JPH0552072B2 - - Google Patents

Info

Publication number
JPH0552072B2
JPH0552072B2 JP57123869A JP12386982A JPH0552072B2 JP H0552072 B2 JPH0552072 B2 JP H0552072B2 JP 57123869 A JP57123869 A JP 57123869A JP 12386982 A JP12386982 A JP 12386982A JP H0552072 B2 JPH0552072 B2 JP H0552072B2
Authority
JP
Japan
Prior art keywords
frequency
diffraction grating
semiconductor laser
function
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57123869A
Other languages
Japanese (ja)
Other versions
JPS5914690A (en
Inventor
Fujio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57123869A priority Critical patent/JPS5914690A/en
Publication of JPS5914690A publication Critical patent/JPS5914690A/en
Publication of JPH0552072B2 publication Critical patent/JPH0552072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は分布帰還型半導体レーザに関し、特
に回折格子の活性層に平行な面内の幅を所望の関
数形に従つて変化させた分布帰還型半導体レーザ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distributed feedback semiconductor laser, and more particularly to a distributed feedback semiconductor laser in which the width of a diffraction grating in a plane parallel to an active layer is varied according to a desired functional form. .

半導体レーザは光フアイバ通信用光源として広
く実用されているが、半導体レーザと多モード光
フアイバとの組合せにおいて、スペツクル雑音に
よる信号劣化を如何にして除去するかという事が
問題になつている。半導体レーザのモード制御技
術の最近の進歩によつて半導体レーザ光のコヒー
レンスは従来とくらべ著しく改善され、また発振
スペクトルについても数十〜100Mb/s以下の
変調周波数に対しては、第1図に示す如く、利得
分布曲線100のほぼ中央に殆んど単一縦モード
発振に近い状態の発振スペクトル10が実現され
ている。しかし、この様なコヒーレンスの良い半
導体レーザ光を多モード光フアイバ中を伝搬させ
ると光フアイバ中で生ずる不規則なモード変換の
結果として光フアイバ出射端においては異つた光
路を通過して来た光が干渉し合い、不規則な変動
を示し、またパルス変調された光に対してはパル
ス波形の乱れを生ずる。この様なスペツクル雑音
を除去する対策として現在、 (1) 高周波重畳変調の採用 (2) 光源として発光ダイオードの使用 (3) モードスクランブラの採用 の3つの方法が知られている。このうち(1)の方法
は半導体レーザを数百MHzの高周波信号で変調す
ると、発振スペクトルが第2図に示す様に利得分
布200に対応するひろがりを有する多モード発振
20,21,22,23,24,……の状態にな
り、レーザ光のコヒーレンスが低下する事を利用
するものである。しかし、この方法では半導体レ
ーザを絶えず高周波信号で変調しなければならな
い事が何と言つてもわずらわしい。(2)の方法はコ
ヒーレントな半導体レーザ光のかわりに、発光ダ
イオードのインコヒーレント光を用いるもので、
モーダル雑音除去には有効であるが、変調帯域が
高々数十Mb/s止りであり、また光フアイバへ
の結合光量も大きく出来ないので中継間隔を余り
長くとる事が出来ない。(3)の方法は本発明に直接
かかわりをもたないので説明は省略する。詳細に
ついては副島、貝淵著「光フアイバ通信」、電気
通信技術ニユース社刊、503〜504頁を参照された
い。
Semiconductor lasers are widely used as light sources for optical fiber communications, but the problem is how to eliminate signal deterioration due to speckle noise in the combination of semiconductor lasers and multimode optical fibers. Recent advances in mode control technology for semiconductor lasers have significantly improved the coherence of semiconductor laser light compared to conventional methods, and the oscillation spectrum has improved as shown in Figure 1 for modulation frequencies of several tens to 100 Mb/s or less. As shown, an oscillation spectrum 10 in a state close to single longitudinal mode oscillation is realized approximately at the center of the gain distribution curve 100. However, when such semiconductor laser light with good coherence is propagated through a multimode optical fiber, as a result of irregular mode conversion that occurs in the optical fiber, the light that has passed through different optical paths at the output end of the optical fiber interfere with each other, exhibiting irregular fluctuations, and also causing disturbances in the pulse waveform for pulse-modulated light. There are currently three known methods for removing such speckle noise: (1) employing high frequency superimposed modulation, (2) using a light emitting diode as a light source, and (3) employing a mode scrambler. Among these, method (1) modulates a semiconductor laser with a high frequency signal of several hundred MHz, and the oscillation spectrum 20, 21, 22, 23 with a spread corresponding to a gain distribution of 200, as shown in Figure 2, is generated. , 24, . . . and the coherence of the laser beam decreases. However, this method is troublesome in that the semiconductor laser must be constantly modulated with a high frequency signal. Method (2) uses incoherent light from a light emitting diode instead of coherent semiconductor laser light.
Although it is effective in removing modal noise, the modulation band is only a few tens of Mb/s at most, and the amount of light coupled to the optical fiber cannot be increased, so the repeating interval cannot be made very long. Since the method (3) is not directly related to the present invention, its explanation will be omitted. For details, please refer to "Optical Fiber Communication" by Soejima and Kaibuchi, published by Telecommunication Technology News Company, pp. 503-504.

本発明の目的は、多モード光フアイバ通信シス
テムにおける光源のコヒーレンスに起因するスペ
ツクル雑音除去に関する従来の方法の上で説明し
た如き欠点を取り除き、スペツクル雑音を生じな
い程度の低コヒーレンス度でかつ、光フアイバ中
に従来の半導体レーザの場合と同程度のレベルの
光を結合可能な放射光分布を有する光源を提供す
る事にある。
It is an object of the present invention to eliminate the above-mentioned drawbacks of conventional methods for speckle noise removal due to coherence of light sources in multimode optical fiber communication systems, and to eliminate optical The object of the present invention is to provide a light source having an emitted light distribution capable of coupling light into a fiber at a level comparable to that of a conventional semiconductor laser.

本発明の他の目的は定められたスペクトル帯域
内においては第3図31に示す様な連続的な発振
スペクトルを有する半導体レーザを提供する事に
ある。
Another object of the present invention is to provide a semiconductor laser having a continuous oscillation spectrum as shown in FIG. 31 within a defined spectral band.

本発明によれば活性層、導波路層、クラツド
層、基板側第1成長層の任意の2つの層の間の境
界部に、活性層に平行な面内において幅を所望の
関数形に従つて変化させかつ光の出射方向にそつ
てコルゲート状の周期構造を有する回折格子を1
組以上形成した事を特徴とする分布帰還型又は分
布ブラツグ反射器型ダブルヘテロ接合半導体レー
ザが得られる。
According to the present invention, at the boundary between any two layers of the active layer, the waveguide layer, the cladding layer, and the first growth layer on the substrate side, the width is set according to a desired function shape in a plane parallel to the active layer. A diffraction grating with a corrugate-like periodic structure along the light emission direction is
A distributed feedback type or distributed Bragg reflector type double heterojunction semiconductor laser characterized in that more than one pair is formed is obtained.

次に本発明の原理を図面および数式を用いて説
明する。
Next, the principle of the present invention will be explained using drawings and mathematical formulas.

一般に分布帰還型(以下DFBと略記)又は分
布ブラツグ反射器型(以下DBRと略記)半導体
レーザと称せられるものは、活性層、導波路層、
クラツド層、基板側第1成長層、の任意の2つの
層の間の境界部に周期が Λ=N・λp/2ne (1) 但し N=整数 λp=レーザ光の真空中での波長 ne=実行屈折率 で与えられるコルゲート状の周期構造を回折格子
として全面、又は一部分に形成したものである。
DFB又はDBR半導体レーザの特徴はレーザ内部
での光のフイードバツクをフアブリ・ペロー型光
共振器ではなく、回折格子によるブラツグ回折を
用いているために、発振波長は(1)式で与えられる
λpに固定出来る事であり、常に単一周波数発振が
得られる。DFB又はDBR半導体レーザに関する
更に詳細な説明についてはエツチ・シー・ケーシ
ー2世、エム・ビー・パニツシユ共著“ヘテロス
トラクチユア レーザース”、アカデミツクプレ
ス刊、1978年、パートA、90〜106頁を参照され
たい。DFB又はDBR半導体レーザはコヒーレン
スの良いレーザ光を放射するので、スペツクル雑
音はかえつて出易くなり、そのままでは多モード
光フアイバ通信には向かない。
Generally, what is called a distributed feedback type (hereinafter abbreviated as DFB) or a distributed Bragg reflector type (hereinafter abbreviated as DBR) semiconductor laser consists of an active layer, a waveguide layer,
The period at the boundary between any two layers, the cladding layer and the first growth layer on the substrate side, is Λ=N・λ p /2n e (1) where N = integer λ p = the period of the laser beam in vacuum. A corrugated periodic structure given by wavelength ne = effective refractive index is formed as a diffraction grating on the entire surface or a portion thereof.
A feature of the DFB or DBR semiconductor laser is that it uses Bragg diffraction using a diffraction grating instead of a Fabry-Perot optical resonator for optical feedback inside the laser, so the oscillation wavelength is λ p given by equation (1). It can be fixed to , and single frequency oscillation can always be obtained. For a more detailed explanation of DFB or DBR semiconductor lasers, see H.C.C. II., M.B. Punish, "Heterostructure Lasers," Academic Press, 1978, Part A, pp. 90-106. Please refer to Since DFB or DBR semiconductor lasers emit laser light with good coherence, speckle noise is more likely to occur, and they are not suitable for multimode optical fiber communications as they are.

所で、前述の様なコルゲート状同期構造は実効
的にレーザの発光部分にそつて n(x)=n0+n1cos(2π/Λx) (2) の形の屈折率分布が導入された事と等価である。
(2)式で与えられるn(x)−n0≡△n(x)をフーリエ変
換して得られるその空間周波数スペクトル分布は
丁度ω=2π/Λの位置にデルタ関数状の鋭いピ
ークを示し、この事が、単一周波数発振が得られ
る事を反映している。そこで△n(x)の分布を(2)式
とは異つた形にし、その空間周波数スペクトルが
ある帯域内で連続スペクトルになる様に選んでお
けば、その帯域に対応する周波数帯域においての
み連続的発振スペクトル分布を有するレーザ発振
が実現出来る事になる。即ち、半導体レーザの中
心にx軸の原点を取ると△n(x)とその空間周波数
スペクトルF(ω)とは △n(x)=1/√2π∞ ∫ −∞e-ix〓F(ω)dω (3) F(ω)=1/√2π∞ ∫ −∞eix〓△n(x)dx (4) の関係にある。またF(ω)と発振スペクトル分
布S(ν)との間にはほぼ S(ν)∝F(ω=2ne/N・ν/C)(5) の関係があると考えて差支えない。そこでS(ν)
として所望の分布を与えれば(5)式と(3)式を用いて
実現すべきn〓の分布が求められる。S(ν)と
しては各種の分布が選び得るが、我々の目的に適
した分布で最も簡単なものとして第3図31に示
す様に半導体レーザの利得曲線30にほぼ一杯に
ひろがつた矩形状の分布 S(ν)=1 ν0−△ν<ν<ν0+△ν =0 ν>ν0+△ν、又はν<ν0−△ν (6) を採用する。但しν0=C/λ0。これと(5)式、と(3)
式から、 △n〓∝〓0-△〓 ∫ 〓0 -△〓e-ix〓・dω ∝e-ix0・sinx・△ω/x (7) 但しω0=2ne/Nν0/C、△ω=2ne/N△ν/C(7
)′ となる。実際には(7)式の実数部のみを考えれば良
いから屈折率分布として n〓=n0+n1cos(xω0)・(sin(x・△ω
)/x)(8) の様なものを作れば良い訳である。具体的には第
4図に示す様に関数cos(xω0)で与えられるコル
ゲート状周期構造の凹凸の振巾が点線41,42
で示す様に関数sin(x・△ω)/xによつて変調
された結果、曲線40に示す様な形の屈折率分布
が実現されれば良い。第5図は活性層50に対し
て垂直な深さ方向の振幅が第4図の曲線40に対
応する関数に比例して変化するコルゲート状周期
構造の回折格子を有するInGaAsP−DFB半導体
レーザの一例の断面図である。第5図において5
0はIn0.6Ga0.4AS0.86P0.14活性層、51と53はそ
れぞれp型およびn型In0.7Ga0.3As0.6P0.4クラツド
層、54はn型InP基板、56はp型InP層、5
5はp型In0.6Ga0.4As0.86P0.14キヤツプ層であり、
クラツド層51とp−InP層56の境界に活性層
50に対して垂直な深さ方向の振幅が第4図の曲
線40に対応する関数に比例して変化するコルゲ
ート状周期構造52が形成されている。
By the way, the above-mentioned corrugated synchronous structure effectively introduces a refractive index distribution of the form n(x) = n 0 + n 1 cos (2π/Λx) (2) along the light emitting part of the laser. It is equivalent to
The spatial frequency spectrum distribution obtained by Fourier transforming n(x)−n 0 ≡△n(x) given by equation (2) shows a sharp delta function-like peak exactly at the position of ω = 2π/Λ. , this reflects the fact that single frequency oscillation can be obtained. Therefore, if we make the distribution of △n(x) different from Equation (2) and select it so that its spatial frequency spectrum is continuous within a certain band, it will be continuous only in the frequency band corresponding to that band. This makes it possible to realize laser oscillation with a specific oscillation spectrum distribution. That is, if we take the origin of the x-axis at the center of the semiconductor laser, then △n(x) and its spatial frequency spectrum F(ω) are △n(x)=1/√2π∞ ∫ −∞e -ix 〓F( ω)dω (3) F(ω)=1/√2π∞ ∫ −∞e ix 〓△n(x)dx (4) The relationship is as follows. Furthermore, it can be safely assumed that there is a relationship between F(ω) and the oscillation spectrum distribution S(ν) approximately as follows: S(ν)∝F(ω=2n e /N·ν/C) (5). So S(ν)
If a desired distribution is given as , then the distribution of n〓 to be realized can be found using equations (5) and (3). Various distributions can be selected for S(ν), but the simplest distribution suitable for our purpose is a rectangular shape that extends almost completely to the gain curve 30 of the semiconductor laser, as shown in FIG. 31. The distribution S(ν)=1 ν 0 −Δν<ν<ν 0 +Δν =0 ν>ν 0 +Δν or ν<ν 0 −Δν (6) is adopted. However, ν 0 =C/λ 0 . This and equation (5), and (3)
From the formula, △n〓∝〓 0- △〓 ∫ 〓 0 - △〓e -ix 〓・dω ∝e -ix0・sinx・△ω/x (7) However, ω 0 = 2n e /Nν 0 / C, △ω=2n e /N△ν/C(7
)′ becomes. In reality, we only need to consider the real part of equation (7), so as the refractive index distribution, n==n 0 +n 1 cos(xω 0 )・(sin(x・△ω
)/x) (8). Specifically, as shown in Fig. 4, the amplitude of the irregularities of the corrugated periodic structure given by the function cos(xω 0 ) is indicated by dotted lines 41 and 42.
As a result of modulation by the function sin(x·Δω)/x as shown in FIG. FIG. 5 shows an example of an InGaAsP-DFB semiconductor laser having a diffraction grating with a corrugated periodic structure in which the amplitude in the depth direction perpendicular to the active layer 50 changes in proportion to a function corresponding to the curve 40 in FIG. FIG. In Figure 5, 5
0 is an In 0.6 Ga 0.4 AS 0.86 P 0.14 active layer, 51 and 53 are p-type and n-type In 0.7 Ga 0.3 As 0.6 P 0.4 cladding layers, respectively, 54 is an n-type InP substrate, 56 is a p-type InP layer, 5
5 is a p-type In 0.6 Ga 0.4 As 0.86 P 0.14 cap layer;
A corrugated periodic structure 52 is formed at the boundary between the clad layer 51 and the p-InP layer 56, and the amplitude in the depth direction perpendicular to the active layer 50 changes in proportion to a function corresponding to the curve 40 in FIG. ing.

第5図に示した半導体レーザはそれが実際に製
造出来れば我々の目的に全く合つたものである
が、実際には52の様な深さ方向に複雑な凹凸変
化をするコルゲート構造を加工する事は極めて困
難である。
The semiconductor laser shown in Figure 5 would be completely suitable for our purposes if it could actually be manufactured, but in reality, it is necessary to process a corrugated structure with complex irregularities in the depth direction, such as 52. The situation is extremely difficult.

本発明においては前述の困難を第6図に示す様
に活性層と平行な平面内における回折格子の幅を
第4図の曲線41,42に対応する関数に比例し
て変化させる事によつて平均的な意味で(8)式で表
された様な屈折率変化を実現する事で解決してい
る。第6図において60は活性層、導波路層、ク
ラツド層、基板側第1成長層の任意の2つの層の
間の境界面を上方から見た図であり、61と62
はレーザ発振光の分布する範囲を示し、63は第
4図の曲線41,42に対応する関数に比例した
関数形を、64は境界面60上に形成されたコル
ゲート状回折格子である。回折格子64の各要素
は境界面60から上方に突出していても、あるい
は溝状に凹んでいても、いずれでも差支えなく、
その高さ、あるいは深さについても絶対的な決定
基準はなく、ふつう0.01〜1μmの範囲程度であれ
ばよい。第6図においてたとえばA−A′で示す
部分を見ると、その部分での回折格子64の振巾
W′はレーザ発振光の分布の巾Wよりは小さい。
回折格子64のコルゲーシヨンの(1)の山に対応す
る実効屈折率振巾をn1とすると、A−A′の部分
では平均的に実効屈折率振巾がn1×W′/Wにな
つたと考える事が出来る。従つて、結局第6図に
示した回折格子64は平均的に(8)式で示した様な
実効屈折率分布を実現しているものと考えてよ
い。回折格子64の主要な部分の長さLは(7)式と
(7)′式から L=N/2ne・C/△ν・2π =N/ne・λ20/△λ・π (9) で与えられる。今、ne=3.456、N=2、λ0
1.3μm△λ=20Åとすると L=2×1.32×10-8cm×π/3.456×20×10-8cm
=154μm となり、半導体レーザ・チツプのふつうの寸法か
ら見て先ず妥当な値である。
In the present invention, the above-mentioned difficulty can be solved by changing the width of the diffraction grating in a plane parallel to the active layer in proportion to the function corresponding to curves 41 and 42 in FIG. 4, as shown in FIG. This problem is solved by realizing a refractive index change as expressed by equation (8) in an average sense. In FIG. 6, 60 is a view from above of the interface between any two layers of the active layer, the waveguide layer, the cladding layer, and the first growth layer on the substrate side, and 61 and 62
indicates the range in which the laser oscillation light is distributed, 63 is a function form proportional to the function corresponding to the curves 41 and 42 in FIG. 4, and 64 is a corrugated diffraction grating formed on the boundary surface 60. Each element of the diffraction grating 64 may protrude upward from the boundary surface 60 or may be recessed in the shape of a groove.
There are no absolute criteria for determining the height or depth, and it is usually within the range of 0.01 to 1 μm. For example, if we look at the part indicated by A-A' in Fig. 6, the amplitude of the diffraction grating 64 at that part is
W' is smaller than the width W of the distribution of laser oscillation light.
If the effective refractive index amplitude corresponding to the peak (1) of the corrugation of the diffraction grating 64 is n 1 , then the average effective refractive index amplitude in the A-A' portion is n 1 ×W'/W. It is possible to think that. Therefore, it can be considered that the diffraction grating 64 shown in FIG. 6 achieves an effective refractive index distribution as shown in equation (8) on average. The length L of the main part of the diffraction grating 64 is given by equation (7).
From equation (7)', it is given by L=N/2n e・C/△ν・2π = N/n e・λ 2 / 0 /△λ・π (9). Now, n e =3.456, N=2, λ 0 =
If 1.3μm△λ=20Å, L=2×1.3 2 ×10 -8 cm×π/3.456×20×10 -8 cm
= 154 μm, which is a reasonable value considering the normal dimensions of semiconductor laser chips.

次に本発明の実施例について図面を用いて説明
する。
Next, embodiments of the present invention will be described using the drawings.

第7図は本発明による半導体レーザの1つの好
ましい実施例を一部を切り欠いて示した図であ
る。第7図において76はn型InP基板、73は
n型InP層、71と72はそれぞれn型およびp
型In0.7Ga0.3As0.6P0.4クラツド層、70はIn0.6
Ga0.4As0.86P0.14活性層、74はp型InP層、74
1はp型In0.6Ga0.4As0.86P0.14キヤツプ層、79は
SiO2絶縁膜、78はオーミツク接触用Cd拡散部、
77と791はそれぞれAu−ZuおよびAu−Ge
−Ni電極である。75はクラツド層71とn型
InP層73の境界面に形成され、活性層70に平
行な平面内における幅が第4図の曲線41,42
に対応する関数に比例して変化しているコルゲー
ト状周期構造の回折格子である。第7図に示す構
造の半導体レーザは第8図に示す様な工程によつ
て作る事が出来る。先ず第8図aに示す様にn型
InP基板80の上にn型InP層81を液晶エピタ
キシヤル成長する。次にその上に第8図bに示す
様にSiO2膜812をつけ、更にその上にフオト
レジスト膜813をスピナーコートし焼しめ処理
を行なう。つぎにこのウエハに第8図cに示す様
に、第7図の回折格子75の活性層70に平行な
平面内における幅の変化に対応する形状のパター
ン、即ち第6図において点線63とそれに対向す
る点線とによつて囲まれた領域を塗りつぶしたパ
ターン(ポジ型レジストの場合)、または前記領
域以外の部分を塗りつぶしたパターン(ネガ型レ
ジストの場合)を形成したフオトマスク814を
用いて露光・現像処理を行なうと第8図dの様に
回折格子75の活性層70に平行な平面内におけ
る幅の変化に対応する形状のパターンに対応する
部分のSiO2膜が露出したウエハが得られる。更
にこのウエハをバツフアエツチング液でエツチン
グして露出した部分のSiO2膜を除き、更にはく
り剤でフオトレジスト膜813も除くと第8図e
に示す様なウエハが得られる。次に第8図fに示
す様に、更にこのウエハの上にフオトレジスト膜
815をスピナー・コートし焼しめ処理を行なつ
た後に、第8図gに示す様にArレーザ光又はHe
−Cdレーザ光を用いて、2光束816と817
の干渉によつて回折格子パターンをフオトレジス
ト膜815内にホログラム記録する。これを現
像・処理すると第8図hの様なウエハが得られ、
これを稀塩酸でエツチングし、はくり剤でフオト
レジスト膜815を取り除くと第8図iに示す様
な回折格子82を形成したウエハが得られ、これ
を更にバツフア・エツチング液でSiO2膜812
を取り除いて第8図jに示す様なウエハが得られ
る。この上に、液相エピタキシヤル成長によつて
順次n型In0.7Ga0.3As0.6P0.4クラツド層83、In0.6
Ga0.4As0.86P0.14活性層84、p型In0.7Ga0.3As0.6
P0.4クラツド層85、p型InP層86、p型In0.6
Ga0.4As0.86P0.14キヤツプ層861を成長し(第8
図k)更にSiO2絶縁膜862をつけCd拡散(第
8図に示してない)した後にAu−Zn電極87、
Au−Ge−Ni電極88をつける事によつて第8図
lに示す様なウエハが得られる。これを第6図の
Lの1〜数倍のサイズにへき開する事によつて第
7図に示す様な半導体レーザが得られる。
FIG. 7 is a partially cutaway view of one preferred embodiment of a semiconductor laser according to the present invention. In FIG. 7, 76 is an n-type InP substrate, 73 is an n-type InP layer, 71 and 72 are n-type and p-type, respectively.
Type In 0.7 Ga 0.3 As 0.6 P 0.4 cladding layer, 70 is In 0.6
Ga 0.4 As 0.86 P 0.14 active layer, 74 is p-type InP layer, 74
1 is p-type In 0.6 Ga 0.4 As 0.86 P 0.14 cap layer, 79 is
SiO 2 insulating film, 78 is Cd diffusion part for ohmic contact,
77 and 791 are Au-Zu and Au-Ge respectively
-Ni electrode. 75 is the cladding layer 71 and n-type
It is formed on the boundary surface of the InP layer 73, and the width in the plane parallel to the active layer 70 is the curve 41, 42 in FIG.
It is a diffraction grating with a corrugated periodic structure that changes in proportion to a function corresponding to . A semiconductor laser having the structure shown in FIG. 7 can be manufactured by the steps shown in FIG. First, as shown in Figure 8a, the n-type
An n-type InP layer 81 is grown on an InP substrate 80 by liquid crystal epitaxial growth. Next, as shown in FIG. 8B, a SiO 2 film 812 is applied thereon, and a photoresist film 813 is spinner coated on top of the SiO 2 film 812, followed by baking. Next, as shown in FIG. 8c, this wafer is patterned with a shape corresponding to the change in width in a plane parallel to the active layer 70 of the diffraction grating 75 in FIG. Exposure is performed using a photomask 814 that has a pattern that fills in the area surrounded by the opposing dotted lines (in the case of a positive resist) or a pattern that fills in the area other than the area (in the case of a negative resist). When the development process is performed, a wafer is obtained in which a portion of the SiO 2 film corresponding to a pattern corresponding to a width change in a plane parallel to the active layer 70 of the diffraction grating 75 is exposed as shown in FIG. 8d. Further, this wafer is etched with a buffer etching solution to remove the exposed portion of the SiO 2 film, and the photoresist film 813 is also removed with a stripping agent, as shown in Fig. 8e.
A wafer as shown in is obtained. Next, as shown in FIG. 8f, a photoresist film 815 is spinner-coated on this wafer, and after a baking process is performed, Ar laser light or He
-Two beams 816 and 817 using Cd laser beam
A diffraction grating pattern is holographically recorded in the photoresist film 815 by the interference. When this is developed and processed, a wafer as shown in Figure 8h is obtained,
By etching this with dilute hydrochloric acid and removing the photoresist film 815 with a stripper, a wafer with a diffraction grating 82 as shown in FIG .
By removing the wafer, a wafer as shown in FIG. 8j is obtained. On top of this, n-type In 0.7 Ga 0.3 As 0.6 P 0.4 cladding layer 83 and In 0.6 are sequentially formed by liquid phase epitaxial growth.
Ga 0.4 As 0.86 P 0.14 Active layer 84, p-type In 0.7 Ga 0.3 As 0.6
P 0.4 cladding layer 85, p-type InP layer 86, p-type In 0.6
Ga 0.4 As 0.86 P 0.14 cap layer 861 is grown (8th
Figure k) Furthermore, after applying a SiO 2 insulating film 862 and diffusing Cd (not shown in Figure 8), the Au-Zn electrode 87,
By attaching the Au--Ge--Ni electrode 88, a wafer as shown in FIG. 8l is obtained. By cleaving this into a size one to several times larger than L in FIG. 6, a semiconductor laser as shown in FIG. 7 can be obtained.

第9図は本発明の他の実施例を一部を切り欠い
て示した図である。第9図において96はn型
InP基板、93はn型InP層、91と92はそれ
ぞれn型およびp型In0.7Ga0.3As0.6P0.4クラツド
層、90はIn0.6Ga0.4As0.86P0.14活性層、94はp
型InP層、941はp型In0.6Ga0.4As0.86P0.14キヤ
ツプ層、99はSiO2絶縁膜、991はオーミツ
ク接触用Cd拡散部、98と97はそれぞれAu−
ZnおよびAu−Ge−Ni電極である。第7図の実
施例との相違は回折格子95が半導体レーザの発
光部全域にわたつているのではなく、点線992
で囲まれた発光部の外側にある事である。即ち第
7図の実施例はDFB半導体レーザであり、第9
図の半導体レーザはDBR半導体レーザである。
第9図の半導体レーザも第8図に示した工程によ
つて製造する事が出来る。
FIG. 9 is a partially cutaway diagram showing another embodiment of the present invention. In Figure 9, 96 is n type
InP substrate, 93 is n-type InP layer, 91 and 92 are n-type and p-type In 0.7 Ga 0.3 As 0.6 P 0.4 clad layers, 90 is In 0.6 Ga 0.4 As 0.86 P 0.14 active layer, 94 is p
941 is a p-type In 0.6 Ga 0.4 As 0.86 P 0.14 cap layer, 99 is an SiO 2 insulating film, 991 is a Cd diffusion part for ohmic contact, and 98 and 97 are Au-
Zn and Au-Ge-Ni electrodes. The difference from the embodiment shown in FIG. 7 is that the diffraction grating 95 does not extend over the entire light emitting part of the semiconductor laser, but instead
It is located outside the light emitting part surrounded by. That is, the embodiment shown in FIG. 7 is a DFB semiconductor laser, and the embodiment shown in FIG.
The semiconductor laser shown in the figure is a DBR semiconductor laser.
The semiconductor laser shown in FIG. 9 can also be manufactured by the process shown in FIG.

以上、本発明について2つの実施例を用いて説
明したが、本発明は前記2つの実施例に何ら限定
される事なく、回折格子の幅の変化に関しては第
4図の曲線41,42の様な曲線に限定されず任
意の関数形を採用しても何ら差し支える事なく、
更に半導体レーザ材料と半導体レーザのモード制
御構造と電流制限構造に関しては何ら限定される
ものでない事を付加えておく。
Although the present invention has been described above using two embodiments, the present invention is not limited to the above two embodiments, and the width of the diffraction grating can be changed as shown by curves 41 and 42 in FIG. There is no problem in adopting any function form without being limited to curves.
Furthermore, it should be added that the semiconductor laser material and the mode control structure and current limiting structure of the semiconductor laser are not limited in any way.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は典型的なモード制御された半導体レー
ザの発振スペクトル10と利得分布100を示す
図、第2図は高周波重畳変調された半導体レーザ
の発振スペクトル20,21,22,23,24
と利得分布200を示す図、第3図は本発明によ
る半導体レーザの発振スペクトル31と利得分布
30を示す図、第4図は第8頁の(7)式の実数部分
に対応する振巾分布41と42で振巾変調された
周期的屈折率分布を示す図。第5図は深さ方向の
振幅が第4図の曲線40に対応する関数に比例し
て変化するDFB半導体レーザの断面図で、54
は基板、50は活性層、51は導波路層、53と
56はクラツド層、55はキヤツプ層である。第
6図は活性層面60に平行な平面内における幅が
第4図の曲線41,42に対応する関数に比例し
て変化しているコルゲート状周期構造回折格子6
4とそれに対応する発光部61,62を示す図、
第7図と第9図は本発明による半導体レーザを1
部を切り欠いて示した図で、75と95は活性層
に平行な平面内における幅が第4図の曲線41,
42に対応する関数に比例して変化しているコル
ゲート状周期構造回折格子、76と96はInP基
板、73と93はn型InP層、70と90は
InGaAsP活性層、71と72と91と92は
InGaAsPクラツド層、74と94はp型InP層、
741と941はp型InGaAsPキヤツプ層、7
9と99はSiO2絶縁膜、78と991はCd拡散
部、77と98はAn−Zn電極、791と97は
Au−Ge−Ni電極である。第8図は本発明による
半導体レーザの製造工程を示す図である。
Fig. 1 shows the oscillation spectrum 10 and gain distribution 100 of a typical mode-controlled semiconductor laser, and Fig. 2 shows the oscillation spectrum 20, 21, 22, 23, 24 of a semiconductor laser modulated by high frequency superposition.
FIG. 3 is a diagram showing the oscillation spectrum 31 and gain distribution 30 of the semiconductor laser according to the present invention, and FIG. 4 is the amplitude distribution corresponding to the real part of equation (7) on page 8. 4 is a diagram showing a periodic refractive index distribution whose amplitude is modulated by 41 and 42. FIG. FIG. 5 is a cross-sectional view of a DFB semiconductor laser whose amplitude in the depth direction changes in proportion to a function corresponding to curve 40 in FIG.
50 is a substrate, 50 is an active layer, 51 is a waveguide layer, 53 and 56 are cladding layers, and 55 is a cap layer. FIG. 6 shows a corrugated periodic structure diffraction grating 6 whose width in a plane parallel to the active layer surface 60 changes in proportion to a function corresponding to curves 41 and 42 in FIG.
4 and the corresponding light emitting parts 61 and 62,
7 and 9 show a semiconductor laser according to the present invention.
In this figure, 75 and 95 have widths in a plane parallel to the active layer that correspond to the curve 41 in FIG.
42 is a corrugated periodic structure diffraction grating that changes in proportion to a function, 76 and 96 are InP substrates, 73 and 93 are n-type InP layers, 70 and 90 are
InGaAsP active layers 71, 72, 91 and 92 are
InGaAsP cladding layer, 74 and 94 are p-type InP layers,
741 and 941 are p-type InGaAsP cap layers, 7
9 and 99 are SiO 2 insulating films, 78 and 991 are Cd diffusion parts, 77 and 98 are An-Zn electrodes, and 791 and 97 are
It is an Au-Ge-Ni electrode. FIG. 8 is a diagram showing the manufacturing process of a semiconductor laser according to the present invention.

Claims (1)

【特許請求の範囲】 1 活性層と平行な面内において幅が、回折格子
がある部分は1、無い部分は0の値をもつ関数形
以外の任意の関数の形状に従つて変化し、かつ前
記任意の関数の空間周波数スペクトルにおいて空
間周波数ωを時間周波数νに変換する事によつて
得られる時間周波数スペクトルが予め決められた
中心周波数ν0を挟んで予め決められた周波数幅
Δνで与えられる周波数帯[ν0−Δν、ν0+Δν]を
含むコルゲート状周期構造回折格子を有すること
を特徴とする分布帰還型半導体レーザ。 2 活性層と平行な面内において幅が、回折格子
がある部分は1、無い部分は0の値をもつ関数形
以外の任意の関数の形状に従つて変化し、かつ前
記任意の関数の空間周波数スペクトルにおいて空
間周波数ωを時間周波数νに変換する事によつて
得られる時間周波数スペクトルが予め決められた
中心周波数ν0を挟んで予め決められた周波数幅
Δνで与えられる周波数帯[ν0−Δν、ν0+Δν]を
含むコルゲート状周期構造回折格子を、活性層、
クラツド層、導波路層、基板側第1成長層の任意
の2層の間の境界面に、レーザ発光領域全体にわ
たつて形成したことを特徴とする特許請求の範囲
第1項記載の半導体レーザ。 3 活性層と平行な面内において幅が、回折格子
がある部分は1、無い部分は0の値をもつ関数形
以外の任意の関数の形状に従つて変化し、かつ前
記任意の関数の空間周波数スペクトルにおいて空
間周波数ωを時間周波数νに変換する事によつて
得られる時間周波数スペクトルが予め決められた
中心周波数ν0を挟んで予め決められた周波数幅
Δνで与えられる周波数帯[ν0−Δν、ν0+Δν]を
含むコルゲート状周期構造回折格子を有すること
を特徴とする分布ブラツグ反射型半導体レーザ。 4 活性層と平行な面内において幅が、回折格子
がある部分は1、無い部分は0の値をもつ関数形
以外の任意の関数の形状に従つて変化し、かつ前
記任意の関数の空間周波数スペクトルにおいて空
間周波数ωを時間周波数νに変換する事によつて
得られる時間周波数スペクトルが予め決められた
中心周波数ν0を挟んで予め決められた周波数幅
Δνで与えられる周波数帯[ν0−Δν、ν0+Δν]を
含むコルゲート状周期構造回折格子を、活性層、
クラツド層、導波路層、基板側第1成長層の任意
の2層の間の境界面に、レーザ発光領域の外に形
成したことを特徴とする特許請求の範囲第3項記
載の半導体レーザ。
[Claims] 1. The width in a plane parallel to the active layer changes according to the shape of an arbitrary function other than a function shape having a value of 1 in a part with a diffraction grating and 0 in a part without a diffraction grating, and The time-frequency spectrum obtained by converting the spatial frequency ω into the time frequency ν in the spatial frequency spectrum of the arbitrary function is given by a predetermined frequency width Δν with a predetermined center frequency ν 0 in between. A distributed feedback semiconductor laser characterized by having a corrugated periodic structure diffraction grating that includes a frequency band [ν 0 −Δν, ν 0 +Δν]. 2. The width in a plane parallel to the active layer changes according to the shape of an arbitrary function other than the function form which has a value of 1 in the part with the diffraction grating and 0 in the part without it, and the space of the arbitrary function. The time-frequency spectrum obtained by converting the spatial frequency ω into the time frequency ν in the frequency spectrum is a frequency band [ν 0 − Δν, ν 0 +Δν], the active layer,
The semiconductor laser according to claim 1, wherein the semiconductor laser is formed over the entire laser emitting region at the interface between any two layers of the cladding layer, the waveguide layer, and the first growth layer on the substrate side. . 3. The width in a plane parallel to the active layer changes according to the shape of any function other than the function form which has a value of 1 in the part with the diffraction grating and 0 in the part without it, and the space of the said arbitrary function. The time-frequency spectrum obtained by converting the spatial frequency ω into the time frequency ν in the frequency spectrum is a frequency band [ν 0 − A distributed Bragg reflection semiconductor laser characterized by having a corrugated periodic structure diffraction grating including [Δν, ν 0 +Δν]. 4. The width in a plane parallel to the active layer changes according to the shape of an arbitrary function other than a function shape having a value of 1 in a part with a diffraction grating and 0 in a part without a diffraction grating, and the space of the arbitrary function. The time-frequency spectrum obtained by converting the spatial frequency ω into the time frequency ν in the frequency spectrum is a frequency band [ν 0 − Δν, ν 0 +Δν], the active layer,
4. The semiconductor laser according to claim 3, wherein the semiconductor laser is formed outside the laser emitting region at the interface between any two layers of the cladding layer, the waveguide layer, and the first growth layer on the substrate side.
JP57123869A 1982-07-16 1982-07-16 Semiconductor laser Granted JPS5914690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123869A JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123869A JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5914690A JPS5914690A (en) 1984-01-25
JPH0552072B2 true JPH0552072B2 (en) 1993-08-04

Family

ID=14871385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123869A Granted JPS5914690A (en) 1982-07-16 1982-07-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5914690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193226A (en) * 1992-12-26 1994-07-12 Yodogawa Steel Works Ltd Installation structure for wall plate member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961765B2 (en) * 2009-03-31 2011-06-14 Intel Corporation Narrow surface corrugated grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120392A (en) * 1977-03-30 1978-10-20 Nippon Telegr & Teleph Corp <Ntt> Compound type semiconductor laser
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120392A (en) * 1977-03-30 1978-10-20 Nippon Telegr & Teleph Corp <Ntt> Compound type semiconductor laser
JPS56116683A (en) * 1980-02-20 1981-09-12 Tokyo Inst Of Technol Distribution reflecting type semiconductor laser having tuning and requency-modulating mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193226A (en) * 1992-12-26 1994-07-12 Yodogawa Steel Works Ltd Installation structure for wall plate member

Also Published As

Publication number Publication date
JPS5914690A (en) 1984-01-25

Similar Documents

Publication Publication Date Title
US5147825A (en) Photonic-integrated-circuit fabrication process
US4796273A (en) Distributed feedback semiconductor laser
US6291256B1 (en) Method of manufacturing non-regrowth distributed feedback ridge semiconductor
US6292503B1 (en) Ridge type semiconductor laser of laterally-coupled distributed feedback and method of manufacturing the same
JPH0256837B2 (en)
US6301283B1 (en) Distributed feedback semiconductor laser
US9952390B2 (en) Optical element, optical module, and optical transmission system
JP2002057400A (en) Semiconductor device and its manufacturing method
US6714571B2 (en) Ridge type semiconductor laser of distributed feedback
JPH0552072B2 (en)
TW200303636A (en) Method of producing a semiconductor laser and optical integrated semiconductor device including the same
JPH0377678B2 (en)
US10680409B2 (en) Laser device
JP2000098161A (en) Integrated optical component
JP2700312B2 (en) Distributed feedback semiconductor laser device
JP3700245B2 (en) Phase-shifted distributed feedback semiconductor laser
JPS5914689A (en) Semiconductor laser
JP3565394B2 (en) Semiconductor pulse light source device
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
CN110224296B (en) Semiconductor laser and preparation method thereof
JPS60127776A (en) Semiconductor light emitting device
JPH0642583B2 (en) Semiconductor laser device
JP2001345512A (en) Distribution feedback laser diode
JPH11307874A (en) Optical isolator, distributed feedback laser and optical integrated element
JP2947702B2 (en) Tunable laser device and manufacturing method thereof