JPS5914293A - Temperature controller for induction heating vacuum melting furnace - Google Patents
Temperature controller for induction heating vacuum melting furnaceInfo
- Publication number
- JPS5914293A JPS5914293A JP12207582A JP12207582A JPS5914293A JP S5914293 A JPS5914293 A JP S5914293A JP 12207582 A JP12207582 A JP 12207582A JP 12207582 A JP12207582 A JP 12207582A JP S5914293 A JPS5914293 A JP S5914293A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- melting furnace
- vacuum melting
- induction heating
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Induction Heating (AREA)
- Control Of Temperature (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、誘導加熱真空溶解炉の温度制御装置に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for an induction heating vacuum melting furnace.
従来より、誘導加熱真空溶解炉として高周波電源を用い
たものが知られているが、温度検出と高周波電源とを有
機的に結びつけて制御することは行なわれていなかった
。また、溶解温度が非常に高いことから温度検出方法が
限定されているため、温度はモニタする程度であ?穴。Conventionally, induction heating vacuum melting furnaces using high frequency power sources have been known, but temperature detection and high frequency power sources have not been organically linked and controlled. Also, since the melting temperature is extremely high, temperature detection methods are limited, so the temperature can only be monitored. hole.
更に、処理時間に制約があ゛るために、運転中に加熱j
((コイルに投入する電力制御までは行なわれておらす
、篩周波電源は一義的に制御されていた。このため、鋳
型に流し込む出湯温度のばらつきか多くなり、成型後の
鋳物品に使用不能なものが多くなり、品質管理に多大な
労力を必要としていた。Furthermore, due to limitations on processing time, heating during operation is not necessary.
(The power input to the coil was not controlled, but the sieve frequency power source was primarily controlled. As a result, there was a large variation in the temperature of the tapped metal poured into the mold, making it unusable for castings after molding.) There were a lot of things involved, and quality control required a lot of effort.
本発明鴨上記問題点を解消すべく成されたもので、特別
な操作を必要としないで安定した出湯温度を得られる誘
導加熱真空溶解炉の温度制御装置を提供することを目的
とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a temperature control device for an induction heating vacuum melting furnace that can obtain a stable tapping temperature without requiring special operations.
上記目的を達成するために本発明は、被溶解物の温度を
非接触で温度センサを用いて検出し、この検出された温
度データを、所定の温疲制尚1および電力制御プログラ
ムが記憶されている制御回路に入力し、この制御回路に
おいて温度データを基に上記プログラムを実行して高尚
波′電源を制御し、温度データに対応すると共に省エネ
ルギの観点から最小の使用電力で最適な出湯温度が得ら
れるようKしたものである。In order to achieve the above object, the present invention detects the temperature of a material to be melted in a non-contact manner using a temperature sensor, and stores the detected temperature data in a predetermined thermal fatigue control program and a power control program. The above program is executed based on the temperature data in this control circuit to control the Kosho Wave power supply, and in addition to responding to the temperature data, it also produces optimal hot water supply with the minimum amount of power used from the perspective of energy saving. The temperature was set to K to obtain the desired temperature.
以下図面を参照して本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.
、−第1図に、本発明の一実施例のブロック図を示す。, - FIG. 1 shows a block diagram of an embodiment of the present invention.
制尚)部1には、外部指令部4によυプリセットされた
、被溶解物9に適した出湯温度の値がディジタル人出力
部3を介して人力される。The control unit 1 is manually inputted via the digital output unit 3 with the value of the outlet temperature suitable for the material to be melted 9, which has been preset by the external command unit 4.
また、制御部1には、高周波電源6の状態がディジタル
人出力部3を介して入力される。この制(財)部1は、
高周波電源6の状態を基に運転可能かどうかの判断を行
い、運転可能と判断したときのみ、外部指令部4からの
指令によりアナログ人出力部2を介して高周波電源6に
指令を送殴、高周波電源6の運転を開始し、加熱用コイ
ル7を加熱して真空溶解炉8内の被溶解物91に加熱す
る。Further, the state of the high frequency power source 6 is input to the control section 1 via the digital output section 3. This system (finance) department 1 is
It is determined whether operation is possible based on the state of the high frequency power source 6, and only when it is determined that operation is possible, a command is sent to the high frequency power source 6 via the analog human output section 2 based on a command from the external command section 4. The operation of the high frequency power source 6 is started, and the heating coil 7 is heated to heat the material to be melted 91 in the vacuum melting furnace 8 .
被溶解物9の?M&は、真空溶解炉8に取付けられてい
る非接触型の温度センサ10によυ検出され、温度変換
器11およびアナログ入出力部2を介して制御部1に人
力される。そして、制御部1では、外部指令部4でプリ
セットされた値と温度センサ10により検出された現在
の温度とを比較して温度制?MI?行うと共に1モニタ
部5に現在の次に、本実施例の動作について、第2図の
タイムチャートおよび第3図の70−チャート(Il−
跡照して説明する。Of the material to be dissolved 9? M& is detected by a non-contact temperature sensor 10 attached to the vacuum melting furnace 8, and is manually inputted to the control unit 1 via the temperature converter 11 and the analog input/output unit 2. Then, the control unit 1 compares the value preset by the external command unit 4 with the current temperature detected by the temperature sensor 10 to determine whether the temperature is controlled or not. MI? At the same time, the time chart of FIG. 2 and the 70-chart of FIG.
Trace and explain.
まず、第3図のステップ101におい1イニシヤライズ
し、ステップ102で運転可能が舊かを判断する。運転
可能な場合には、ステップ103において1.運転開始
指令を高周波電源6に与え、最短時間で溶解するために
高周波電源をフルパワーで運転する( V Cmal
運転)。続いて、ステップ104で温度センサ10によ
り温IW検出を続け、ステップ105で所定時間経過し
たが判断し、ステップ106で被溶解物の温度Tが設定
温度T@に達したか否かを判断する。温度Tが設定温度
T11に達した場合には、ステップ107において、高
周波電源6をミニマムパワーで運転しく VCm1m運
転)、ステップ108でモニタ部5に溶解光子表示を出
力する。First, in step 101 of FIG. 3, initialization is performed, and in step 102, it is determined whether or not operation is possible. If the operation is possible, 1. Give an operation start command to the high frequency power source 6, and operate the high frequency power source at full power to melt in the shortest time (V Cmal
driving). Subsequently, in step 104, temperature IW detection is continued by the temperature sensor 10, in step 105 it is determined that a predetermined time has elapsed, and in step 106 it is determined whether the temperature T of the material to be melted has reached the set temperature T@. . When the temperature T reaches the set temperature T11, the high frequency power source 6 is operated at minimum power in step 107 (VCm1m operation), and a dissolved photon display is output to the monitor unit 5 in step 108.
その後、ステップ109で温度モニタをし、ステップ1
10で温度Tが最大値fr□8になったが、またステッ
プ111で注湯か否かを判断し、ステップ112で温度
TがTs −gVcなったか否かを判断する。ステップ
112で温度TがTs−α以下である場合は、ステップ
113においてVcm8運転とVC@I11運転との中
間の最適パワー(vcN運転)を行う。更に、ステツー
プ114で温度モニタし、ステップ115で温度Tが最
大値T、、、!になったかを判断し、ステップ116で
注湯か否かを判断し、ステップ117で温度TがT1+
αになったか否かを判断する。ステップ117で温度T
がTII+α以上になったときには、ステップ118で
VCwarm運転を行ない、ステップ109に戻る。After that, the temperature is monitored in step 109, and step 1
At step 10, the temperature T has reached the maximum value fr□8, but at step 111 it is determined again whether or not pouring is being performed, and at step 112 it is determined whether the temperature T has reached Ts - gVc. If the temperature T is equal to or lower than Ts-α in step 112, then in step 113 an optimum power (vcN operation) between the Vcm8 operation and the VC@I11 operation is performed. Furthermore, the temperature is monitored at step 114, and at step 115, the temperature T reaches the maximum value T,...! In step 116, it is determined whether or not to pour the molten metal. In step 117, the temperature T is T1+.
Determine whether or not it has reached α. In step 117 the temperature T
When becomes equal to or greater than TII+α, VCwarm operation is performed in step 118, and the process returns to step 109.
上記のようにすることにより、温度T1−α。By doing as above, the temperature T1-α.
TII十αのところで運転条件が交互に変えられ(Ye
n運転、VCm1m運転)、注湯されるまでの聞出湯温
度が許容範囲内に保つように制御される。また、この場
合には、温度モニタを行ないながら同時に温度上昇率の
測定も行ない、投入電力に無駄が出ないように最適なV
c )l 、 Vc 111111 が選択されて運転
される。更に、温度が変化−「るまで遅れ時面があるた
め、温度検出の時間遅れ全十分考慮して温度変化のオー
バー/ニート、アンダーシュートが許容温度範囲を鱗え
ないようにアルゴリズムを組んでいる。まり史に、保脚
機能として温度制御が不能になった場合は高周波電源を
停止させて機器の損傷を防ぐようにしている。The operating conditions are alternately changed at TII 10α (Ye
n operation, VCm 1m operation), the temperature of the hot water until pouring is controlled to be kept within the allowable range. In this case, while monitoring the temperature, the rate of temperature rise is also measured at the same time, and the optimal V
c)l, Vc 111111 is selected and operated. Furthermore, since there is a lag time until the temperature changes, we have created an algorithm that fully takes into account the time delay of temperature detection so that over/neat and undershoot of temperature changes do not exceed the allowable temperature range. In addition, as part of its leg-holding function, if temperature control becomes impossible, the high-frequency power supply is shut down to prevent equipment damage.
本実施例によれば、最適なVc )J 、 Vc II
IMを選択しながら運転を行なっているため、被溶解物
の量が変化しても自動的に高川波電源の投入電力が変化
するので効率の良い運転ができるという効果がある。According to this embodiment, the optimal Vc)J, VcII
Since the operation is performed while selecting the IM, even if the amount of the material to be melted changes, the input power of the high river wave power source is automatically changed, so that efficient operation can be achieved.
なお、上記の説明において、被溶解物の重量をパラメー
タとして外部指令部から入力すれば、温度上昇率の測定
およびV’c N、 Vc m1mの選択が不要となり
、プログラムの簡略化が可能になる。In addition, in the above explanation, if the weight of the material to be melted is input as a parameter from the external command unit, measurement of the temperature rise rate and selection of V'c N and Vc m1m are unnecessary, and the program can be simplified. .
また、第2図のタイムチャートに示したように、被溶解
物は溶解までの間に固相、固相液相混在、液相と状態が
遷移するが、この間で加熱用コイルのインダクタンスが
変化するため、高周波電源の出力lht圧、亜流全適切
に制御することにより、より効率の良い運転が可能とな
る。In addition, as shown in the time chart in Figure 2, the state of the material to be melted changes between solid phase, solid-liquid phase mixture, and liquid phase, but the inductance of the heating coil changes during this time. Therefore, more efficient operation is possible by appropriately controlling the output lht pressure and subflow of the high frequency power supply.
以上説明したように本発明によれば、溶解に要する時間
が短くなり、鋳型に流し込む出湯温度が一定になるため
藺物品の品質が向上して品質管理の省力化が可能となる
と共に、電力制御を行うことにより電力の使用効率が向
上する。As explained above, according to the present invention, the time required for melting is shortened, and the temperature of the hot water poured into the mold is constant, which improves the quality of the products and makes it possible to save labor in quality control. By doing so, the efficiency of power usage will be improved.
第1図は、本発明の一実施例を示すブロック図、第2図
は、上記実施例の動作のタイムチャート、第3図は、前
記実施例の動作のフローチャートである。
1・・・制御部、2・・・アナログ入出力部、3・・・
ディジタル人出力部、4・・・外部指令部、5・・・モ
ニタ部、6・・・高周波電源、7・・・加熱用コイル、
8・・・真空溶解炉、9・・・被溶解物、10・・・温
度センサ、11・・・温度変換器、Vc・・・指令電圧
、W・・・許容温度範囲、躬 10
第 2 口
■
尋
475−
第3図FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a time chart of the operation of the embodiment, and FIG. 3 is a flowchart of the operation of the embodiment. 1...Control unit, 2...Analog input/output unit, 3...
Digital human output unit, 4... External command unit, 5... Monitor unit, 6... High frequency power supply, 7... Heating coil,
8... Vacuum melting furnace, 9... Material to be melted, 10... Temperature sensor, 11... Temperature converter, Vc... Command voltage, W... Allowable temperature range, 10th 2nd口■ Hirom 475- Figure 3
Claims (1)
電力を供給する高周波電源と、前記被溶解物の温度を非
接触で検出して温度信号を出力する温度センサと、所定
の温度制御プログラムおよび電力制御プログラムが記憶
されると共に前記温度信号に基づいて前記プログラムを
実行し、前記高周波電源に制御信号を出力する制御回路
とを含む誘導加熱真空溶解炉の温度制御装置。1. A high-frequency power supply that supplies power to a heating coil that heats a furnace for melting the material to be melted, a temperature sensor that detects the temperature of the material to be melted without contact and outputs a temperature signal, and a predetermined temperature control A temperature control device for an induction heating vacuum melting furnace, comprising a control circuit that stores a program and a power control program, executes the program based on the temperature signal, and outputs a control signal to the high frequency power source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12207582A JPS5914293A (en) | 1982-07-15 | 1982-07-15 | Temperature controller for induction heating vacuum melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12207582A JPS5914293A (en) | 1982-07-15 | 1982-07-15 | Temperature controller for induction heating vacuum melting furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5914293A true JPS5914293A (en) | 1984-01-25 |
Family
ID=14827026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12207582A Pending JPS5914293A (en) | 1982-07-15 | 1982-07-15 | Temperature controller for induction heating vacuum melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914293A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297464A (en) * | 1986-06-16 | 1987-12-24 | Seiko Epson Corp | Production of target for sputtering |
US4729602A (en) * | 1985-07-31 | 1988-03-08 | Nsk Warner K.K. | Seat belt anchor mechanism |
-
1982
- 1982-07-15 JP JP12207582A patent/JPS5914293A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4729602A (en) * | 1985-07-31 | 1988-03-08 | Nsk Warner K.K. | Seat belt anchor mechanism |
JPS62297464A (en) * | 1986-06-16 | 1987-12-24 | Seiko Epson Corp | Production of target for sputtering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5914293A (en) | Temperature controller for induction heating vacuum melting furnace | |
JPS63202886A (en) | Induction melting | |
JP2748611B2 (en) | Melting furnace temperature control method and apparatus | |
JPH07118382B2 (en) | How to operate the arc furnace | |
JPH0327872A (en) | Method and apparatus for joining with solder | |
JPH077015Y2 (en) | Channel type inductor | |
CN208195881U (en) | A kind of electric iron | |
JPS6412492A (en) | High-frequency heating device | |
JP3855145B2 (en) | Induction heating cooker | |
JPS59159255A (en) | Controlling method of heating molten metal in tundish | |
JP6954556B2 (en) | Induction melting furnace | |
JPS61127810A (en) | Method for controlling electrode heating electric power of vacuum degassing tank | |
JPH032912A (en) | Temperature control method | |
CN106679417A (en) | Metal material heating system and heating control method thereof | |
JP2531803B2 (en) | Jar rice cooker | |
JPH0536220B2 (en) | ||
JPH0644510B2 (en) | Induction heating cooker | |
SU1442342A1 (en) | Method of automatic control of heating when soldering | |
JP2925836B2 (en) | Electromagnetic cooker | |
JP2001340943A (en) | Method for controlling temperature of molten steel in tundish | |
JPH0950882A (en) | Output control method of inverter for high frequency induction furnace | |
JPS5918588A (en) | Method of producing heater in high temperature hydrostatic device | |
JPS6220281A (en) | Induction heating control for continuous casting | |
JPS60221687A (en) | High-frequency casting device | |
JPH07249478A (en) | Billet heating device |