6..4キャ、プ層、99はS 
iO,絶縁膜、991はオーミ、り接触用Cd 拡散部
、′98と97はそれぞれA、u ZnおよびA、−G
、−Ni  電極である。第7図の実施例との相違は回
挿格子・杉5が半導体レーザの発光線全域にわたってい
るのではなく1点線992で囲まれた発光部の□外側に
ある事である。即ち第7因の実施例はDFB半導体レー
ザであり、第9図の半導体レーザはDBR,半導体レー
ザである。
FIG. 9 is a partially cutaway diagram showing another embodiment of the present invention. 'In the ninth meat, 96 is n-type 1, P substrate, 9
3 td, 'n fJ InP layer, 91 and 92Fi respectively n-type 2 and p W Ino, yGao, 5Aso
-sPo-+ cladding layer, 90 is In(1-11Ga(
1-4A1i0-alIPo, 14 active layer, 94 p-type 1nP layer, 941 p m I no, lI Ga
@, 4As646 P6. .. 4 cap, p layer, 99 is S
iO, insulating film, 991 is ohmic, Cd diffusion part for contact, '98 and 97 are A, u Zn and A, -G, respectively.
, -Ni electrode. The difference from the embodiment shown in FIG. 7 is that the interpolated grating/cedar 5 does not extend over the entire emission line of the semiconductor laser, but is located outside the light emitting section surrounded by the dotted line 992. That is, the embodiment of the seventh cause is a DFB semiconductor laser, and the semiconductor laser in FIG. 9 is a DBR semiconductor laser.

第9図の半導体レーザも第8図にボした工程によって製
造する事が出来る。
The semiconductor laser shown in FIG. 9 can also be manufactured by the steps shown in FIG. 8.

以上、本発明について2つの実施例を用いて説明したが
、本発明は前記2つの実施例に何ら限定される事なく、
特に半導体レーザ材料と半導体レーザのモード制御構造
および電流制限構造に関しては何ら限定されるものでな
い事を付加えておく。
Although the present invention has been described above using two embodiments, the present invention is not limited to the above two embodiments;
In particular, it should be added that there are no limitations on the semiconductor laser material and the mode control structure and current limiting structure of the semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的なモード制御された半導体レーザの発振
スペクトル10と利得分布100を不す図、第2図は一
周波重畳変調された半導体レーザの発振スペクトル20
,21.22,23.24と利得分布200を示す図、
第3図は本発明による半導体レーザの発振スペクトル3
1と利得分布30を示す図、第4図は7ボダイズ関数に
対応する振巾分布41と42で振巾変調された周期的屈
折率分布を示す図。第5図は深さ方向に7ボダイズされ
た振巾分布を有する回折格子52を有するDk’B半導
体レーザの断面図で、54は基板、50は活性層、51
は導波路層、53と56はクラ、ド層、55はキャップ
層である。第6図は活性層部60と平行方向に7ポダイ
ズ関数63によって振巾変調されたコルタート状周期構
造回折格子64とそれに対応する発光部61.62を示
す図、第7図と第9図は本発明による半導体レーザを1
部を切り欠いて示した図で、75と95は活性層と平行
方向ycアボダイズされた振巾分布を有するフルゲート
状周期構造回折格子、76と96はI’nJ’、j4叡
、73と93はn型InP層、70と90はIn(j、
lA31’活性層、71と72と91と92はI nG
 B A !I Pクラ、ド層、74と94はp型In
PtV!、  741と941はp型1 n G a 
A s Pキャップ層、79と99はS iO。 絶縁膜、78と991はCd拡散部、77と98はAH
−Z(1t@、 791と97はAu−Ge−Ni%極
である。第8図は本発明による半導体レーザの製造工程
を示す図である。 埠 8 図 (d)         <e) 品l  θ6 (C) (f)
Fig. 1 shows the oscillation spectrum 10 and gain distribution 100 of a typical mode-controlled semiconductor laser, and Fig. 2 shows the oscillation spectrum 20 of a single-frequency superposition modulated semiconductor laser.
, 21.22, 23.24 and a diagram showing the gain distribution 200,
Figure 3 shows the oscillation spectrum 3 of the semiconductor laser according to the present invention.
1 and a gain distribution 30, and FIG. 4 is a diagram showing a periodic refractive index distribution modulated in amplitude with amplitude distributions 41 and 42 corresponding to a 7-bodies function. FIG. 5 is a cross-sectional view of a Dk'B semiconductor laser having a diffraction grating 52 having an amplitude distribution divided into 7 bodies in the depth direction, where 54 is a substrate, 50 is an active layer, and 51
5 is a waveguide layer, 53 and 56 are CL and D layers, and 55 is a cap layer. FIG. 6 is a diagram showing a cortate-shaped periodic structure diffraction grating 64 whose amplitude is modulated by a 7-podize function 63 in a direction parallel to the active layer portion 60, and the corresponding light emitting portions 61 and 62. A semiconductor laser according to the present invention
In the cutaway diagram, 75 and 95 are full-gate periodic structure diffraction gratings having an amplitude distribution aboded in the yc direction parallel to the active layer, 76 and 96 are I'nJ', j4叡, 73 and 93. is an n-type InP layer, 70 and 90 are In(j,
lA31' active layer, 71, 72, 91 and 92 are InG
BA! IP layer, layer 74 and 94 are p-type In
PtV! , 741 and 941 are p-type 1 n Ga
A s P cap layer, 79 and 99 are SiO. Insulating film, 78 and 991 are Cd diffusion parts, 77 and 98 are AH
-Z(1t@, 791 and 97 are Au-Ge-Ni% poles. Figure 8 is a diagram showing the manufacturing process of a semiconductor laser according to the present invention. Figure 8 (d) <e) Product l θ6 (C) (f)

Claims (1)

【特許請求の範囲】 1、 活性層と平行方向に7ボダイズされた振巾分布を
有する分布屋ブラ、グ反射器を有する半導体レーザ。 2 活性層と平行方向に7ポダイズされた振巾分布を有
するフルゲート状周期構造を活性層、クラ、ド層、導波
路層、基板側第】成長層の任意の2#の間ゐ境界面に、
レーザ発光領域全域にわたって形成した事を特徴とする
特許請求の範囲lに記載の半導体レーザ。 3、 活性層と平行方向にアボタ゛イズされた振巾分布
を有するフルゲート状周期構造を活性層、クラ、ドJ@
、導波路層、基板側第1Q長層の任意の2Mの間の境界
面に、レーザ発光慴域の外に形成した事を特徴とする特
許請求の範囲IK記載の半導体レーザ。
[Claims] 1. A semiconductor laser having a distribution reflector and a reflector having an amplitude distribution that is divided into seven bodies in a direction parallel to the active layer. 2. A full-gate periodic structure with an amplitude distribution 7podized in the direction parallel to the active layer is placed on the interface between the active layer, the CL layer, the D layer, the waveguide layer, and any 2 # of the growth layer on the substrate side. ,
A semiconductor laser according to claim 1, characterized in that the semiconductor laser is formed over the entire laser emission region. 3. A full-gate periodic structure with an abbreviated amplitude distribution in the direction parallel to the active layer is used as the active layer.
, the waveguide layer, and the first Q-long layer on the substrate side, the semiconductor laser is formed outside the laser emission region at the interface between any 2M of the substrate side first Q-long layer.
JP57123869A 1982-07-16 1982-07-16 Semiconductor laser Granted JPS5914690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123869A JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123869A JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5914690A true JPS5914690A (en) 1984-01-25
JPH0552072B2 JPH0552072B2 (en) 1993-08-04

Family

ID=14871385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123869A Granted JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5914690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378933A (en) * 2009-03-31 2012-03-14 英特尔公司 Narrow surface corrugated grating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193226A (en) * 1992-12-26 1994-07-12 Yodogawa Steel Works Ltd Installation structure for wall plate member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120392A (en) * 1977-03-30 1978-10-20 Nippon Telegr & Teleph Corp <Ntt> Compound type semiconductor laser
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120392A (en) * 1977-03-30 1978-10-20 Nippon Telegr & Teleph Corp <Ntt> Compound type semiconductor laser
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378933A (en) * 2009-03-31 2012-03-14 英特尔公司 Narrow surface corrugated grating
JP2012517030A (en) * 2009-03-31 2012-07-26 インテル コーポレイション Narrow surface corrugated grating

Also Published As

Publication number Publication date
JPH0552072B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
US5147825A (en) Photonic-integrated-circuit fabrication process
US6345135B1 (en) Multi-wavelength optical reflector
US4750801A (en) Optical waveguide resonator filters
US5020072A (en) Semiconductor laser device
JPS58155788A (en) Semiconductor laser
JPH11316312A (en) Semiconductor light reflector and its production
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPH07118567B2 (en) Gain-coupled distributed feedback semiconductor laser and manufacturing method thereof
JP2017187690A (en) Optical element, optical module and optical transmission system
JPH06300909A (en) Formation of diffraction grating by using holographic interference exposing method and optical semiconductor device using the same
JPS5914690A (en) Semiconductor laser
CN109449756B (en) Semiconductor laser and preparation method thereof
WO2005011076A1 (en) Weakly guiding ridge waveguides with vertical gratings
JP2700312B2 (en) Distributed feedback semiconductor laser device
JPH06313818A (en) Light reflector
JPS61137388A (en) Semiconductor laser
JPS60127776A (en) Semiconductor light emitting device
JP3565394B2 (en) Semiconductor pulse light source device
JPS5914689A (en) Semiconductor laser
JPH0377678B2 (en)
JP2735589B2 (en) Manufacturing method of diffraction grating
JP3151755B2 (en) Distributed feedback semiconductor laser
JP2770898B2 (en) Tunable semiconductor laser
JPH0642583B2 (en) Semiconductor laser device
JPH0462194B2 (en)