JPS59144181A - Manufacture of photoelectric converter - Google Patents

Manufacture of photoelectric converter

Info

Publication number
JPS59144181A
JPS59144181A JP58018623A JP1862383A JPS59144181A JP S59144181 A JPS59144181 A JP S59144181A JP 58018623 A JP58018623 A JP 58018623A JP 1862383 A JP1862383 A JP 1862383A JP S59144181 A JPS59144181 A JP S59144181A
Authority
JP
Japan
Prior art keywords
light
electrode
photoelectric conversion
single crystal
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58018623A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58018623A priority Critical patent/JPS59144181A/en
Publication of JPS59144181A publication Critical patent/JPS59144181A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the reliability in a high temperature condition test by forming an electrode contacted closely with a non-single crystal conductor of a light transmission conductive film made of an oxide. CONSTITUTION:A light transmission conductive film 2 is formed on a glass substrate 1. A non-single crystal semiconductor having at least one PIN or P-N is laminated on the film 2. Then, an oxidized indium ITO is formed. The non- single crystal semiconductor of SixC1-x as a P type semiconductor is closely contacted with the oxidized tin 2, and an N type non-single crystal semiconductor is closely contacted with the ITO. Then, a heat fusible light transmission filler such as polyvinyl butyral is arranged on an element 6. A light transmission insulating substrate 8 is arranged thereon. Then, it is installed in an autoclave furnace, which is then evacuated in vacuum. Thereafter, it is heated and pressurized. As a result, the filler has insulating property, and filled on the back surface side of a photoelectric conversion element. Accordingly, the polyvinyl butyral is not deteriorated, thereby providing light reliability.

Description

【発明の詳細な説明】 本発明は、非単結晶半導体を用いた光電変換装の 置¥作製方法であって、特に高効率高信頼性を求めた半
導体装置の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoelectric conversion device using a non-single crystal semiconductor, and more particularly to a method for manufacturing a semiconductor device that seeks high efficiency and high reliability.

この発明は、透光性の第1の絶縁基板と、この基板上の
第1の透光性導電膜(以下単にCTFIという)を有す
る第1の電極と、この電極上に光照射により光起電力を
発生させる少なくとも1つの。
This invention includes a first translucent insulating substrate, a first electrode having a first translucent conductive film (hereinafter simply referred to as CTFI) on the substrate, and a photovoltaic film formed on the electrode by light irradiation. At least one that generates electrical power.

PNまたはPIN接合を有する非単結晶半導体と、該半
導体上第2の透光性導電膜(以下単にCrF2という)
よりなる第2の電極により設けられた光電変換素子(以
下単にPvCまたは素子という)を設けてこれをパネル
化した構造の光電変換装置の作製方法に関する。本発明
は光電変換素子の第2の電極(裏面電極ともいう)をC
rF2とすることにより太陽光等の照射光のうち600
nm以上の長波長光を第2の電極より後方に放射せしめ
る電極構造を有する。
A non-single crystal semiconductor having a PN or PIN junction, and a second transparent conductive film on the semiconductor (hereinafter simply referred to as CrF2)
The present invention relates to a method for manufacturing a photoelectric conversion device having a structure in which a photoelectric conversion element (hereinafter simply referred to as PvC or element) provided by a second electrode made of the following is provided and this is formed into a panel. In the present invention, the second electrode (also referred to as the back electrode) of the photoelectric conversion element is C
By setting it to rF2, 600% of the irradiation light such as sunlight
It has an electrode structure that allows long wavelength light of nm or more to be emitted backward from the second electrode.

即ち本発明は、非単結晶導体に密接する第1および第2
の電極がともに金属ではな(、酸化スズ酸化インジュー
ム、酸化インシューム・スズ等の酸化物よりなるCTF
とし、従来より知られた電極を構成する金属一般的には
アルミニュームが半導体中にマイグレイl−(異常拡散
)をして150”C以上における高温放置テストにおけ
る信頼性の低下をもたらずことを防くことを目的として
いる。
That is, the present invention provides first and second
Both electrodes are not metal (CTF made of oxides such as indium tin oxide, insium tin oxide, etc.)
The conventionally known metal constituting the electrode, generally aluminum, undergoes migray l- (abnormal diffusion) in the semiconductor and does not cause a decrease in reliability in high-temperature storage tests at temperatures above 150"C. The purpose is to prevent

本発明はさらに第1、第2の電極をともにCTFとする
ことにより、複合集積化構造を施すに際しレーザスクラ
イブ法(単にLSという)を採用することができ、高生
産性および複合化部におけるa・要面積の減少即ち実効
変換効率の向上をもたらすことができるという他の特徴
を有する。
Furthermore, by using both the first and second electrodes as CTF, the laser scribing method (simply referred to as LS) can be adopted when forming a composite integrated structure, resulting in high productivity and a - Another feature is that it can reduce the required area, that is, improve the effective conversion efficiency.

本発明は加えてこの第2の電極より裏面側に放散する6
00nm以上の波長の長波長光を裏面に設けて、透光性
充填材を介してさらに第2の透光性絶縁基板より外部に
放散せしめることを特徴としている。
In addition, the present invention further provides 6
The device is characterized in that long-wavelength light with a wavelength of 00 nm or more is provided on the back surface and further diffused to the outside from the second light-transmitting insulating substrate via the light-transmitting filler.

かくすることにより、この光電変換装置自体の温度上昇
を防くことができ、ひいては効率の低下を防くことがで
きた。
By doing so, it was possible to prevent the temperature of the photoelectric conversion device itself from increasing, and thereby prevent a decrease in efficiency.

さらに赤外光を含む長波長光を外部に放散するに加えて
、この裏面のガラス基鈑に隣接して太陽熱利用の温水器
を設けることが可能になる。
Furthermore, in addition to radiating long-wavelength light including infrared light to the outside, it becomes possible to install a solar water heater adjacent to the glass substrate on the back side.

即ら本発明は、短波長光により光電変換を行うとともに
、長波長光により光熱変換をし、それらを一体化して一
般家屋の屋根に配設することにより、太陽光の総合変換
利用9ノ率をきわめて高くできるという他の特徴を有す
る。
That is, the present invention performs photoelectric conversion using short wavelength light and photothermal conversion using long wavelength light, and by integrating them and installing them on the roof of a general house, the total conversion and utilization rate of sunlight is 9. Another feature is that it can be made extremely high.

つまり本発明人の出願による実用新案登録願53−83
838 (昭和53年6月19日出願)「太陽電池」に
示されるごとく、太陽熱利用の温水器の前面の強化ガラ
スの部分を光電変換装置か含まれた合わせガラス構造と
することにより、太陽エネルギーの総合利用効率を高め
るという特徴をも有する。
In other words, utility model registration application 53-83 filed by the inventor
838 (filed on June 19, 1978) "Solar cells", by making the front tempered glass part of a solar water heater into a laminated glass structure that includes a photoelectric conversion device, solar energy can be generated. It also has the feature of increasing the overall utilization efficiency of.

本発明は、素子の表面および裏面がガラス特にイヒ ×学強化ガラスよりなる無機材料でサンドウィンチされ
た構造を有しており、且つそのひとつの基板上に複数の
素子を複合集積化せしめる構造を有することにより、高
品質高信頼性を有せしめることができた。
The present invention has a structure in which the front and back surfaces of the device are sandwiched with an inorganic material made of glass, particularly hardened glass, and a structure in which a plurality of devices are integrated on one substrate. By having this, we were able to achieve high quality and high reliability.

まY加熱熔融性の透光性充填材である有機物は短波長光
にさらされることがなく、素子をへてきた600nm以
上の長波長光にさらされるのみである。
The organic substance, which is a heat-meltable light-transmitting filler, is not exposed to short wavelength light, but is only exposed to long wavelength light of 600 nm or more that has passed through the device.

このためこの有機物が光劣化を起こすことがなく高信頼
性を有しめることができるという他の特徴を有す。
Therefore, this organic material has another feature that it does not undergo photodeterioration and can have high reliability.

加えて電極に金属材料を用いないため、複合集積の際、
高温を用いるLSにおいて、スクライブと同時に異常拡
散してしまうことがな(、複合集積化をする製造工程に
おいても、高信頼性を有することができる。
In addition, since no metal material is used for the electrodes, it is possible to
In the LS using high temperature, abnormal diffusion does not occur at the same time as scribing (and high reliability can be achieved even in the manufacturing process of multiple integration).

さらに従来から知られた蒸着マスク、スクリーン印刷等
を用いるマスク法とはまったく異なり、マスクレス工程
であるLSを用いることにより、パネル全体に複合化を
するに際し、その各素子間の連結部の占める割合を全体
の10%以下一般には5〜7%とすることができた。
Furthermore, unlike conventional mask methods that use vapor deposition masks, screen printing, etc., by using LS, which is a maskless process, when compounding the entire panel, it is possible to The proportion could be set to 10% or less, generally 5 to 7% of the total.

このためパネルレヘルでの高効率化をせしめることがで
きるという他の特徴をも有する。
Therefore, it also has another feature of being able to achieve high efficiency at the panel level.

従来光電変換装置はff11図にその縦断面図が示され
ている如く、透光性基板例えばガラス(1)上に透光性
導電膜(2)として約O0Vの厚さにITO,5n01
等を形成せしめ、さらにプラズマ気相法によりPIN接
合、PINPIN・・・PIN接合を形成して非単結晶
半導体(3)を約O1父の厚さに積層する。次に裏面電
極をアルミニュームの金属を真空蒸着法により0.3〜
Vの厚さに形成した。さらにエポキシ樹脂(5)をコー
チインクし作製した。
As shown in the vertical cross-sectional view of FIG.
, etc., and further form a PIN junction, PIN PIN... Next, the back electrode is made of aluminum metal with a thickness of 0.3~
It was formed to have a thickness of V. Furthermore, the epoxy resin (5) was coated and produced.

照射光(10)は太陽光等が用いられる。しかしかかる
従来の構造においては、信頼性の点において十分でない
。その原因を詳しく調べた結果、裏面電極(4)を構成
する金属が半導体(3)と合金を作らず、10σC以上
代表的には150’Cの高温放置テストにおいて半導体
中に異常拡散してしまい、約12〜50時間で0.51
Iもの深さに混入し、特性例えば変換効率を6%よ゛す
1%以下にまで劣化させ、ふたつの電極間が実質的にシ
ョートしてしまうことが判明した。
Sunlight or the like is used as the irradiation light (10). However, such a conventional structure is not sufficient in terms of reliability. A detailed investigation into the cause revealed that the metal constituting the back electrode (4) did not form an alloy with the semiconductor (3) and was abnormally diffused into the semiconductor during a high temperature storage test of 10σ or more, typically 150'C. , 0.51 in about 12-50 hours
It was found that the particles were mixed in at a depth of as much as I, degrading characteristics such as conversion efficiency from 6% to less than 1%, and causing a substantial short circuit between the two electrodes.

このためアモルファスまたはセミアモルファスシリコン
等を主成分として用いる非単結晶半導体においては、こ
の半導体と密接する材料は金属ではなく、金属酸化物ま
たは金属窒化物等の化合物の導体であることが最も重要
であることが判明した。
For this reason, in non-single-crystal semiconductors that use amorphous or semi-amorphous silicon as the main component, it is most important that the material in close contact with the semiconductor is not a metal but a conductor of a compound such as a metal oxide or metal nitride. It turns out that there is something.

本発明はかかる実験事実に基づきなされたものであって
、半導体(3)が一つのPIN接合ををする場合、その
P型半導体には酸化ススを主成分とするCTFを密接し
て電極を構成せしめ、またN型半導体には酸化インジュ
ームまたはITO(酸化ススを10重量%以下含有させ
た酸化インシュ−ム)を密接せしめ、金属を用いない構
造とせしめたことを第一の特徴としている。
The present invention has been made based on such experimental facts, and when the semiconductor (3) forms one PIN junction, the P-type semiconductor is closely coated with CTF containing soot oxide to form an electrode. Moreover, the first feature is that indium oxide or ITO (oxide indium containing 10% by weight or less of soot oxide) is closely attached to the N-type semiconductor, resulting in a structure that does not use metal.

第2図は本発明方法により作製された光電変換装置の縦
LMj面図を示す。
FIG. 2 shows a vertical LMj plane view of a photoelectric conversion device manufactured by the method of the present invention.

この光電変換装置は同一透光性基板上に複数の素子を複
合集積化するとともに、パネル構造に枠組みして設けた
ものである。
This photoelectric conversion device is a device in which a plurality of elements are integrated on the same light-transmitting substrate and framed in a panel structure.

図面において透光性基板(1)上にITOを1500〜
2500 Xの厚さに設け、さらに酸化スズを200〜
50071の厚さに設けたCTI’1(2)が設けられ
ている。
In the drawing, ITO is placed on the transparent substrate (1) at 1500 ~
Provided with a thickness of 2500×, and further coated with tin oxide of 200×
A CTI'1(2) with a thickness of 50071 mm is provided.

さらにPIN接合を有する非単結晶半導体(3)をP型
s+Xc、−、(’O< x < 1例えばx =o、
s >  <1oo7+>−■型Si (約0.ンl−
N型微結晶Si (粒径100〜200″A)の構造に
プラスマ気相法にて作製した。さらにこのN型半導体に
密接したITOを1000〜3000λ例えば2000
 人の厚さにCTF2(4)として設けた。
Furthermore, a non-single crystal semiconductor (3) having a PIN junction is converted into a P-type s+Xc, -, ('O< x < 1 e.g. x = o,
s ><1oo7+>-■ type Si (approximately 0.nl-
The structure of N-type microcrystalline Si (particle size 100-200"A) was fabricated by plasma vapor phase method. Furthermore, ITO in close contact with this N-type semiconductor was
CTF 2 (4) was set for human thickness.

この複合化は基板(1)上の全面にCTFIを形成した
後、LSにより約2シの+1JにこのCTFIをスクラ
イブして複数の領域に分m (17) シて、さらに半
導体(3)を全面に形成した後、半導体(3)およびC
TFIを再ひLSにより分離(113) した。さらに
CTF2(4)を全面に形成した後、LSにより複数の
領域に分離(19) したものである。かくすると第1
の素子(20)第2の素子(21)第3の素子2り (22)等に分割される。そして例えばその連結部は外
部連結電極り16)に連結した第1の外部引出し電極用
バソ) (15)が第1の素子の第2の電極と連結しこ
の第1の素子の第1の電極が(18)にて第2の素子の
第2の電極と連結して直列接続をして設けられた。さら
に第3の素子(22)の第1の電極は他の外部引出し電
極用パソl−(15’)と連結し、外部接続電極(16
’)になっている。
This composite is performed by forming a CTFI on the entire surface of the substrate (1), and then scribing the CTFI to about 2 +1J using LS to divide it into multiple regions (17), and then forming the semiconductor (3). After forming on the entire surface, semiconductor (3) and C
TFI was separated again by LS (113). Furthermore, after CTF2 (4) was formed on the entire surface, it was separated into a plurality of regions (19) by LS. Thus, the first
It is divided into an element (20), a second element (21), a third element (22), etc. For example, the connection part is connected to the first external extraction electrode base (15) connected to the external connection electrode 16), and the first external electrode (15) is connected to the second electrode of the first element. was connected to the second electrode of the second element at (18) and connected in series. Furthermore, the first electrode of the third element (22) is connected to another external connection electrode (16')
')It has become.

かくして同一基板(1)上に複数の素子が複合化されて
いる。さらにこの素子はPVB(商品名をシーフレック
スともいわれている)の透光性を有する加熱熔融充填材
(7)(0,2〜lmm一般には0 、5mmの厚さ)
により充填されている。
In this way, a plurality of elements are combined on the same substrate (1). Furthermore, this element is made of a heat-melted PVB (also known as Seaflex) translucent heat-melted filler (7) (thickness of 0.2 to 1 mm, generally 0.5 mm).
filled with.

さらにこの上面には、第2の透光性基板である裏面ガラ
ス(8)が設けられ、(1)(8)とにより合わせガラ
スの構造を有している。
Furthermore, a back glass (8), which is a second light-transmitting substrate, is provided on the upper surface, and has a laminated glass structure with (1) and (8).

このため素子(20)  (21)  (22)にて吸
収されフッ なかった600nm J)上の長波長光は、このPVB
  (7)ガラス基板(8)を透過し裏面外に放出され
る。
Therefore, the long wavelength light on the PVB
(7) It passes through the glass substrate (8) and is emitted to the outside of the back surface.

図面において、パネルは外側をアルミサツシの枠(13
)、 (13’)により囲まれており、これと基板(1
)  (8)との間はフチルコム、(14)、 (14
)かン 充填され、基板が枠に固定されている。
In the drawing, the panel has an aluminum sash frame (13
), (13'), and this and the substrate (1
) (8) is Futhilcom, (14), (14
) The can is filled and the substrate is fixed to the frame.

さらに図面においては、照射光(10)の反対側には、
水冷管(31)を有する太陽光利用の温水器(30)を
設けることができるという意味で破線で示している。
Furthermore, in the drawing, on the opposite side of the irradiation light (10),
The dashed line indicates that a solar water heater (30) having a water cooling pipe (31) can be provided.

この温水器は屋根側に位置し、水冷管内を太陽光のうら
長波長光(10)が供給されることにより加熱し、水を
60〜80′Cに昇温でき、一般家庭では湯等の太陽熱
利用をすることができる。
This water heater is located on the roof side and heats the inside of the water cooling pipe by supplying long wavelength light (10) from the back of sunlight, and can raise the temperature of water to 60-80'C. Solar heat can be used.

かかる構造においては、屋根の面積を多く占めることが
ないため、利用効率を高めることができ好都合であった
Such a structure does not occupy a large area of the roof, which is advantageous in that it can increase utilization efficiency.

第3図は本発明の光電変換装置の作製方法に関する製造
工程を示したものである。
FIG. 3 shows manufacturing steps related to the method for manufacturing a photoelectric conversion device of the present invention.

即ち第3図(A)はガラス基板(1)好ましくスを基板
カラスとして用いた。この基板(1)上にCTFI(2
)を公知の電子ヒーム蒸着法、スプレー法またはCVD
法により0.15〜0.25)Aの厚さに形成した。こ
の CTFばITO(0,15〜0.25/14) +
SnO□(200〜 500λ)とした。またノ\ロゲ
ン元累を添加した5nOtであってもよい。
That is, in FIG. 3(A), a glass substrate (1), preferably glass, was used as the glass substrate. CTFI (2) is placed on this board (1).
) by known electron beam evaporation method, spray method or CVD method.
It was formed to a thickness of 0.15 to 0.25) A by the method. This CTF is ITO (0,15~0.25/14) +
It was set as SnO□ (200 to 500λ). It may also be 5nOt to which a nitrogen element is added.

さらにこの上にPINまたはPN接合を少なくとも一つ
有する非単結晶半導体をPCVD (プラズマ気相法)
により積層した。一般にはP型半導体をシランとメタン
との反応による5ixC1((0< x <l x =
0.8.)として約100への厚さに形成する。■型半
導体としては水素または弗素が添加された珪素をシラン
または5iF(のPCVDにより約0.5の厚さに形成
させた。この時この珪素中の酸素を5 X 10’c 
m’J)、下好ましくは5λ10cm狼下とした。さら
にN型半導体を水素にて10〜20倍に希釈されたシラ
ンをPCVD法によりフォスヒンを混入させ作製した。
Furthermore, a non-single crystal semiconductor having at least one PIN or PN junction is deposited on top of this by PCVD (plasma vapor deposition method).
Laminated by. In general, a P-type semiconductor is formed by 5ixC1 ((0< x <l x =
0.8. ) to a thickness of about 100 mm. As a type 2 semiconductor, silicon doped with hydrogen or fluorine was formed to a thickness of about 0.5 by PCVD of silane or 5iF.At this time, the oxygen in the silicon was
m'J), preferably 5λ10cm. Further, a silane obtained by diluting an N-type semiconductor 10 to 20 times with hydrogen was mixed with phosphin by the PCVD method.

すると微結晶化するため、その光吸収特性を少なくする
ことができるに加え、電気伝導度も’)”’ >10 
(fLcm)を得ることができる。このN型珪素は10
0〜200/lの厚さを有し、光がこの領域で吸収され
ないように多結晶化することはきわめて重要である。
As a result, it becomes microcrystalline, which not only reduces its light absorption properties but also increases its electrical conductivity ')'''>10
(fLcm) can be obtained. This N-type silicon is 10
It is very important to have a thickness of 0-200/l and to be polycrystalline so that no light is absorbed in this region.

次にITOを電子ビーム蒸着法またはCVD法により0
.1〜0.P一般にはo、′2/14の厚さに形成した
。開放電圧を大きくするため、本発明においてはP型半
導体ここては5ixC74の非単結晶半導体は酸化スズ
CTFIと密接せしめ、またN型非単結晶半導体(ここ
では微結晶化した珪素)はCrF2の酸化インジューム
またはITOと密接せしめた。がくするとひとつの素子
で開放電圧0.92Vを得ることができた。この逆の組
合せとすると0.78VLか得られなかった。
Next, ITO is removed by electron beam evaporation or CVD.
.. 1~0. P is generally formed to a thickness of o,'2/14. In order to increase the open-circuit voltage, in the present invention, the P-type semiconductor, here 5ixC74, is brought into close contact with the tin oxide CTFI, and the N-type non-single crystal semiconductor (here, microcrystalline silicon) is made of CrF2. It was brought into close contact with indium oxide or ITO. After a long time, it was possible to obtain an open circuit voltage of 0.92V with one element. If this combination was reversed, only 0.78VL could be obtained.

かくして第3図(A)を得た。Thus, Figure 3(A) was obtained.

次に第3図(B)に示すごとくにした。即ち図面におい
て素子(6)上に加熱熔融性・透光性充填材を配置させ
た。この充填材としてPVB  (ポリビニールブチラ
ール)を用いた。つまりこのPVBは室温にて表面に粉
末状の重曹が散布されているため、まず水洗しこの重曹
(重炭酸すトリューム)を除去し、さらに十分に乾燥さ
ゼた。これは20〜25°Cにて行った。次にこのPV
B箔を素子(6)状に配設した。さらにその上面に透光
性絶縁基板であるガラス板(8)を配設させた。
Next, the procedure was as shown in FIG. 3(B). That is, in the drawing, a heat-meltable and translucent filler was placed on the element (6). PVB (polyvinyl butyral) was used as this filler. That is, since powdered baking soda was sprinkled on the surface of this PVB at room temperature, it was first washed with water to remove this baking soda (bicarbonate trine), and then thoroughly dried. This was done at 20-25°C. Next this PV
The B foil was arranged in the shape of an element (6). Further, a glass plate (8), which is a light-transmitting insulating substrate, was disposed on the upper surface thereof.

かくして第3図(B)を得た。In this way, Figure 3 (B) was obtained.

さらにこの後これらをオートクレーブ炉内に設置し、こ
のクレープ炉内を真空引きした。
Furthermore, these were placed in an autoclave furnace, and the inside of this crepe furnace was evacuated.

するとこの素子とPVB間、PVBと第2のガラス基板
との間の空気を除去できた、即ち脱気をさせた。
Then, the air between this element and the PVB and between the PVB and the second glass substrate was removed, that is, deaerated.

この後このクレープ炉内で100〜170’C一般には
120〜150’Cに加熱し、さらに7〜12気圧/気
圧例えば10気圧/C−圧力を加えて、この加熱された
空気をクレープ炉内に充填することで成就した。
Thereafter, the heated air is heated in the crepe oven to 100 to 170'C, generally 120 to 150'C, and a pressure of 7 to 12 atm/atm, for example, 10 atm/C, is applied to the heated air inside the crepe oven. This was achieved by filling the

かくしてPVBは溶融し、全体は一体化して第3図(C
)を得た。
In this way, the PVB is melted and the whole is integrated as shown in Figure 3 (C
) was obtained.

即ち、この透光性充填材は絶縁性を有し、光電変換素子
が設置、Jられたその裏面側に充填されている。そのた
めこのPVBが紫外線等の照射による劣化がなく、光信
頼性を有せしめることができた。
That is, this light-transmitting filling material has an insulating property, and is filled on the back side where the photoelectric conversion element is installed. Therefore, this PVB did not deteriorate due to irradiation with ultraviolet rays, etc., and was able to have optical reliability.

さらに9のPVBの存在により、光電変換装置としての
変換効率の低下がまったくなく、単に耐風圧、耐雨圧、
耐湿度等の信頼性の向上に役立つという大きな特徴を有
する。すなわち本発明はこのPVBを光電変換素子の最
も特性に敏感な光照射面側に設けるのではなく、裏面側
に設DJることにより、製造歩留りを向上させている。
Furthermore, due to the presence of PVB of 9, there is no reduction in conversion efficiency as a photoelectric conversion device, and it is simply resistant to wind pressure, rain pressure,
It has a major feature of being useful for improving reliability such as humidity resistance. That is, the present invention improves the manufacturing yield by providing the PVB on the back side of the photoelectric conversion element, rather than on the light irradiation side, which is most sensitive to the characteristics.

図面において明らかなごとく、素子(6)は照射光側は
ガラス(無機材料)よりなる透光性基板を有し、裏面ば
ガラス(無R1fA料)によりカバーされ、いわゆる合
わせガラス構造を有し、その内部に素子がその一方の基
板に密接し、複合集稍化をして設けら゛れている。
As is clear from the drawing, the element (6) has a transparent substrate made of glass (inorganic material) on the irradiation light side, and is covered with glass (R1fA-free material) on the back side, so it has a so-called laminated glass structure. Inside the device, elements are provided in close contact with one of the substrates in a composite arrangement.

かかる構造とすることにより、内部に水分等が侵入する
ことがなく、さらに半導体(3)と金属との反応がまっ
たくない理想的な構造を有せしめることができた。
By adopting such a structure, it was possible to have an ideal structure in which moisture and the like do not enter into the interior, and furthermore, there is no reaction between the semiconductor (3) and the metal.

以下に本発明の実施例を加え7さらにその内容を補完す
る。
Examples of the present invention will be added below to supplement the content.

実施例1 第2図は本発明の実施例の縦断面図である。Example 1 FIG. 2 is a longitudinal sectional view of an embodiment of the invention.

図面において、ガラス基板は20cm K 60cmを
をしている。ひとつの素子は15mmX 20cmを有
しており40段の直列接続構造を有する。
In the drawing, the glass substrate has dimensions of 20 cm x 60 cm. One element has a size of 15 mm x 20 cm and has a 40-stage series connection structure.

変換効率の比較は以下のごとくである。The comparison of conversion efficiency is as follows.

従来例 本発明1 本発明2 本発明3開放電圧(V)
   0.82 0.9j   32    32短絡
電流(mA/cm) 13.1 15.2  336 
  340曲線因子(%)   58  65    
54   ’  54効率(%)    6.3 9.
0   4.84   4.9011Ts  (時間)
   3  >1000   >1000   >11
000HU  (時間)〜200〜200  〜200
   > 1000上記表において従来例は第1図の構
造を有し、且つ面積が3mmx3cm  (Icmt)
とした場合の構造である。本発明1は第3図(A)の構
造を有し、裏面電極はCTF2としITOにより設けら
れた場合でる。あり、面積は3mmX3cm  (Ic
mt)とした場合の特性である。本発明2は第2図の構
造であって、20cm X 60cmの基板に40段直
列接続させて設け、充填材(7)裏面保護物(8)が設
けられていない場合の特性である。さらに効率はΔM 
1  (100mW /cm)での変換効率を示す。ま
たIITsは150’C大気中での高温放置テストにお
いて初期値に対し効率が10%以上の変化が発生するま
での時間をしめす。また+1U11は65°cRn9o
%の雰囲気での湿度テストにおいて10%以上の変化の
効率を示すまでの時間を示す。
Conventional example Present invention 1 Present invention 2 Present invention 3 Open circuit voltage (V)
0.82 0.9j 32 32 Short circuit current (mA/cm) 13.1 15.2 336
340 Fill factor (%) 58 65
54' 54 efficiency (%) 6.3 9.
0 4.84 4.9011Ts (hours)
3 >1000 >1000 >11
000HU (hour) ~200~200 ~200
> 1000 In the table above, the conventional example has the structure shown in Figure 1 and has an area of 3mm x 3cm (Icmt)
This is the structure when . The present invention 1 has the structure shown in FIG. 3(A), in which the back electrode is CTF2 and is made of ITO. Yes, the area is 3mm x 3cm (Ic
mt). The present invention 2 has the structure shown in FIG. 2, and has characteristics when 40 stages are connected in series on a 20 cm x 60 cm substrate, and the filler (7) and back surface protector (8) are not provided. Furthermore, the efficiency is ΔM
1 (100 mW/cm). Further, IITs indicates the time until the efficiency changes by 10% or more from the initial value in a high temperature storage test at 150'C in the atmosphere. Also +1U11 is 65°cRn9o
It shows the time required to show an efficiency change of 10% or more in a humidity test in an atmosphere of 10%.

以上の結果より明らかなごとく、裏面をCTF2とする
ことにより従来例の6.3%より9%にまで効率を向上
させることができた。
As is clear from the above results, by using CTF2 on the back side, the efficiency could be improved from 6.3% in the conventional example to 9%.

かくのごとく、本発明の第1および第2の電極をCTF
とすることにより、効率を向上させることができるに加
えてHTSにおいて従来例が3時間しか特性を有せなか
ったのに対して1000時間以上も安定な特性を有する
ことができた。
As described above, the first and second electrodes of the present invention are formed using CTF.
By doing so, in addition to being able to improve efficiency, it was also possible to have stable characteristics for over 1000 hours in HTS, whereas the conventional example had characteristics for only 3 hours.

さらに本発明を第2図に示すごとく複合簗積化すると実
効変換効率において4.84%を得ることができ電圧も
32Vを得ることができた。HTSにおいても、100
0時間以上を有するがしかし[(IIMがやはり約20
0時間とまだ十分ではないことが判明した。
Furthermore, when the present invention was applied to a composite cell as shown in FIG. 2, an effective conversion efficiency of 4.84% and a voltage of 32V were obtained. Even in HTS, 100
However, [(IIM is still around 20
It turned out that 0 hours was still not enough.

このため裏面側にPVBとガラス基板とにより素子をザ
ンドウィソチ構造とさせ、第2図の(,7)、(8)を
設けると、本発明の3に示す如く、実効変換効率を4.
90%と本発明2と概略同一であるが、IIUMにおい
て1000時間以上の光信軸性をうろことができた。
For this reason, if the device is made to have a Zandwisochi structure using PVB and a glass substrate on the back side, and (, 7) and (8) in FIG.
90%, which is approximately the same as Invention 2, but the optical axis property could be maintained for more than 1000 hours in IIUM.

合ね一已ガラス構造とするため、さらに耐風圧(50m
/秒の風速〉ナス1−1耐雨圧テス)・においても本発
明の第2図の構造は最も高い信頼性を有することができ
た。
Due to the laminated glass structure, it is even more resistant to wind pressure (50 m).
The structure shown in FIG. 2 of the present invention was able to have the highest reliability even in the case of wind speed of 1-1 rain pressure test (1-1 rain pressure test).

また本発明の実施例において、従来例が変換効率6.3
%を有していたが、これば他の手段例えばガラス−CT
F界面をテスクチア−化して入射光側の光の反射を少な
(する等により、8〜10%と向上させることができる
場合、同様に実施例1における本発明L2,3.におい
ても特性の向上を図ることができることはいうまでもな
い。
In addition, in the embodiment of the present invention, the conventional example has a conversion efficiency of 6.3.
%, but this suggests that other means such as glass-CT
If it is possible to improve the characteristics by 8 to 10% by making the F interface Tescutia to reduce the reflection of light on the incident light side, the characteristics can be similarly improved in Invention L2 and 3 in Example 1. Needless to say, it is possible to achieve this.

また本発明においてはひとつのPIN接合を有する場合
を主として示した。しかしこれにPINPIN・・・P
IN接合と少な(とも一つのPNまたはPIN接合をさ
せればよく、かかる面から考えると、本発明は光電変換
装置パネルとしてさらに商品化を促進するきわめて重要
な特徴を有していることが判明した。
Further, in the present invention, the case where one PIN junction is mainly shown is shown. But this is PINPIN...P
It is sufficient to make only one IN junction and one PN or PIN junction, and from this point of view, it has been found that the present invention has an extremely important feature that will further promote commercialization as a photoelectric conversion device panel. did.

加えて例えば40cm7120cmのNEDO規格のパ
ネルを20cm x 60cmを4枚、また20cm 
x 40cmを6枚、20cmX20cmを12枚、4
0cm X 40cmを3枚と複合化してアルミサツシ
等を枠組みすることが可能である。
In addition, for example, four 20cm x 60cm NEDO standard panels of 40cm x 7120cm, and 20cm
x 40cm x 6 pieces, 20cm x 20cm x 12 pieces, 4
It is possible to frame aluminum sash etc. by combining three pieces of 0cm x 40cm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電変換装置の縦断面図を示す。 第2図は本発明方法により作製された複合集積化特許出
願人
FIG. 1 shows a longitudinal cross-sectional view of a conventional photoelectric conversion device. Figure 2 shows the composite integrated patent applicant manufactured by the method of the present invention.

Claims (1)

【特許請求の範囲】 1、透光性の第1の絶縁基板と、該基板上の透光性導電
膜をTh’する第1の電極と、該電極上の光照射により
光起電力を発生ずる少なくともひとつのPNまたはPI
N接合ををする非単結晶半導体と、該半導体上の透光性
導電膜よりなる第2の電極とを形成する工程と、透光性
加熱溶融性充填拐を配設し、さらに該充填材上に第2の
透光性基板を形成する工程と、真空引きして脱気を行っ
た後、加熱加圧を施すご□とにより前記充填材を熔融せ
しめて一体化する工程とを有することを特徴とする光電
変換装置作製方法。 2、特許請求の範囲第1項において、第1および第2の
透光性基板は、ガラスよりなり、加熱溶融充填材はPV
B(1弗化ビニール、商品名をテトラ−ともいう)より
なり、120〜150°Cに加熱し、8〜12気圧/c
m”の加圧を行うことを特徴とする光電変換装置作製方
法。 る光電変換装置。
[Scope of Claims] 1. A first light-transmitting insulating substrate, a first electrode that applies Th' to a light-transmitting conductive film on the substrate, and generating a photovoltaic force by irradiating light on the electrode. at least one PN or PI that occurs
A step of forming a non-single-crystal semiconductor forming an N-junction and a second electrode made of a transparent conductive film on the semiconductor, arranging a transparent heat-meltable filling layer, and further comprising forming the filling material. The method includes a step of forming a second light-transmitting substrate thereon, and a step of melting and integrating the filler by applying heat and pressure after degassing by evacuation. A method for manufacturing a photoelectric conversion device characterized by: 2. In claim 1, the first and second transparent substrates are made of glass, and the heat-melted filler is made of PV.
B (monovinyl fluoride, also known as Tetra), heated to 120-150°C, 8-12 atm/c
A method for manufacturing a photoelectric conversion device, characterized in that a pressure of 100 m” is applied.A photoelectric conversion device.
JP58018623A 1983-02-07 1983-02-07 Manufacture of photoelectric converter Pending JPS59144181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018623A JPS59144181A (en) 1983-02-07 1983-02-07 Manufacture of photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018623A JPS59144181A (en) 1983-02-07 1983-02-07 Manufacture of photoelectric converter

Publications (1)

Publication Number Publication Date
JPS59144181A true JPS59144181A (en) 1984-08-18

Family

ID=11976745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018623A Pending JPS59144181A (en) 1983-02-07 1983-02-07 Manufacture of photoelectric converter

Country Status (1)

Country Link
JP (1) JPS59144181A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS561582A (en) * 1979-05-08 1981-01-09 Saint Gobain Vitrage Method of fabricating solar battery panel
JPS57104278A (en) * 1980-12-22 1982-06-29 Semiconductor Energy Lab Co Ltd Photoelectric converting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS561582A (en) * 1979-05-08 1981-01-09 Saint Gobain Vitrage Method of fabricating solar battery panel
JPS57104278A (en) * 1980-12-22 1982-06-29 Semiconductor Energy Lab Co Ltd Photoelectric converting device

Similar Documents

Publication Publication Date Title
US6784361B2 (en) Amorphous silicon photovoltaic devices
US4773942A (en) Flexible photovoltaic device
US6320115B1 (en) Semicondonductor device and a process for the production thereof
AU741432B2 (en) Solar cell module and method for manufacturing same
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
JP5258325B2 (en) Solar cell module
KR19980024614A (en) Solar modules
JPS62142372A (en) Manufacture of photoelectric converter
JP2008270743A5 (en)
TW201110379A (en) Tandem solar cell integrated in a double insulating glass window for building integrated photovoltaic applications
JP2002043594A (en) Optical transmission type thin film solar cell module
JPH07211932A (en) Solar battery module and passive solar system using it
CN102568867A (en) Laminated thin film solar battery
KR20190079622A (en) Method for manufacturing high photoelectric conversion efficiency solar cell and high photoelectric conversion efficiency solar cell
JPS59144178A (en) Photoelectric converter
JPS59144181A (en) Manufacture of photoelectric converter
KR20220072494A (en) Solar cell and manufacturing method thereof
JPS59144180A (en) Photoelectric converter
CN220796756U (en) Silicon heterojunction solar cell, solar photovoltaic module and photovoltaic system
US20230178671A1 (en) Photovoltaic module
Shamim et al. Effect of novel encapsulants and backsheets on short circuit current in interdigitated Back contact solar cells based PV modules
JPS59144179A (en) Manufacture of photoelectric converter
CN218827157U (en) Solar cell, battery pack and photovoltaic system
CN218788379U (en) Passivation structure, solar cell, battery pack and photovoltaic system
KR101147313B1 (en) Photovoltaic module and manufacturing method of the same