JPS61127810A - Method for controlling electrode heating electric power of vacuum degassing tank - Google Patents

Method for controlling electrode heating electric power of vacuum degassing tank

Info

Publication number
JPS61127810A
JPS61127810A JP24995784A JP24995784A JPS61127810A JP S61127810 A JPS61127810 A JP S61127810A JP 24995784 A JP24995784 A JP 24995784A JP 24995784 A JP24995784 A JP 24995784A JP S61127810 A JPS61127810 A JP S61127810A
Authority
JP
Japan
Prior art keywords
temperature
electric power
refractory
degassing tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24995784A
Other languages
Japanese (ja)
Inventor
Hiroki Maruyama
浩樹 丸山
Masaaki Naruishi
成石 正明
Fumiaki Yoshikawa
文明 吉川
Rinzo Tachibana
橘 林三
Masatoshi Ichinomiya
一宮 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24995784A priority Critical patent/JPS61127810A/en
Publication of JPS61127810A publication Critical patent/JPS61127810A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To prevent throwing of excessive electric power so as to reduce power consumption, by burying a temperature detector in the refractory body at the inner wall surface of a degassing tank and continuously detecting temperature, and then, controlling the quantity of electric power supplied to graphite electrodes in accordance with the quadratic differential of the detected temperature with respect to the time by successively calculating the quadratic differential. CONSTITUTION:A thermocouple 3 is buried in the refractory body 2 constituting the inner wall surface of a degassing tank 1 and temperature inside the refractory body 2 is continuously detected. The output of the thermocouple 3 is converted into a signal representing temperature by means of a temperature converter 4 and supplied to an automatic throwing electric power calculating/setting unit 10. The unit 10 successively quadratically differentiates the temperature detecting values with respect to the time and finds temperature acceleration, and then, sets the optimum throwing electric power quantity in accordance with the found temperature acceleration. The optimum throwing electric power signal is supplied to an electric power controlling section 5 through a manual-automatic change-over switch 11 and electric power supplied to graphite electrodes 6 and 6' is automatically controlled.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は溶鋼を脱ガス処理するためのRH真空脱ガス
装置あるいはDH真空脱ガス装置の脱ガス槽内に黒鉛電
極を挿入して、その黒鉛電極に通電することによシ抵抗
発熱させて脱ガス槽内を加熱するに際し、黒鉛電属に供
給する電力量を制御する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a graphite electrode inserted into a degassing tank of an RH vacuum degassing device or a DH vacuum degassing device for degassing molten steel. This invention relates to a method for controlling the amount of power supplied to a graphite metal when heating the inside of a degassing tank by generating resistance heat by supplying electricity to the graphite metal.

従来の技術 周知のようにRH真空脱ガス装置あるいはDH真空脱ガ
ス装置によって溶鋼を真空脱ガス処理するにあたっては
、脱ガス槽の内壁面を構成する耐火物の表面に溶鋼が付
着凝固して、脱ガス処理後もその凝固した鋼(いわゆる
地金)が付着残留することが多く、その場合、次回の脱
ガス処理にあたって予め地金を加熱溶融させておく必要
があろうまた脱ガス処理中も槽内温度の一定化のために
脱ガス構内を補助的に加熱しておくことが望ましい。
As is well known in the art, when molten steel is vacuum degassed using an RH vacuum degassing device or a DH vacuum degassing device, molten steel adheres to and solidifies on the surface of the refractory that constitutes the inner wall surface of the degassing tank. Even after degassing treatment, the solidified steel (so-called base metal) often remains attached, and in that case, it may be necessary to heat and melt the base metal before the next degassing treatment. It is desirable to supplementally heat the degassing area in order to stabilize the temperature inside the tank.

脱ガス槽内の加熱方法としては、電極加熱法、Cガス加
熱法、耐火物通電法などがあるが、操業コストや操作性
等の面から、電極加熱法が最も有利とされている。この
電極加熱方式は、脱ガス槽内に黒鉛電極を挿入しておき
、その黒鉛電極に直流大電流を通電して抵抗発熱させ、
赤熱した黒鉛電極からの輻射熱くより脱ガス槽内を加熱
するものである。
Methods for heating the inside of the degassing tank include an electrode heating method, a C gas heating method, a refractory energization method, and the like, but the electrode heating method is considered to be the most advantageous in terms of operating costs and operability. This electrode heating method involves inserting a graphite electrode into the degassing tank and passing a large DC current through the graphite electrode to generate resistance heat.
The inside of the degassing tank is heated by radiant heat from red-hot graphite electrodes.

ところでこのような黒鉛電極加熱方式を用いた脱ガス装
置の操業においては、処理サイクルに応じて槽内温度(
耐火物表面温度)を最適温度に制御するべく、黒鉛電極
に供給する電力量を適切に制御する必要がある。そこで
従来は一般に脱ガス槽の内壁を構成する耐火物中に高温
用熱電対の如き温度検出器を埋設しておき、その温度検
出器の指示値などに基いてオペレータの判断により操作
盤上の出力設定ツマミを操作し、出力設定指令信号を変
化させて電力量を制御することが行なわれている。この
ような従来の一般的な加熱電力制御方法を適用した制御
系統図を第5図に示す。
By the way, in the operation of a degassing device using such a graphite electrode heating method, the temperature inside the tank (
In order to control the refractory surface temperature) to an optimal temperature, it is necessary to appropriately control the amount of power supplied to the graphite electrode. Conventionally, therefore, a temperature sensor such as a high-temperature thermocouple is buried in the refractory that makes up the inner wall of the degassing tank. The amount of electric power is controlled by operating an output setting knob and changing an output setting command signal. A control system diagram to which such a conventional general heating power control method is applied is shown in FIG.

第5図において1は脱ガス槽であり、この脱ガス槽1の
内壁面を構成する耐火物z中には、槽外から高温用熱電
対3が挿入されている。この熱電対3の出力は、温度変
換器4を介してサイリスタ整流器などの電力制御器5に
加えられるようになっている。一方、脱ガス槽1に挿入
された黒鉛電極6,6′には、前記電力制御器5で設定
された直流電力が、母線7,7′および水冷ケーブル8
,8′を介して加えられる。そして前記サイリスタ整流
器などの電力制御器5に設けられた可変抵抗器などの操
作部9を操作することによって黒鉛1愼6゜6′に供給
する電力の設定がなされる。
In FIG. 5, reference numeral 1 denotes a degassing tank, and a high-temperature thermocouple 3 is inserted from outside the tank into a refractory z that forms the inner wall surface of the degassing tank 1. The output of this thermocouple 3 is applied via a temperature converter 4 to a power controller 5 such as a thyristor rectifier. On the other hand, the DC power set by the power controller 5 is applied to the graphite electrodes 6, 6' inserted in the degassing tank 1 through the bus bars 7, 7' and the water-cooled cable 8.
, 8'. Then, by operating an operating section 9 such as a variable resistor provided in the power controller 5 such as the thyristor rectifier, the power to be supplied to the graphite 16°6' is set.

発明が解決すべき問題点 上述のような従来の脱ガス槽の黒鉛電極に対する加熱電
力制御方法においては、次のような問題があった。
Problems to be Solved by the Invention The conventional heating power control method for the graphite electrode of a degassing tank as described above has the following problems.

すなわち、先ず第1には、オペレータが常時温度指示値
を監視しつつ操作しなければならないため、省力化を図
ることが困難である。
That is, first of all, since the operator must operate the device while constantly monitoring the temperature instruction value, it is difficult to achieve labor savings.

また第2には、耐火物中に埋設した温度検出器の指示値
に従って操作を行なうが、耐火物は熱抵抗が著しく大き
く、そのため耐火物中に埋設した温度検出器の指示値は
脱ガス槽の槽内温度(耐火物表面温度)の変化に対して
大幅に遅れて変化し、またその指示値の変化幅も耐火物
表面温度の変化幅と比較して小さくなり、したがって急
激に変化する槽内状況を耐火物中に埋設した温度検出器
の指示値から正確かつ即時に把握することは困難であシ
、そのため槽内状況に対して即時かつ正確に対応するこ
とができない。
Second, operations are performed according to the readings from the temperature detectors embedded in the refractories, but refractories have extremely high thermal resistance, so the readings from the temperature sensors buried in the refractories do not match the degassing tank. The temperature in the tank (refractory surface temperature) changes with a significant delay, and the range of change in the indicated value is smaller than the range of change in the refractory surface temperature, so the tank changes rapidly. It is difficult to accurately and immediately grasp the internal situation from the indicated value of a temperature sensor embedded in the refractory, and therefore it is not possible to immediately and accurately respond to the internal situation of the tank.

さらに第3に、脱ガス槽の操業においては耐火物内の温
度分布が一定の温度分布の定常状態となることがないた
め、耐火物中に埋設した温度検出器の指示値から耐火物
表面温度(槽内温度)を正しく認識して最適電力量を設
定することが困難である。
Thirdly, in the operation of a degassing tank, the temperature distribution inside the refractory does not reach a steady state with a constant temperature distribution, so the refractory surface temperature is determined from the reading from a temperature sensor embedded in the refractory. It is difficult to correctly recognize the temperature inside the tank and set the optimal amount of power.

そして以上の結果として、従来の方法では耐火物中に埋
設した温度検出器の指示値は単に一応の目安とする程度
にとどまり、実際の操業では電力量を一定としたまま操
業するか、またはオペレータの経験則に基いて手動調整
する程度に過ぎず、その場合操業の安全サイドにて過剰
に電力を与える傾向が生じることは避は得す、したがっ
て電力ロスが大きいとともに、耐火物や電他棒の寿命に
悪影響を与えざるを得ないのが実情であった。
As a result of the above, in the conventional method, the indicated value of the temperature sensor embedded in the refractory is only used as a rough guide, and in actual operation, the amount of electricity must be kept constant, or the In this case, it is inevitable that there will be a tendency to provide excessive power on the safe side of operation, resulting in large power loss and the use of refractories and electric poles. The reality is that this has no choice but to have a negative impact on the lifespan of people.

この発明は以上の事情を背景としてなされたもので、脱
ガス槽の槽内状況(槽内温度変化)に応じて最適電力量
を自動的に設定・制御し得るようになし、これによって
省力化を図ると同時に、最適電力量制御によシミ力の無
駄なロスを少なくし、併せて最適電力供給による黒鉛電
極や耐火物の寿命延長を図シ得るようにすることを目的
とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is possible to automatically set and control the optimum amount of electricity according to the internal situation of the degassing tank (temperature change inside the tank), thereby saving labor. At the same time, the purpose is to reduce wasteful loss of stain power through optimal power consumption control, and at the same time, to extend the life of graphite electrodes and refractories through optimal power supply. .

問題点を解決するための手段 本発明者等は上述の目的を達成するべく種々実験・検討
を重ねた結果、耐火物中に埋設した温度検出器により検
出された温度の2次時間微分値、すなわち検出された温
度の経時変化の加速度をパラメータとして導入すること
によって、槽内温度の変化を迅速かつ正確に把握できる
ことを見出し、この発明をなすに至ったのである。
Means for Solving the Problems As a result of various experiments and studies to achieve the above-mentioned object, the inventors of the present invention have developed a second-order time differential value of the temperature detected by a temperature detector embedded in the refractory, That is, by introducing the acceleration of the detected temperature change over time as a parameter, the inventors discovered that it is possible to quickly and accurately grasp the change in the temperature inside the tank, leading to the present invention.

すなわちこの発明の電力制御方法は、真空脱ガス槽内に
黒鉛電極を挿入してその黒鉛電極を通電発熱させ、脱ガ
ス槽内を加熱するにあたり、脱ガス槽の内壁面を構成す
る耐火物中に温度検出器を埋設してその耐火物の内部温
度を連続検出し、その検出温度の2次時間微分値を逐次
算出して、その2次時間微分値に応じて黒鉛電極に通電
する電力量を制御することを特徴とするものである。
That is, in the power control method of the present invention, a graphite electrode is inserted into a vacuum degassing tank and the graphite electrode is energized to generate heat to heat the inside of the degassing tank. A temperature sensor is embedded in the refractory to continuously detect the internal temperature of the refractory, the second time differential value of the detected temperature is calculated one after another, and the amount of electricity to be applied to the graphite electrode is calculated according to the second time differential value. It is characterized by controlling.

発明の詳細な説明 この発明の方法では前述のように槽内耐火物中に埋設し
た熱電対などの温度検出器による温度検出値をそのまま
制御パラメータとして用いるのではなく、その温度検出
値の2次時間微分値を逐次算出し、その2次時間微分値
の値に応じて黒鉛1礪に供給する電力量を制御する。
DETAILED DESCRIPTION OF THE INVENTION In the method of the present invention, as described above, the temperature detected by a temperature detector such as a thermocouple embedded in the refractory inside the tank is not directly used as a control parameter, but the secondary value of the temperature detected value is used as a control parameter. Time differential values are calculated one after another, and the amount of electric power supplied to one cylinder of graphite is controlled according to the value of the second-order time differential value.

このように温度検出値の2次時間微分値を制御パラメー
タとすることの有効性について次に説明する。
The effectiveness of using the second-order time differential value of the temperature detection value as a control parameter will be explained next.

第2図囚〜(9)は、脱ガス処理終了時に槽内壁に5+
+a++厚の地金付着がある場合を想定し、その地金を
次回の脱ガス処理前に電極加熱により30分で溶解する
ものとして、電力値を一定で操業する場合の温度等の試
算例を示すものでおる。
Figure 2 (9) shows 5+ on the inner wall of the tank at the end of the degassing process.
Assuming that there is a +a++ thick base metal adhesion, and assuming that the base metal will be melted in 30 minutes by electrode heating before the next degassing treatment, here is an example of a trial calculation of temperature, etc. when operating at a constant power value. It's something to show.

第2図(4)は、槽内耐火物表面温度の経時変化を示す
ものであり、加熱開始から30分間は地金溶解に熱量が
消費されるために槽内壁表面温度は次第に低下するが、
地金溶解完了後は、地金溶解に要する熱量が不要となる
ため、槽内壁温度は直ちに上昇を開始する。一方第2図
(B)は槽内壁面を構成する耐火物中に埋設した温度検
出器による検出温度の経時変化を第2図囚に対応して示
す。第2図囚、(B)を対比すれば明らかなように耐火
物は熱抵抗が大きいため、内壁表面温度の変化に対して
耐火物内部温度は大幅に遅れて変動する。すなわち地金
溶解が完了して内壁表面温度が上昇を開始してから耐火
物内部温度が上昇する傾向がめられれるまでに約25分
開運れており、しかもその上昇傾向は極めてゆるやかで
ある。このような内壁表面温度の変化に対する耐火物内
部温度の変化の時間的遅れお、よび緩慢さが、既に述べ
たように耐火物中に埋設した温度検出器の指示値による
電属供給電力の最適自動制御を困難にしていた原因であ
る。すなわち例えば第2図(4)に示されるように地金
溶解が完了して槽内壁表面温度が急上昇した時点でそれ
を検知できれば、その後の電力量を低減させて槽内温度
の過剰な温度上昇を避けることができるが、耐火物中に
埋設した温度検出器の指示値を直接用いただけではその
ような制御は困難である。なお温度検出器として通常用
いられている熱電対は、溶損等の問題のために、直接槽
内壁表面温度を検出するように設置することは困難であ
り、したがって温度検出器自体は従来と同様に耐火物内
に埋設する必要がある。
Figure 2 (4) shows the change in the surface temperature of the refractory inside the tank over time; for 30 minutes from the start of heating, the temperature on the surface of the inside wall of the tank gradually decreases due to the amount of heat consumed in melting the metal.
After the melting of the metal is completed, the temperature of the inner wall of the tank immediately starts to rise because the amount of heat required for melting the metal is no longer needed. On the other hand, FIG. 2(B) shows, corresponding to FIG. As is clear from a comparison of Figure 2 (B), the refractory has a large thermal resistance, so the internal temperature of the refractory fluctuates with a significant delay in response to changes in the inner wall surface temperature. That is, about 25 minutes elapsed after the metal melting was completed and the inner wall surface temperature started to rise until the internal temperature of the refractory began to rise, and the rising tendency was extremely gradual. As mentioned above, the time delay and slowness of the change in the internal temperature of the refractory with respect to the change in the inner wall surface temperature is due to the optimization of the electric power supplied to the refractory based on the indicated value of the temperature sensor embedded in the refractory. This is the reason why automatic control is difficult. For example, as shown in Figure 2 (4), if it is possible to detect when the metal melting is complete and the temperature on the inner wall surface of the tank rises rapidly, the subsequent power consumption can be reduced to prevent an excessive rise in the temperature inside the tank. However, such control is difficult only by directly using the indicated value of a temperature sensor embedded in the refractory. Note that thermocouples, which are normally used as temperature detectors, are difficult to install to directly detect the temperature on the inner wall surface of the tank due to problems such as melting and damage. It is necessary to bury it in refractory material.

そこで本発明者等は、脱ガス槽内の耐火物中に埋設した
温度検出器による検出値を間接的に用いて、脱ガス槽内
壁の表面温度の変化を即時に把握できるパラメータを見
出すべく種々検討を重ねた結果、脱ガス槽の内壁耐火物
における熱流速の瞬時変化と関係が深い、耐火物中温度
検出器による検出値の2次時間微分値が槽内壁表面温度
の変化に良く追随することを見出した。
Therefore, the inventors of the present invention indirectly used the detected value from a temperature detector embedded in the refractories in the degassing tank to find various parameters that could immediately grasp the change in the surface temperature of the inner wall of the degassing tank. As a result of repeated studies, we found that the second-order time differential value of the value detected by the temperature detector inside the refractory, which is closely related to the instantaneous change in the heat flow rate in the refractory inner wall of the degassing tank, closely follows the change in the surface temperature of the inner wall of the tank. I discovered that.

すなわち第2図(C”lは、第2図(B)に示した耐火
物らに第2図(D)は第2図(B)に示した耐火物内部
の検’C)から理解されるように、投入電力を一定とじ
た場合、検出温度で*の1次時間微分値(以下これを表
面温度の地金溶解完了後の急激な温度上昇かられずかに
遅れて上昇傾向を示し、温度検出値T*が上昇傾向を示
し始める時点でOとなシ、以後上昇、下降の傾向は、槽
内壁表面の温度が上昇傾向に6るか下降傾向にあるかの
バロメータとはなシ得るものの、その絶対値による槽内
状況の定量化直ちに応答して内壁表面温度の変化の状況
に応じた値を示す。例えば地金溶解完了後の内壁表面温
敏感に応答するから、温度加速度を逐次算出してその値
により電力量を自動的に最適制御することが可能となる
In other words, Fig. 2 (C''l) is understood from the refractories shown in Fig. 2 (B), and Fig. 2 (D) is understood from the inspection of the inside of the refractories shown in Fig. 2 (B). As shown in the figure, when the input power is kept constant, the first time differential value of * (hereinafter referred to as the first time differential value of *) at the detected temperature shows an increasing tendency after a slight delay from the rapid temperature rise after the completion of melting of the surface temperature. When the temperature detection value T* starts to show an upward trend, it becomes O, and the subsequent rising and falling trends are not a barometer for determining whether the temperature on the inner wall surface of the tank is on an upward trend or a downward trend. However, quantification of the internal situation in the tank based on its absolute value immediately responds and shows the value according to the change in the inner wall surface temperature.For example, the inner wall surface temperature after the completion of metal melting responds sensitively, so temperature acceleration can be sequentially measured. It becomes possible to automatically optimally control the amount of electric power based on the calculated value.

上述の如く槽内壁の耐火物に埋設した温度検出器による
検出値の温度加速度が内壁表面温度に敏感に応答する理
由は、耐火物内部の温度加速度が、耐火物表面から耐火
物内部へ入射する熱流速の瞬時変化に対応するためと考
えられる。
As mentioned above, the reason why the temperature acceleration detected by the temperature sensor embedded in the refractory inside the tank responds sensitively to the inner wall surface temperature is because the temperature acceleration inside the refractory enters the inside of the refractory from the surface of the refractory. This is thought to be in response to instantaneous changes in heat flow rate.

すなわち耐火物表面から内部へ入射する熱流速をq C
ka4’rrl・h r 〕とすれば、耐火物内部の検
出温度T*との関係は簡単には次の(1)式で表わせる
In other words, the heat flow rate incident from the surface of the refractory to the inside is q C
ka4'rrl·hr], the relationship with the detected temperature T* inside the refractory can be easily expressed by the following equation (1).

ここでρ:密度、C3:比熱、V二体積、A:内壁面積
、τ:待時 間0式をさらに時間で微分すれば次の(2)式が成立す
に表わせることを意味する。したがりて耐火物内メータ
とすることによシ黒鉛電極に供給する電力を槽内状況の
変化に応じた最適値に制御することが可能となるのであ
る。
Here, ρ: density, C3: specific heat, V2 volume, A: inner wall area, τ: waiting time 0 This means that if the equation is further differentiated with respect to time, the following equation (2) can be expressed. Therefore, by using a meter inside the refractory, it becomes possible to control the electric power supplied to the graphite electrode to an optimum value according to changes in the internal situation of the tank.

第1図に、この発明の制御方法を実施するための制御系
統図の一例を示す。なお第1図において、従来の第5図
に示される要素と同一の要素には同一の符号を付し、そ
の説明は省略する。
FIG. 1 shows an example of a control system diagram for implementing the control method of the present invention. In FIG. 1, the same elements as the conventional elements shown in FIG. 5 are given the same reference numerals, and their explanations will be omitted.

第1図において、脱ガス槽1の内壁面を構成する耐火物
2中に挿入された温度検出器としての熱電対3によって
耐火物2の内部の温度が連続検出される。その熱電対3
の出力は温度変換器4によって温度を表わす信号に変換
されてから自動投入電力演算・設定ユニットIOに加え
られる。このユニットIOは、熱電対3によって検出さ
れた温入電力を設定する。ここで温度加速度値に基づい
て最適投入電力を設定する具体的手法としては、例えば
予め両者の関係式を実験により決定しておき、その式に
よって最適投入電力を算出したり、あるいは予め実験に
ょシ両者の関係を表わすグラフあるいはテーブルを作成
してそのグラフもしくはテーブルを記憶装置に記憶させ
ておき、そのグラフもしくはテーブルにしたがって温度
検出値に応じ最適投入電力を決定したシすれば良い。こ
のようにして設定した投入電力信号は手動−自動切替ス
イッチllを介してサイリスタ整流器などの電力制御器
5に加えられ、黒鉛電極6 、6’に:供給する電力が
自動制御される。なお実際の装置では、サイリスタ整流
器などの電力制御器5から黒鉛電極6,6′に供給され
る電力量の信号が前記自動投入電力演算・設定ユニット
1oにフィードバックされ、そのユニットlOにおいて
所謂フィードバック制御がなされる。また前記手動−自
動切替スイッチ11は、上述のような投入電力自動設定
モードから投入電力手動設定モードに適宜切替えるため
のものであシ、このスイッチ11が手動設定モードの側
に切替えられた状態では従来と同様に手動操作部9によ
って投入電力設定可能となる。
In FIG. 1, the temperature inside the refractory 2 is continuously detected by a thermocouple 3 serving as a temperature detector inserted into the refractory 2 constituting the inner wall surface of the degassing tank 1. The thermocouple 3
The output is converted by the temperature converter 4 into a signal representing the temperature and then applied to the automatic input power calculation/setting unit IO. This unit IO sets the warm input power detected by the thermocouple 3. Here, specific methods for setting the optimal power input based on the temperature acceleration value include, for example, determining a relational expression between the two in advance through experiments, and calculating the optimal power input using that formula; It is sufficient to create a graph or table representing the relationship between the two, store the graph or table in a storage device, and determine the optimum input power according to the detected temperature value according to the graph or table. The input power signal thus set is applied to a power controller 5 such as a thyristor rectifier via a manual/automatic changeover switch 11, and the power supplied to the graphite electrodes 6, 6' is automatically controlled. In the actual device, the signal of the amount of power supplied from the power controller 5 such as a thyristor rectifier to the graphite electrodes 6, 6' is fed back to the automatic input power calculation/setting unit 1o, and the unit 1O performs so-called feedback control. will be done. Further, the manual/automatic changeover switch 11 is for appropriately switching from the above-described automatic input power setting mode to the manual input power setting mode, and when this switch 11 is switched to the manual setting mode, As in the conventional case, the input power can be set using the manual operation section 9.

実  施  例 温度加速度を用いて電極投入電力の自動制御を行なった
実績の一例を次に示す。なお装置構成としては第1図に
示すものを用いた。また投入電力演算・設定ユニットl
Oにおいては、予め第3図に示すような温度加速度−投
入電力設定値変化量の関係式を設定しておき、熱電対3
による耐火物内部の検出温度を2次時間微分して得られ
た温度加速度値から第3図の関係式にしたがって投入電
力設定値変化量を求めて、その値から最適投入電力を決
定した。
Example An example of automatic control of electrode input power using temperature acceleration is shown below. The device configuration shown in FIG. 1 was used. In addition, input power calculation/setting unit
In case of O, the relational expression of temperature acceleration-input power setting value change as shown in Fig. 3 is set in advance, and the thermocouple 3
Based on the temperature acceleration value obtained by second-order time differentiation of the detected temperature inside the refractory, the amount of change in the input power set value was determined according to the relational expression shown in FIG. 3, and the optimum input power was determined from that value.

このようKして投入電力自動制御により脱ガス操業を行
なった場合の内壁表面温度および投入電力量の推移を、
従来法にしたがって一定電力(700kW)投入で操業
した場合と比較して第4図に示す。
The changes in the inner wall surface temperature and the amount of input power when degassing operation is performed by automatically controlling the input power in this way are as follows:
Fig. 4 shows a comparison with the case of operation with constant power input (700 kW) according to the conventional method.

第4図から明らかなように、温度加速度を制御パラメー
タとして自動投入電力制御を行ったこの発明の方法の場
合、脱ガス操業パターンによる檜 −内状況変化、すな
わち地金溶解期間を含む加熱待機期間、脱ガス処理期間
による槽内状況変化に対応して効率良く電力が投入され
、その結果、全投入電力量が従来法による一定電力投入
の場合と比較し格段に低減され、約16%の電力消費低
減が達成された。また耐火物表面の平均温度も従来法と
比較して約40℃低減されておシ、またその変動幅も小
さくなりていることが明らかである。
As is clear from FIG. 4, in the case of the method of the present invention in which automatic power supply control is performed using temperature acceleration as a control parameter, the situation inside the cypress due to the degassing operation pattern changes, that is, the heating standby period including the metal melting period. , electric power is efficiently input in response to changes in the situation inside the tank during the degassing treatment period, and as a result, the total amount of input power is significantly reduced compared to the case of constant power input using the conventional method, and the power consumption is reduced by approximately 16%. Consumption reduction was achieved. It is also clear that the average temperature on the surface of the refractory has been reduced by about 40°C compared to the conventional method, and the range of its fluctuation has also become smaller.

発明の効果 以上の説明で明らかなようKこの発明の方法によれば、
脱ガス槽の加熱用黒鉛電極に供給する電力量を設定・制
御するにあたって、オペレータによる判断、操作が不要
となるため、省力化が図られると同時に、自動的に槽内
状況の変化に応じて最適の電力が投入されることから、
オペレータ操作時の如く安全サイドに見積って極端に過
剰な電力が投入されることがなり、シたがりて電力費の
大幅な削減が可能となる。またこのように過剰な電力の
投入が避けられるところから、槽内壁を構成する耐火物
表面温度が過剰に高温となることが防止され、しかも耐
火物表面温度の変動幅も小さくなシ、その結果耐火物寿
命の大幅な延長が可能となる。さらに、脱ガス処理中に
槽内壁や電極棒表面に地金付着が生じても、迅速に対応
して地金を溶解していくため、地金落下等による電極折
損や、溶鋼スプラッシユの付着に起因する電極棒の亀裂
発生、劣化が防止され、電極棒の寿命も延長される。
Effects of the Invention As is clear from the above explanation, according to the method of this invention,
Setting and controlling the amount of electricity supplied to the heating graphite electrode in the degassing tank eliminates the need for operator judgment and operation, which saves labor and automatically adjusts the amount of power supplied to the heating graphite electrode in the degassing tank according to changes in the tank conditions. Since the optimum power is input,
As in the case of operator operation, an extremely excessive amount of electric power is estimated to be on the safe side, and therefore it is possible to significantly reduce electric power costs. In addition, since excessive power input is avoided in this way, the surface temperature of the refractories that make up the inner wall of the tank is prevented from becoming excessively high, and the fluctuation range of the refractory surface temperature is also small. It is possible to significantly extend the life of refractories. Furthermore, even if metal adheres to the inner wall of the tank or the surface of the electrode during degassing, the metal is quickly melted, preventing electrode breakage due to falling metal or adhesion of molten steel splash. This prevents cracking and deterioration of the electrode rod, and extends the life of the electrode rod.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の制御方法を実施するための装置の一
例を概略的に示すブロック図、第2図(4)〜(鴎は脱
ガス槽の操業時における脱ガス槽の内壁表面温度等の推
移を試算した結果を示す線図であシ、その(4)は槽内
壁表面温度の推移、(B)は槽内壁耐火物中に埋設した
温度検出器による検出温度の推移、(C)は検出温度の
1次時間微分値(!変速度)の推移、(D)は検出温度
の2次時間微分値(温度加速度)の推移をそれぞれ示す
。第3図は実施例における温度加速度と投入電力設定変
化量との関係を示すグラフ、第4図は実施例における脱
ガス槽内壁表面温度および投入電力量の推移を従来法と
比較して示す線図である。第5図は従来法を実施するた
めの装置の一例を示すブロック図である。 l・・・脱ガス槽、2・・・耐火物、3・・・熱電対(
温度検出器)、5・・・サイリスタ整流器などの電力制
御器、6.6’・・・黒鉛電極、10・・・自動投入電
力演算・設定ユニット。
FIG. 1 is a block diagram schematically showing an example of an apparatus for carrying out the control method of the present invention, and FIG. This is a diagram showing the results of trial calculations of the changes in the temperature, (4) shows the changes in the surface temperature of the tank inner wall, (B) shows the changes in the temperature detected by the temperature detector embedded in the refractory inside the tank, and (C) (D) shows the change in the first time differential value (!variable speed) of the detected temperature, and (D) shows the change in the second time differential value (temperature acceleration) of the detected temperature. Figure 3 shows the temperature acceleration and input in the example. FIG. 4 is a graph showing the relationship with the amount of change in power setting, and FIG. 4 is a diagram showing the transition of the degassing tank inner wall surface temperature and input power amount in the example in comparison with the conventional method. FIG. It is a block diagram showing an example of a device for carrying out the operation. 1... Degassing tank, 2... Refractory material, 3... Thermocouple (
temperature detector), 5... Power controller such as thyristor rectifier, 6.6'... Graphite electrode, 10... Automatic input power calculation/setting unit.

Claims (1)

【特許請求の範囲】 真空脱ガス槽内に黒鉛電極を挿入してその黒鉛電極を通
電発熱させ、脱ガス槽内を加熱するにあたり、 脱ガス槽の内壁面を構成する耐火物中に温度検出器を埋
設してその耐火物の内部温度を連続検出し、その検出温
度の2次時間微分値を逐次算出して、その2次時間微分
値に応じて黒鉛電極に通電する電力量を制御することを
特徴とする真空脱ガス槽の電極加熱電力制御方法。
[Claims] When a graphite electrode is inserted into a vacuum degassing tank and the graphite electrode is energized to generate heat to heat the inside of the degassing tank, temperature is detected in the refractory material that forms the inner wall surface of the degassing tank. The internal temperature of the refractory is continuously detected by burying the refractory, the second-order time differential value of the detected temperature is calculated one after another, and the amount of electricity supplied to the graphite electrode is controlled according to the second-order time differential value. A method for controlling electrode heating power for a vacuum degassing tank, characterized in that:
JP24995784A 1984-11-27 1984-11-27 Method for controlling electrode heating electric power of vacuum degassing tank Pending JPS61127810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24995784A JPS61127810A (en) 1984-11-27 1984-11-27 Method for controlling electrode heating electric power of vacuum degassing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24995784A JPS61127810A (en) 1984-11-27 1984-11-27 Method for controlling electrode heating electric power of vacuum degassing tank

Publications (1)

Publication Number Publication Date
JPS61127810A true JPS61127810A (en) 1986-06-16

Family

ID=17200697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24995784A Pending JPS61127810A (en) 1984-11-27 1984-11-27 Method for controlling electrode heating electric power of vacuum degassing tank

Country Status (1)

Country Link
JP (1) JPS61127810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149917A (en) * 1990-05-10 1992-09-22 Sumitomo Electric Industries, Ltd. Wire conductor for harness
KR101060810B1 (en) 2004-03-24 2011-08-30 주식회사 포스코 Roller Entry Guide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149917A (en) * 1990-05-10 1992-09-22 Sumitomo Electric Industries, Ltd. Wire conductor for harness
KR101060810B1 (en) 2004-03-24 2011-08-30 주식회사 포스코 Roller Entry Guide

Similar Documents

Publication Publication Date Title
JP3231601B2 (en) Electric furnace temperature control method and apparatus
US5539768A (en) Electric arc furnace electrode consumption analyzer
US4131754A (en) Automatic melt rate control system for consumable electrode remelting
JPS61127810A (en) Method for controlling electrode heating electric power of vacuum degassing tank
JPH06624A (en) Method and apparatus for automatic control plasma melting and casting
JP3645306B2 (en) Electric furnace equipment
JP2008196722A (en) Melting completion determining method for arc furnace
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JP4007771B2 (en) Molten state control device in plasma melting furnace
JP3737180B2 (en) Temperature control method for casting mold
JP2001289427A (en) Plasma heating type melting furnace, and its operation method
JPH11216557A (en) Mold temperature control method for casting metal mold
JPH10237531A (en) Method and instrument for detecting furnace hearth level of dc arc furnace
RU2278176C1 (en) Method for controlling of vacuum arc-melting process
JP2001219250A (en) Device and method for controlling temperature of molten steel in tundish, and computer-readable storage medium
JPS5914293A (en) Temperature controller for induction heating vacuum melting furnace
JPH08185972A (en) Plasma heating method of fused metal and device therefor
SU1136002A1 (en) Method of controlling furnace for remelting consumable electrodes at beginning of heat
JPH11173531A (en) Method for detecting thickness of slag in electric ash melting furnace
JPH08165510A (en) Level detector for molten steel in dc arc furnace
JP2000213728A (en) Temperature rise controller and control method for electric resistance type ash melting furnace
JP2652656B2 (en) Electromagnetic water heater
JPS6249110A (en) Controling method for waste material melting and processing furnace
JPH04284955A (en) Method and device for plasma-heating molten steel in tundish
JPH09133468A (en) Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal