JPS5914689A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS5914689A
JPS5914689A JP57123868A JP12386882A JPS5914689A JP S5914689 A JPS5914689 A JP S5914689A JP 57123868 A JP57123868 A JP 57123868A JP 12386882 A JP12386882 A JP 12386882A JP S5914689 A JPS5914689 A JP S5914689A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor laser
laser
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57123868A
Other languages
Japanese (ja)
Inventor
Fujio Saito
斉藤 富士郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57123868A priority Critical patent/JPS5914689A/en
Publication of JPS5914689A publication Critical patent/JPS5914689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a light source which has radiation light distribution without spectral noise by forming at least one or more corrugated diffraction gratings which are specified in length in parallel direction to the propagating direction of a laser light in the boundary between the two arbitrary layers of an active layer, a clad layer, a waveguide and the first grown layer of substrate side. CONSTITUTION:A corrugated structure diffraction grating of L=(Nlambda<2>0)/4neXDELTAlambda, where lambda0 is central oscillation wavelength of a laser, DELTAlambda is spectral width, ne is equivalent refractive index and N is order number of diffractions in a semiconductor laser of multilayer structure which contains an active layer, is provided. In other words, an N type InP layer 73, N type an P type In0.7Ga0.3As0.6P0.4 clad layer 71, 72, an In0.6Ga0.4As0.86P0.1 active layer 70, a P type InP layer 74, a P type In0.6Ga0.4As0.86P0.14 cap layer 741, an SiO12 film 79, an ohmic contact Cd diffused part 79, and electrodes 77, 791 are formed on an N type InP substrate 76, and the diffraction grating is provided on the boundary between the layers 71 and 73.

Description

【発明の詳細な説明】 本発明はレーザ光の進行方向と平行方向の長さが有限の
値に制限された回折格子を1個以上分布帰還手段として
有する半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser having one or more diffraction gratings whose length in a direction parallel to the direction in which laser light travels is limited to a finite value as distributed feedback means.

半導体レーザは光フアイバ通信用光源として広く実用さ
れているが、半導体レーザと多モード光ファイバとの組
合せにおいて、スペックルi音による信号劣化を如何に
して除去するかという事が問題になっている。半導体レ
ーザのモード制御技術の最近の進歩によって半導体レー
ザ光のコヒーレンスは従来とくらべ著しく改善され、ま
た発振スペクトルについても数十〜100Mb/s以下
の変調周波数に対しては、第1図に示す如く利得分布曲
線100のはゾ中央に殆んど単−縦モード発振に近い状
態の発振スペクトル10が実現されている。
Semiconductor lasers are widely used as light sources for optical fiber communications, but the problem is how to eliminate signal degradation caused by speckle noise when combining semiconductor lasers and multimode optical fibers. . Recent advances in mode control technology for semiconductor lasers have significantly improved the coherence of semiconductor laser light compared to conventional methods, and the oscillation spectrum has improved as shown in Figure 1 for modulation frequencies of several tens to 100 Mb/s or less. At the center of the gain distribution curve 100, an oscillation spectrum 10 in a state almost like single-longitudinal mode oscillation is realized.

しかし、この様なコヒーレンスの良い半導体レーザ光を
多モード光ファ1バ中を伝搬さぜるとy0ファイバ中で
生ずる不規則な・モード変換の結果として光フアイバ出
射端においては異った光路を通過して来た光が干渉し合
い、不規則な変動を示し、またパルス変調された光に対
してはパルス波形の乱れを生ずる。この様なスペックル
雑音を除去する対策として現在、 (1)高周波重畳変調の採用 (2)光源として発光ダイオードの使用(3)モードス
クランブラの採用 の3つの方法が知られている。このうち(1)の方法は
半導体レーザを数百Ml(zの高周波信号で変調すると
、発振スペクトルが第2図に示す様に利得分布200に
対応するひろがりを有する多モード発振20.21.2
2、お、24、・・・の状態になり、レーザ光のコヒー
レンスが低下する事を利用するものである。しかし、こ
の方法では半導体レーザを絶えず高周波信号で変調しな
ければならない事が何と言ってもわずられしい。(2)
の方法はコヒーレントな半導体レーザ光のかわりに、発
光ダイオードのインコヒーレント光を用いるもので、モ
ーダル雑音除去には有効であるが、変調帯域が高々数十
Mlt/s止りであり、また光ファイバへの結合光量も
大きく出来ないので、中継間隔を余り長くとる事が出来
ない。(3)の方法は本発明に直接か5わりをもたない
ので説明は省略する。詳細については副島、貝淵著「光
フアイバ通信」、電気通信技術二一−ス社刊、503〜
504貞を参照されたい。
However, when such a semiconductor laser beam with good coherence is propagated through a multimode optical fiber 1, different optical paths are formed at the output end of the optical fiber as a result of irregular mode conversion that occurs in the y0 fiber. The transmitted light interferes with each other, exhibiting irregular fluctuations, and pulse waveform disturbances occur for pulse-modulated light. There are currently three known methods for removing such speckle noise: (1) employing high frequency superimposed modulation, (2) using a light emitting diode as a light source, and (3) employing a mode scrambler. Among these methods, method (1) modulates a semiconductor laser with a high frequency signal of several hundred Ml (z), and as shown in FIG.
This method takes advantage of the fact that the coherence of the laser beam decreases in the following states. However, this method is troublesome in that the semiconductor laser must be constantly modulated with a high frequency signal. (2)
This method uses incoherent light from a light emitting diode instead of coherent semiconductor laser light, and is effective for removing modal noise, but the modulation band is only a few tens of Mlt/s at most, and it is difficult to connect optical fibers. Since the amount of coupled light cannot be increased, the relay interval cannot be made too long. Since method (3) has no direct effect on the present invention, its explanation will be omitted. For details, see "Optical Fiber Communication" by Soejima and Kaibuchi, published by Telecommunications Technology 21-S Co., Ltd., 503-
Please refer to 504 Sada.

本発明の目的は多モード光ファイバ通信システムにおけ
る光源のコヒーレンスに起因するスペックル雑音除去に
関する従来の方法の上で説明した如き欠点を取り除き、
スペックル雑音を生じない程度の低コヒーレンス度でか
つ光フアイバ中に従来の半導体レーザの場合と同程度の
レベルの光を結合可能な放駒光分布を有する光源を提供
する事 。
It is an object of the present invention to eliminate the above-mentioned drawbacks of conventional methods for speckle noise removal due to light source coherence in multimode optical fiber communication systems;
To provide a light source having a degree of coherence so low that it does not cause speckle noise and having a radial light distribution capable of coupling into an optical fiber light at a level comparable to that of a conventional semiconductor laser.

にある。It is in.

本発明の他の目的は定められたスペクトル帯域内におい
ては第3図31に示す様な連続的な発振スペクトルを有
する半導体レーザを提供する事にある。
Another object of the present invention is to provide a semiconductor laser having a continuous oscillation spectrum as shown in FIG. 31 within a defined spectral band.

本発明によれば、レーザ光の進行方向と平行方向の長さ
が有限の値に制限されたコルゲート構造回折格子を活性
層、クラッド層、導波路層、基板側第1成長層の任意の
2つの層の間の境界部に少なくとも1個以上形成した分
布帰還型又は分布ブラッグ反射屋半導体レーザが得られ
る。
According to the present invention, a corrugated diffraction grating whose length in the direction parallel to the traveling direction of the laser beam is limited to a finite value can be used in any two of the active layer, cladding layer, waveguide layer, and first growth layer on the substrate side. A distributed feedback or distributed Bragg reflector semiconductor laser in which at least one semiconductor laser is formed at the boundary between two layers can be obtained.

次に本発明の原理を図面および数式を用いて説明する。Next, the principle of the present invention will be explained using drawings and mathematical formulas.

一般に分布帰還型(以下DFBと略記)又は分布ブラッ
グ反射器型(以下DBRと略記)半導体レーザと称せら
れるものは、活性層、導波路層、クラッド層、基板側第
1成長層の任意の2つの層の間の境界部に周期が 但し、N=整数 λoニレーザ光の真空中での波長 jle−実効屈折率 で与えられるコルゲート状の周期構造を回折格子として
全面、又は一部分に形成したものである。
Generally, what is called a distributed feedback type (hereinafter abbreviated as DFB) or a distributed Bragg reflector type (hereinafter abbreviated as DBR) semiconductor laser consists of an active layer, a waveguide layer, a cladding layer, and a first growth layer on the substrate side. A corrugate-like periodic structure is formed as a diffraction grating on the entire surface or a part thereof, with a period at the boundary between the two layers, where N = integer λo, wavelength of laser light in vacuum, jle - effective refractive index. be.

DFB又はDBR半導体レーザの特憎はレーザ内部での
光のフィードバックをファブリ・ペロー型光共振器では
なく回折格子によるブラッグ回折を用いているために、
発振波長は(1)式で与えられるλ。に固定出来る事で
あり、常に単一周波数発振が得られる。DFB又はDB
R半導体レーザに関する更に詳細な説明についてはエッ
チ・シー・ケージ−2世、エム−ビー・バニッシュ、共
著ゝヘテロストラクチュア レーザース“、アカデミツ
クブレス刊、1978年、パートA190〜106頁を
参照されたい。DFB又はDBI−L半導体レーザはコ
ヒーレンスの良いレーザ光を放射するので、スペックル
雑音はかえって出易くなり、そのま\では多モード光フ
アイバ中信には向かない。
The particular disadvantage of DFB or DBR semiconductor lasers is that they use Bragg diffraction using a diffraction grating instead of a Fabry-Perot type optical resonator for optical feedback inside the laser.
The oscillation wavelength is λ given by equation (1). It can be fixed to , and single frequency oscillation can always be obtained. DFB or DB
For a more detailed explanation of R semiconductor lasers, please refer to H.C. Cage II and M.B. Banish, "Heterostructure Lasers", Academic Press, 1978, Part A, pp. 190-106. Since DFB or DBI-L semiconductor lasers emit laser light with good coherence, speckle noise is more likely to occur, and they are not suitable for multimode optical fiber communications as they are.

所で、前述の様なコルゲート状周期構造は実効的にレー
ザの発光部分にそって 2π n(x)= no−)−n、cos (−x )   
  (2)の形の屈折率分布が導入された事と等価であ
る。
By the way, the above-mentioned corrugated periodic structure effectively has 2π n(x) = no-)-n, cos (-x) along the laser emission part.
This is equivalent to introducing a refractive index distribution of the form (2).

(2)式で与えられるn (x) −no三Δn(x)
をフーリエ変換して得られるその空間周波数スペクトル
分布は丁度ω=2r/Aの位置にデルタ関数状の鋭いビ
ークを示し、この事が単一周波数発振が得られる事を反
映している。そこでΔn(X)の分布を(2)式とは異
った形にし、その空間周波数スペクトルがある帯域内で
連続スペクトルになる様に選んでおけば、その帯域に対
応する周波数帯域においてのみ連続的発振スペクトル分
布を有するレーザ発振が実現出来る事になる。
n(x) −no3Δn(x) given by equation (2)
The spatial frequency spectrum distribution obtained by Fourier transform shows a sharp delta function-like peak exactly at the position of ω=2r/A, which reflects that single frequency oscillation can be obtained. Therefore, if we make the distribution of Δn(X) different from equation (2) and select it so that its spatial frequency spectrum is continuous within a certain band, it will be continuous only in the frequency band corresponding to that band. This makes it possible to realize laser oscillation with a specific oscillation spectrum distribution.

連続的な空間周波数スペクトルを有する回折格子を実現
する最も簡単な方法はΔn (x)を前記(2)式の様
に無限に拡がった関数ではなく、有限区間でのみ正弦的
に変化する関数にする事であ不ミ゛すなわち とするとその空間周波数スペクトルF(ω)はとなる。
The easiest way to realize a diffraction grating with a continuous spatial frequency spectrum is to make Δn (x) a function that varies sinusoidally only in a finite interval, rather than a function that extends infinitely as in equation (2) above. If it is assumed that this is not the case, then the spatial frequency spectrum F(ω) is as follows.

実際にはω〉0の場合のみ考えておけば良いから前記(
4)式の括弧の第2項のみに着目すると前記(3)式で
表される空間周波数スペクトルF(ω)は第4図に示す
様にω=ω。ミ2(q にピークをもち帯域中2Δω=
2π/aの連続スペクトルをもつ事になる。第3図31
に示す発振スペクト、ルと前Re(4)式の空間周波数
反ベクトルとの対応関係は次の様にして決る事が出来る
。すなわち発振スペクトルの中心波長をλ。、スペクト
ル巾をΔλとすると前記(1)式を用いて で与えられる。今、たとえばλo:1.3μm1Δλ=
io人、N=2、no = 3.456とするとA =
 0.376 XIOCIIL= 0.376 tim
= 128.5cm−’ a = 0.0245cm=24゜5μmとなる。すな
わち、回折格子の長さをL=2a=49μm で打切っ
ておけば良い事になる。もちろん実際の半導体レーザに
おいては回折格子の長さLは厳密に前記(6)式から導
かれる の関係を満している必要はなく、近似的に満しておれば
良い。一般に、無限区間〔−■、ω〕で定義されかつ該
区間で有限の値をもつ関数を有限区間(−a、a)で打
切られた形に変換する事を該関数をトランケートすると
呼ぶので、前記(7)式に示す関数式によって長さを決
られた回折格子を本明細書では以後トランケートされた
回折格子と呼ぶことにする。なお、前記(7)式から決
るLの値では分布帰還に必要な反射量が得られない場合
もあり得るが、その場合には同じLの値の回折格子を複
数個形成すればよい。
Actually, we only need to consider the case where ω〉0, so the above (
Focusing only on the second term in the parentheses of equation (4), the spatial frequency spectrum F(ω) expressed by equation (3) is ω=ω, as shown in FIG. Mi2(2Δω=2Δω in the band with a peak at q)
It has a continuous spectrum of 2π/a. Figure 3 31
The correspondence relationship between the oscillation spectrum, R, and the spatial frequency antivector of the previous Re equation (4) can be determined as follows. In other words, the center wavelength of the oscillation spectrum is λ. , where Δλ is the spectral width, is given by using equation (1) above. Now, for example, λo: 1.3μm1Δλ=
io people, N = 2, no = 3.456, then A =
0.376 XIOCIIL= 0.376 tim
= 128.5cm-' a = 0.0245cm = 24°5 μm. In other words, it is sufficient to cut off the length of the diffraction grating at L=2a=49 μm. Of course, in an actual semiconductor laser, the length L of the diffraction grating does not have to strictly satisfy the relationship derived from the above equation (6), but may just approximately satisfy the relationship. In general, converting a function defined in an infinite interval [-■, ω] and having a finite value in that interval into a form truncated in the finite interval (-a, a) is called truncating the function. In this specification, the diffraction grating whose length is determined by the function equation shown in equation (7) above will be referred to as a truncated diffraction grating. Note that there may be cases where the amount of reflection necessary for distributed feedback cannot be obtained with the value of L determined from the above equation (7), but in that case, a plurality of diffraction gratings with the same value of L may be formed.

第5図はトランケートされた回折格子を2個有するIn
GaAsP−DB几 半導体レーザの断面図である。第
5図において50はIno、r Gao4Aso、5s
Po、t4活性層、51と53はそれぞれp型およびn
型1no、yGao、s ASo、11 Po、4  
クラッド層、54はn型InP基板、56はp型InP
lii、55はp型Ino、s Gao、4 ASo、
86P0.14キャップ層であり、2ラッド層51とp
 −InP ff156の境界にトランケートされた回
折格子52と521が形成されている。
Figure 5 shows an In with two truncated diffraction gratings.
1 is a cross-sectional view of a GaAsP-DB semiconductor laser. In Figure 5, 50 is Ino, r Gao4Aso, 5s
Po, t4 active layer, 51 and 53 are p-type and n-type, respectively
Type 1no, yGao, s ASo, 11 Po, 4
Cladding layer, 54 is n-type InP substrate, 56 is p-type InP
lii, 55 is p-type Ino, s Gao, 4 ASo,
86P0.14 cap layer, 2 rad layers 51 and p
- Truncated diffraction gratings 52 and 521 are formed at the boundary of InP ff156.

次に本発明の実施例ζこついて図面を用いて説明する。Next, an embodiment ζ of the present invention will be explained with reference to the drawings.

第7図・において76はn型1nP基板、73はn型I
nP層、71と72はそれぞれn型およびp型1no、
y ()ao、aA80.S P、0.4クラッド層、
7oはIn、o、e、 Gao、4Aso、5sPo、
la活性層、74はp型1nP層、741はp型1no
、5Gao、a Aso、se PO,14キャ、プ層
、79はSin、絶縁膜、78はオーミヴク接触用Cd
拡散部、77と791はそれぞれAu−ZuおよびAu
−(ト)−Ni電極である。75はクラッド層71とn
型InP層73の境界面に形成されたトランケートされ
た回折格子である。この図には示されていないが、75
と丁度同じ形のものが反射側の出射端にも形成されてい
る。
In Figure 7, 76 is an n-type 1nP substrate, 73 is an n-type I
nP layers 71 and 72 are n-type and p-type 1no, respectively;
y ()ao, aA80. S P, 0.4 cladding layer,
7o is In, o, e, Gao, 4Aso, 5sPo,
la active layer, 74 is p-type 1nP layer, 741 is p-type 1no
, 5 Gao, a Aso, se PO, 14 cap layer, 79 is Sin, insulating film, 78 is Cd for ohmic contact
Diffusion parts 77 and 791 are Au-Zu and Au, respectively.
-(g)-Ni electrode. 75 is the cladding layer 71 and n
This is a truncated diffraction grating formed at the interface of the type InP layer 73. Although not shown in this figure, 75
A similar shape is also formed at the output end on the reflection side.

第7図に示す構造の半導体レーザは第8図に示を液晶エ
ピタキシャル成長する。次にその上に第8図(b)に示
す様にsio、膜812をつけ、更にその上にフォトレ
ジスト膜813をスピナーコートし、焼しめ処理を行な
う。次にこのウェハに第8図(C)フォトマスク814
を用いて露光拳現像処理を行なうと第8図((i)の様
に第6図のパ°η−ンに対応する部分のSiU、膜が露
出したウェハが得られる。更にこのウェハをバッファエ
ツチング液でエノ−f“ンクして賞出した部分の810
2膜を除き、史にはくり剤でフォトレジスト膜813も
除くと第8図(e)に示す様なウェハが得られる。次に
第8図(f)に示す様に更にこのウェハの上にフォトレ
ジスト膜815をスピナー・コートし焼しめ処理を行な
った後に、第8図(g)に示す様にArレーザ光又はl
ie −Cdレーザ光を用いて2光束816と817の
干渉によって回折格子パターンをフォトレジスト膜81
5内にホロクラム記録する。これを現像・処理すると第
8図(h)の様なウェハが得られ、これを稀塩酸でエツ
チングし、はくり剤でフォトレジスト膜815を取り除
くと第8図(りに示す様な回折格子82.821を形成
したウェハが得られ、これを更にバッファ・エツチング
液でSin、膜812を取り除いて、第8図U)に示す
様なウェハが得られる。この上に液相エピタキシャル成
長によって順次n型1no、y Gao、x Aso、
aPo、4クラッド層83.1no、s (Jao4A
S0.86 pH,+4活性層84.1)型Ino、y
 Gaax 、Aso、s Po、4クラット層85、
p型InPli86、p型1no、s Gao、< A
SO,116P(1,14キャップ層861を成長しく
第8図(k))更にSin、絶縁膜862をつけCd拡
散(第8図に示してない)した後にAu−Zn電極87
、Au−0e−Nl電極羽をつける事によって第8図(
J−)に示す様なウエノ1が得られる。これを第6図の
Lの1〜数倍のサイズにへき関する事によって第7図に
示す様な半導体レーザが得られる。
The semiconductor laser having the structure shown in FIG. 7 is produced by epitaxially growing a liquid crystal as shown in FIG. Next, as shown in FIG. 8(b), a sio film 812 is applied thereon, and a photoresist film 813 is spinner coated thereon, followed by a baking process. Next, this wafer is coated with a photomask 814 as shown in FIG. 8(C).
When the exposure and development process is carried out using a wafer, a wafer is obtained as shown in FIG. 8 ((i), in which the SiU film and film in the portion corresponding to the pattern in FIG. 6 are exposed. Furthermore, this wafer is buffered. 810 of the part that was etched with etching liquid and won a prize.
By removing the two films and also removing the photoresist film 813 using a stripping agent, a wafer as shown in FIG. 8(e) is obtained. Next, as shown in FIG. 8(f), a photoresist film 815 is spinner-coated on this wafer, and after a baking process is performed, Ar laser beam or l
A diffraction grating pattern is formed on the photoresist film 81 by interference of two beams 816 and 817 using an ie-Cd laser beam.
Record a hologram within 5. By developing and processing this, a wafer as shown in Figure 8 (h) is obtained, which is etched with dilute hydrochloric acid and the photoresist film 815 is removed with a stripper, resulting in a diffraction grating as shown in Figure 8 (h). A wafer having 82 and 821 formed thereon is obtained, and the Sin film 812 is further removed using a buffer etching solution to obtain a wafer as shown in FIG. 8U). On top of this, by liquid phase epitaxial growth, n-type 1no, y Gao, x Aso,
aPo, 4 cladding layer 83.1no,s (Jao4A
S0.86 pH, +4 active layer 84.1) type Ino, y
Gaax, Aso, s Po, 4 Krat layer 85,
p-type InPli86, p-type 1no, s Gao, <A
After growing SO, 116P (1,14 cap layer 861 in FIG. 8(k)), and adding a Si and insulating film 862 and diffusing Cd (not shown in FIG. 8), an Au-Zn electrode 87 is formed.
, by attaching Au-0e-Nl electrode wings, Figure 8 (
Ueno 1 as shown in J-) is obtained. By dividing this into a size one to several times larger than L in FIG. 6, a semiconductor laser as shown in FIG. 7 can be obtained.

以上、本発明について実施例を用いて説明したが本発明
は前記実施例に何ら限定される事なく、もちろんDFB
半導体レーザに対しても適用され、また半導体レーザ材
料と半導体レーザのモ゛ムド制御構造および電流制限構
造に関しては何ら限定されるものでない事を付加えてお
く。
Although the present invention has been described above using examples, the present invention is not limited to the above-mentioned examples, and of course, DFB
It should be added that the present invention is also applied to semiconductor lasers, and there are no limitations regarding the semiconductor laser material and the modulated control structure and current limiting structure of the semiconductor laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は典型的なモード制御された半導体レーザの発振
スペクトル10と利得分布100を示す図、第2図は高
周波重畳変調された半導体レーザの発振スペクトル20
.21.22、n124と利得分布200を示す図、第
3図は本発明による半導体レーザの発振スペクトル31
と利得分布(9)を示す図、第4図はトランケートされ
た回折格子の空間周波数スペクトルを示す図、第5図は
回折格子52と521を有するDFB半導体レーザの断
面図で、54は基板、50は活性層、51は導波路層、
53と56はクラッドJ−155はキャップ層である。 第6図はマスクパターンで60.61.62、・・・は
それぞれトランケートされた回折格子の外周に対応する
パターンである。 第7図は本発明による半導体レーザ11部を切り欠いて
示した斜視図で、 75はn型1rtP層73とI n GaAs Pクラ
ッド層の境界部に形成されたトランケートされた回折格
子76はInP基板 73はn型InP層、 70は1nGaAsP活性層 71と72は1nOaAsPクラット層74はp型In
P層 741はp型1nGaAsPキャyブ層79はSin、
絶縁膜 78はCd拡散部 77はAu −Zn電極 791はAu −Ge −N i [極である。 第8図は本発明による半導体レーザの製造工程を示す図
である。 代理人弁理士内原  音 5+l  図 O 牙 2 口 入。         入 第3目 オ8図 (α)         (J) (d)         (t) (i)                r 7cンI
EI  116 (C) (f) (i> 2 I6
FIG. 1 is a diagram showing the oscillation spectrum 10 and gain distribution 100 of a typical mode-controlled semiconductor laser, and FIG. 2 is a diagram showing the oscillation spectrum 20 of a high-frequency superposition modulated semiconductor laser.
.. 21.22, n124 and a diagram showing the gain distribution 200, FIG. 3 is the oscillation spectrum 31 of the semiconductor laser according to the present invention.
FIG. 4 is a diagram showing the spatial frequency spectrum of a truncated diffraction grating. FIG. 5 is a cross-sectional view of a DFB semiconductor laser having diffraction gratings 52 and 521, where 54 is a substrate, 50 is an active layer, 51 is a waveguide layer,
53 and 56 are cladding layers J-155 are cap layers. FIG. 6 shows a mask pattern, and 60, 61, 62, . . . are patterns corresponding to the outer periphery of the truncated diffraction grating, respectively. FIG. 7 is a cutaway perspective view of a portion of the semiconductor laser 11 according to the present invention, and 75 is a truncated diffraction grating 76 formed at the boundary between the n-type 1rtP layer 73 and the InGaAsP cladding layer. The substrate 73 is an n-type InP layer, 70 is a 1nGaAsP active layer 71 and 72 is a 1nOaAsP crat layer 74 is a p-type InP layer
The P layer 741 is p-type 1nGaAs; the P cave layer 79 is made of Sin;
The insulating film 78 is a Cd diffusion part 77 and the Au-Zn electrode 791 is Au-Ge-Ni [pole]. FIG. 8 is a diagram showing the manufacturing process of a semiconductor laser according to the present invention. Representative Patent Attorney Uchihara Oto 5+l Diagram O Fang 2 Mouth. Enter 3rd O figure 8 (α) (J) (d) (t) (i) r 7cn I
EI 116 (C) (f) (i> 2 I6

Claims (1)

【特許請求の範囲】 1、活性層を含む多層構造を具備する半導体レーザにお
いて、レーザの中心発振波長をλo1スペクトル巾をΔ
λ、等側屈折率をn命、回折次数をNとする時に、レー
ザ光の進行方向と平行方向における長さLが関係式 を少なくとも近似的にみたしているコルゲート構造回折
格子を、活性層、クラッド層、導波路、基板側第1成長
層の任意の2つの間の境界面に少なくとも1個以上形成
した事を特徴とする半導体レーザ。
[Claims] 1. In a semiconductor laser having a multilayer structure including an active layer, the center oscillation wavelength of the laser is λo1, the spectral width is Δ
λ, the isolateral refractive index is n, and the diffraction order is N, the active layer is a corrugated diffraction grating whose length L in the direction parallel to the traveling direction of the laser beam at least approximately satisfies the relational expression. , a cladding layer, a waveguide, and a first grown layer on the substrate side, at least one of which is formed on the interface between any two of them.
JP57123868A 1982-07-16 1982-07-16 Semiconductor laser Pending JPS5914689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123868A JPS5914689A (en) 1982-07-16 1982-07-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123868A JPS5914689A (en) 1982-07-16 1982-07-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5914689A true JPS5914689A (en) 1984-01-25

Family

ID=14871363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123868A Pending JPS5914689A (en) 1982-07-16 1982-07-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5914689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225907A (en) * 1989-02-28 1990-09-07 Rinnai Corp Combustion control device of hot water supplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225907A (en) * 1989-02-28 1990-09-07 Rinnai Corp Combustion control device of hot water supplier

Similar Documents

Publication Publication Date Title
US4796273A (en) Distributed feedback semiconductor laser
US6301283B1 (en) Distributed feedback semiconductor laser
JP2017187690A (en) Optical element, optical module and optical transmission system
JPS5914689A (en) Semiconductor laser
JP2700312B2 (en) Distributed feedback semiconductor laser device
JPH0552072B2 (en)
JPH0377678B2 (en)
JPS63111689A (en) Distributed feedback type semiconductor laser
JP2017022247A (en) Wavelength selection device and tunable light source
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JP3565394B2 (en) Semiconductor pulse light source device
US4849985A (en) Distributed feedback semiconductor laser device
JP2552504B2 (en) Semiconductor laser array device
JPS60152086A (en) Semiconductor laser device
JPS60127776A (en) Semiconductor light emitting device
JPS6188584A (en) Distributed feedback type semiconductor laser having phase shift structure
JPH06196799A (en) Distributed-feedback semiconductor laser
JPS61290789A (en) Multiple electrode distributed feedback type semiconductor laser and usage thereof
KR100237858B1 (en) Laser diode
JPS60192378A (en) Distribution feedback type laser
JP5445272B2 (en) Method for manufacturing optical semiconductor element
JPS60165780A (en) Semiconductor laser device
JPS6245192A (en) Distributed feedback semiconductor laser
JPH04356001A (en) Production of diffraction grating
JPS61260728A (en) Optical analog information transmission system