JP3645306B2 - Electric furnace equipment - Google Patents

Electric furnace equipment Download PDF

Info

Publication number
JP3645306B2
JP3645306B2 JP07673995A JP7673995A JP3645306B2 JP 3645306 B2 JP3645306 B2 JP 3645306B2 JP 07673995 A JP07673995 A JP 07673995A JP 7673995 A JP7673995 A JP 7673995A JP 3645306 B2 JP3645306 B2 JP 3645306B2
Authority
JP
Japan
Prior art keywords
period
temperature
electric furnace
melting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07673995A
Other languages
Japanese (ja)
Other versions
JPH08273826A (en
Inventor
浩之 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP07673995A priority Critical patent/JP3645306B2/en
Publication of JPH08273826A publication Critical patent/JPH08273826A/en
Application granted granted Critical
Publication of JP3645306B2 publication Critical patent/JP3645306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、スクラップ、各種合金、鉱石などの金属材料や、各種造滓材、コークスなどの材料からなる原料を装入して溶解または熔融する電気炉に送電すべき電力量について、原料の種類に応じて最適な目標値を予め決定するための電気炉設備に関する。
【0002】
【従来の技術】
種々の金属材料や金属類や鉱石などの溶解、溶融、精錬または製錬工程、特にステンレス鋼等を含む特殊鋼や高合金鉄などを溶製する製鉄や製鋼工程においては、様々な金属溶解炉や金属溶解・溶融炉や金属製錬炉などが用いられる。このうちの電気炉では、主に屑鉄ヤフェロアロイや鉱石など種々の金属分を含有する主原料と、主に精錬やスラグ塩基度調整用としての造滓材や加炭材や還元材などを含む副原料などからなる原料の溶解または溶融、さらに精錬などに用いられる。現在、使用されている電気炉は、その多くが次第に大型化され、大容量を有し、交流電源または直流電源を用いるアーク加熱式電気炉である。このような電気炉内に、種々の事情や実情に合わせて溶銑や溶鋼などの液状主原料を固体主副原料と抱き合わせて装入することもあるけれども、通常、前述のように、種々の主副原料が配合された固体原料を装入する。電気炉に備えられている電極に通電するとアーク放電が始まり、このアーク放電により発生した熱によってかかる固体原料が溶解または溶融されて種々の金属や合金などの溶湯、溶銑または溶鋼など、すなわち広義の金属溶湯とスラグとが溶解または熔融されて溶製される。そして、溶解または溶融された金属溶湯とスラグとは、適宜精錬され、電気炉本体から次工程へ向けて出湯かつ出滓される。
【0003】
このようにして用いられる電気炉は、通常、前述のような固体の主副原料の装入から、溶製された金属溶湯とスラグとの出湯および出滓に至るまでの過程を、1つのバッチとして、次々とバッチ処理を繰り返して、連続的に操業される。このような操業形態を採る電気炉においては、近年、特に高能率・高生産性や経済性を重視して、大型化や大容量化が図られている。1回のバッチ処理で極力多量の金属溶湯を出湯可能にしようとしても、固体原料は一般にかさばるので、1回のみでは1バッチ分の処理に必要な全ての原料を電気炉内に装入することができない場合が多い。このような場合は、原料の大半を通電開始前に初期装入し、これがある程度加熱によって溶解または溶融して、そのかさが減少した時点で、残りの必要量の原料を通常1回、あるいは2〜3回程度に分けて追加装入して加熱し、溶解または溶融させる。
【0004】
現在広く使用されている電気炉には、三相交流を用いるエルー式三相アーク炉などがある。エルー式アーク炉は、炉蓋を通して炉上部から炉内に装入された電極と、炉内に装入されている屑鉄などのスクラップを含む主原料や、石灰などの精錬用や造滓用のスラグ形成に用いる副原料などを含む装入物との間を若干離した状態で、電極に通電する際に発生するアークによる熱によって装入物を溶解・精錬する。金属の溶解速度など電気炉操業の制御は、電極に供給される電力によって行われており、1回のバッチ式操業において電極に供給すべき最適目標総送電量は、最終的に出銑される金属溶湯の予定重量に、たとえば経験的に求められる一定の係数を乗算して演算され決定される。
【0005】
【発明が解決しようとする課題】
前述のような最適目標総送電量の演算方法では、最適目標総送電量は金属溶湯の予定出銑量だけを基準に決定されており、装入物の変動、たとえば主原料および副原料の種類あるいは装入量の変化などによる装入物の総重量および配合の変化などには無関係に決定されている。しかしながら、多量に繰り返して装入する原料を、毎回同一条件で準備することは極めて困難である。たとえば、スクラップは性状や成分が変動し易く、鉱石は産地によって品位に差が生じる。
【0006】
装入原料が比較的溶解または溶融しやすい種類や配合であったり、既に溶解または熔融している液状の主原料を含むような場合には、前述のような最適目標送電量を基準として制御すると、供給される電力量が過剰となり、装入物が全て溶解してもなお電極への送電が続けられる。このため、必要以上の電力および時間が消費され、電力ロスを生じる。また炉内温度が必要以上に上昇し、さらに電極から発生するアークが直接炉壁を覆う耐火物などに熱負荷を与えるため、耐火物層など電気炉設備の負荷が増加し、損耗が速く進む。
【0007】
逆に、装入原料が比較的溶解または溶融しにくい種類や配合であったり、装入原料の総重量が通常よりも多い場合には、前述の最適目標総送電量で制御すると、供給される電力量は不足し、装入原料を充分に溶解することができず、溶け残りを生じる。これによって、目標とする出銑量を確保することができなかったり、精錬不足で石灰や硫黄等の副原料が金属溶湯中に残存したりする。また、出銑しる金属溶湯の成分にバラツキが生じて、目標成分の範囲から外れ、製品の品質が低下する。さらに、再び電力を供給して溶け残った装入原料を溶解あるいは溶融する必要があり、一旦炉蓋を開けてから再加熱するような場合は、熱ロスや時間ロスを生じ、能率や生産性が低下する。さらに原料を配合する工程以後の脱ガス工程あるいは鋳造工程などと電気炉による溶解・精錬工程を組合わせた一連の生産ラインの操業予定を混乱させ、あるいは停滞させることになる。
【0008】
本発明の目的は、1回の操業において電気炉に供給される最適目標総送電量を過不足なく決定することができ、耐火物の異常損耗や送電量の過不足を生じることのない電気炉設備を提供することである。
【0009】
【課題を解決するための手段】
本発明は、複数種類の原料を装入し、電極の高さを電流が一定になるように調整しながら溶解させる電気炉設備において、
原料の各種類毎に、重量と
電気炉の運転パターンであって少なくとも原料の装入期から、順次、電極への通電を開始する点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターンに対する係数であって溶解しにくい原料ほど大きくなり、装入物の温度の高いときには小さく、前記温度の低いときには大きくなる係数との積を演算し、
演算結果の総和を最適目標総送電量として算出する演算手段と、
電気炉に供給される電力量を計測する計測手段と、
計測手段からの出力に応答して、演算手段が算出する最適目標総送電量に計測値が到達したら操業を停止する制御手段と
電極に供給される電圧を検出し、前記装入期から、点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターンから外れるときの電圧であって電極に供給される電圧が低下するとき増加させ、前記電圧が高くなるとき低下させる補正量によって、前記演算手段が算出する最適目標総送電量を補正する補正手段と、
電気炉からの出銑温度を検出する検出手段と、
検出手段からの出力に応答し、出銑温度を予め定める基準温度と比較し、出銑温度と基準温度との偏差が小さくなるように出銑温度が基準温度より高いとき次回の操業において前記補正手段の補正量を減少させ、逆に出銑温度が基準温度より低いときは次回の操業において前記補正手段の補正量を増加させる調整手段を含むことを特徴とする電気炉設備である。
また本発明は、前記演算手段は、ステンレス鋼あるいは高合金鉄を溶製するための諸原料の種類と、原料の装入回数と、出銑量と、出銑される溶鋼の組成と、出銑温度とに応じて、過去の操業実績データから、または溶解試験を行って前記係数を予め設定することを特徴とする。
【0013】
【作用】
発明に従えば、複数種類の原料を装入し、電極の高さを電流が一定になるように調整しながら溶解させる電気炉設備内に、原料の重量と電気炉の運転パターンであって少なくとも原料の装入期から、順次、電極への通電を開始する点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターン対する係数であって溶解しにくい原料ほど大きくなり、装入物の温度の高いときには小さく、前記温度の低いときには大きくなる係数との積を各種類毎に演算し、演算結果の総和として最適目標総送電量を算出する演算手段と、電気炉に供給される電力量を計測する計測手段と、計測手段からの出力に応答して、計測値が演算手段が算出する最適目標総送電量に到達したら操業を停止する制御手段と、電極に供給される電圧を検出し、前記装入期から、点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターンから外れるときの電圧であって電極に供給される電圧が低下するとき増加させ、前記電圧が高くなるとき低下させる補正量によって、前記演算手段が算出する最適目標総送電量を補正する補正手段と、電気炉からの出銑温度を検出する検出手段と、検出手段からの出力に応答し、出銑温度を予め定める基準温度と比較し、出銑温度と基準温度との偏差が小さくなるように出銑温度が基準温度より高いとき次回の操業において前記補正手段の補正量を減少させ、逆に出銑温度が基準温度より低いときは次回の操業において前記補正手段の補正量を増加させる調整手段とを備えるので、原料の溶け残しあるいは電力の供給過剰などを有効に防止することができる。しかも原料の溶け残し、あるいは電力の供給過剰などの不都合の発生をさらに減少させることができる。
【0015】
また好ましくは、前記演算手段は、ステンレス鋼あるいは高合金鉄などを溶製するための諸原料の種類と、原料の装入回数と、出銑量と、出銑される溶鋼の組成と、出銑温度とに応じて、過去の実績データから、または溶解試験を行って前記係数を予め設定するので、ステンレス鋼あるいは高合金鉄などの製品としての成分割合などの品質を一定に保ち、また各合金に適した係数を決定することができる。
【0016】
【実施例】
図1は、本発明の一実施例の電気炉設備の簡略化した電気炉構成を示すブロック図である。図2は、図1の電気炉の簡略化した正面断面図である。図3は、図1の電気炉の操業過程を示す工程図である。図4は、金属溶湯の出銑温度と目標温度との差と、供給電力量の補正量との関係を示すグラフである。図5は、電気炉に供給される電力の時間変化を示すグラフである。図6は、図1の実施例の最適目標総送電量演算動作を示すフローチャートである。図7は、装入物温度と係数ciとの関係を示すグラフである。図8は、本発明の他の実施例の最適目標総送電量演算動作を示すフローチャートである。
【0017】
図1および図2に示すように、電気炉設備は主として電気炉1、電圧調整手段8、電圧測定手段10、電流測定手段11、計測手段12、演算手段13、補正手段14、調整手段16、検出手段17および制御手段15を含んで構成される。
【0018】
電気炉1は、一般に、電極4が昇降手段5によって昇降自由に取付けられた炉蓋2と、作業口および除滓口が設けられる炉壁3a、および底吹ノズル3cが取付けられる炉床3bなどの構成を有する炉本体3とを含む。また、電気炉1内には、各種原料が溶解または溶融して、金属溶湯6およびスラグ7が貯留される。炉本体3内表面は、高温の金属溶湯6およびスラグ7に接するので、耐火物層が設けられている。
【0019】
電圧調整手段8で電圧を調整された電流は、ケーブル9を介して電極4に供給される。ケーブル9には、電圧測定手段10および電流測定手段11が取付けられており、電極4に供給される電流および電圧の値を計測している。電流測定手段11からの信号は、昇降手段5および計測手段12に入力される。また、電圧測定手段10からの信号は、計測測定手段12および補正手段14に入力される。
【0020】
計測手段12は、電圧測定手段10および電流測定手段11から入力された前記電流および電圧の値から、電極に供給された電力量を計測し、制御手段15に入力する。演算手段13は、メモリ13aを備えている。演算手段13は、後述するように操業前に予め電極に供給する予定最適目標総送電量および電力供給パターンを演算し、制御手段15に入力する。補正手段14は、電圧調整手段10からの信号あるいは調整手段16からの信号に応じて最適目標総送電量の補正値を計算し、制御手段15に入力する。調整手段16には、測温プローブなどで実現される検出手段17で検出された金属溶湯6の出銑温度が入力される。調整手段16では、前記出銑温度と予め定められている目標温度との差が小さくなるように補正手段14で計算される補正量を調整する。制御手段15は、計測手段12、演算手段13および補正手段14からの信号に基づき、電圧調整手段8を調整し、また、昇降手段5に電流設定値を入力する。
【0021】
図1の電気炉1における溶解・精錬工程を図3に示す。装入期s1では、電気炉1の電極4および炉蓋2をそれぞれ上昇・旋回させて、炉本体の上方の空間を何もない状態に開放し、一般にクレーンまたは台車で運搬されるバケットなどで実現される装入手段18によって炉内に装入物19を装入する。装入物19は、主に固体の主副原料であり、かさばるため、1回分のバッチ式操業に必要な装入物19の全量が初期装入1回だけでは炉内に装入しきれない場合がある。このような場合は、追加装入を1回または2〜3回に分けて行うことで、1回の装入当たりの装入物19の量を減少させ、装入物19をある程度溶解させてかさを減少させてから残りの装入物19を装入する。
【0022】
点弧期s2では炉蓋2をかぶせて電極4への通電を開始し、装入物19との間にアークを発生させる。ボーリング期s3から湯溜形成期s4にかけて電極4を徐々に下降させ、電極4と装入物19との間に流れる電流を一定に保ち、電極4周囲の装入物19を溶解させ電気炉1に下部金属溶湯6の湯溜を形成する。主溶解期s5では、電極を上下させて電流を一定に保ちつつ、電気炉1内の装入物19を溶解する。電極に通電している間、電圧測定手段10および電流測定手段11によって電極4に供給される電流値および電圧値を検出し、計測手段12で供給した電力量を計測している。また、主溶解期s5では、電圧測定手段10で測定した電圧値を検出し、補正手段によって予め定める運転パターンから外れる電圧の変動を用いて最適目標総送電量を補正する場合もある。装入物19の追加装入を行う場合は、装入物19のたとえば約8割が溶解した時点で装入期s1に戻り、装入物19の装入を行う。また、追加装入を行う場合は、既に炉内に金属溶湯6が存在するので、湯溜形成期s4を設ける必要はない。
【0023】
溶解末期s6では、炉内の装入物19など固体は、炉壁近辺に少量残るだけとなるため、炉壁へのアークの熱負荷が増大する可能性がある。これを防ぐために、溶解末期s6では、主溶解期s5より電圧を若干低下させ、供給電力量を減少させる。装入物19が全て溶解した溶落s7を経て、昇熱期s8で炉内に酸素や追加装入する副原料などを供給して、金属溶湯6に含まれる不純物を除去する。昇熱期s8で供給した酸素などと金属溶湯6とが充分に反応した後、計測手段12で計測した電力量が予め定める最適目標総送電量に達したら、電極4への通電を停止して、取鍋などに対して出銑s9を行う。出銑後、電気炉1への点検および炉修が行われて1回のバッチ式操業が終了する。
【0024】
出銑された金属溶湯6は、取鍋の表層からスラグなどを除く除滓s11が行われた後、検出手段17によって金属溶湯6の出銑温度の測定が行われる。図4に示すように、出銑温度が予め定められた目標温度より高いとき、調整手段16によって次回の操業において前記補正手段14の補正量を減少させ、逆に低いときには補正量を増加させるようにしてもよい。金属溶湯6は、その後脱ガス工程あるいは鋳造工程など次工程を行う設備に輸送される。
【0025】
図5は、図1の実施例を用いて電気炉1に供給される電力供給パターンを示す。図5(1)は、基本的な電力供給パターンである。時刻t0から原料の初期装入を開始する。時刻t1で初期装入を終了し、電極4へ通電して送電を開始する。この後、時刻t1,t2,t3,t4において印加される電圧を段階的に上昇させる。時刻t1からt2までの点弧期s2、時刻t2から時刻t3までのボーリング期s3、時刻t3から時刻t4までの湯溜形成期s4、時刻t4から時刻t5までの主溶解期s5の各期では、電極4に供給される電圧は一定に保たれる。供給された電力量が最適目標総送電量に達する時刻t5で、電極への送電を停止して出銑を行う。
【0026】
図5(2)および図5(3)は、電力供給パターンの他の例である。時刻t1〜t4までは、図5(1)で示す電力供給パターンと同様の挙動を示す。時刻t4から時刻t5までの主溶解期s5では、時刻t6から時刻t7までの間に一時的に電圧を低下、または送電を停止させる。このとき、電圧測定手段10からの信号に応じて、最適目標総送電量を補正手段14によって補正してもよい。その後、時刻t7から送電を再開し、補正された最適目標総送電量に達しする時刻t8で電極への送電を停止して出銑を行う。このように、電極への送電を制御することによって、炉内温度などを調整することができる。また、出銑時刻t8を任意の時刻とすることができるので、電気炉によって行う溶解・精錬工程の前後の工程との時間調整を行うこともできる。
【0027】
図1の実施例の最適目標総送電量演算動作を図6に示す。ステップn1で電気炉1に装入される主副原料を構成する、たとえば屑鉄などのスクラップや石灰などの個別原料の種類および各個別原料の重量Mi(i=1〜n)など、装入物の配合を読込む。ステップn2では、前述の各個別原料に固有の係数ci(i=1〜n)をメモリから読込む。前記係数ciは、たとえばステンレス鋼または高合金鉄などを溶製するための個別原料の種類、原料の装入回数、金属溶湯の出銑量と組成、および金属溶湯の出銑温度などに応じて、過去の操業実績データから、または溶解試験などを行って予め決定し、メモリにストアしておく。前記係数ciは、溶解しにくい個別原料に付されたものほど大きくなり、逆に溶融メタルなど固体装入物の溶解を助けるものに付されるものは負の値を取る場合もある。また、この係数ciは図7に示すように、装入物の温度に依存し、装入物の温度の高いときには小さく、また前記温度の低いときには大きくするようにしてもよい。
【0028】
ステップn3では、前記各個別原料の重量Miおよび前記係数ciを用い、次式から1回のバッチ式操業当り、すなわち1チャージ分の最適目標総送電量Wを決定する。重量Miの単位をTonとすると、係数ciは電力原単位として算出される。
【0029】
【数1】

Figure 0003645306
【0030】
これによって、各個別原料毎に異なる溶解し易さの度合、また各個別原料の量の増減に応じた最適目標総送電量を決定することができる。ステップn4では、前記最適目標総送電量Wを初期装入後の初装期間、追加装入期間など、電気炉操業の各期間に装入される装入物の重量などに応じ、また、溶解末期および昇熱期などに必要な電力量を計算して分配し、各期間別の予定電力量wを決定する。ステップn5では、ステップn4で計算した前記各期間毎の最適目標総送電量Wを、点弧期、ボーリング期などの前記期間内の各期毎に必要な電力量に分割する。ステップn6では、前記各期毎に必要とされる電圧に応じて供給される電力および通電する時間を計算し、決定する。ステップn7では、ステップn6で決定された電力および時間から1回の操業に関する電力投入スケジュールを決定する。これによって、装入物の配合に対応して最適な最適目標総送電量を決定することができる。
【0031】
また図8は、本発明の電力の演算動作の他の実施例である。図8は図7のフローチヤートと類似のものであり、同一のステップには同一の符号を付け、説明は省略する。ステップn1aでは、固体の原料およびスラグなど固体装入物の総重量Msを読込む。あるいは、個別装入物のうち、固体であるもの重量Miの総和を計算して総重量Msを求めてもよい。ステップn2aでは、予め決定されメモリにストアされている一定の係数Cを読込む。ステップn3では、前記固体装入物の総重量Msと係数Cとを用い、次式から1チャージ当りの最適目標総送電量Wを計算する。
【0032】
W = Ms ・ C …(2)
ステップn4からステップn7までは、図7と同様に進む。これによって、総重量に対して最適な最適目標総送電量を決定できる。
【0033】
前述の他の実施例を用い、前記係数Cを450〜490(kWH/Ton・固体原料)として最適目標総送電量を決定し、操業を行ったところ、金属溶湯の予定出銑量に係数を乗算する従来技術を用いて操業を行った場合と比較して、金属溶湯の出銑温度が約20℃低下し、出銑された金属溶湯当りの電力源単位は、約25(kWH/Ton・メタル)だけ低減することが確認された。また、炉修材の使用量も低減された。原料の溶け残りなどのトラブル回数の増加も見られなかった。
【0035】
【発明の効果】
発明によれば、複数種類の原料を装入し、電極の高さを電流が一定になるように調整しながら溶解させる電気炉設備内に、原料の重量と電気炉の運転パターンであって少なくとも原料の装入期から、順次、電極への通電を開始する点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターン対する係数であって溶解しにくい原料ほど大きくなり、装入物の温度の高いときには小さく、前記温度の低いときには大きくなる係数との積を各種類毎に演算し、演算結果の総和として最適目標総送電量を算出する演算手段と、電気炉に供給される電力量を計測する計測手段と、計測手段からの出力に応答して、計測値が演算手段が算出する最適目標総送電量に到達したら操業を停止する制御手段とを備える。好ましくは、前記電気炉設備内に電極に供給される電圧を検出し、前記運転パターンから外れる電圧であって電極に供給される電圧が低下するとき増加させ、前記電圧が高くなるとき低下させる補正量によって、前記演算手段が算出する最適目標総送電量を補正する補正手段または電気炉からの出銑温度を検出する検出手段と、検出手段からの出力に応答し、出銑温度を予め定める基準温度と比較し、出銑温度と基準温度との偏差が小さくなるように出銑温度が基準温度より高いとき次回の操業において前記補正手段の補正量を減少させ、逆に出銑温度が基準温度より低いときは次回の操業において前記補正手段の補正量を増加させる調整手段とを含む。また、前記演算手段は、ステンレス鋼あるいは高合金鉄を溶製するための諸原料の種類と、原料の装入回数と、出銑量と、出銑される溶鋼の組成と、出銑温度とに応じて、過去の操業実績データから、または溶解試験を行って前記係数を予め設定する。これらによって、原料の溶け残しあるいは電力の供給過剰など、電力消費の低減と電気炉操業に関する不都合の発生防止とを図ることができるので、省エネルギとともに操業工程の停滞などを低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の電気炉設備の簡略化した電気的構成を示すブロック図である。
【図2】図1の電気炉の簡略化した正面断面図である。
【図3】図1の電気炉の操業過程を示す工程図である。
【図4】金属溶湯の出銑温度と目標温度との差と、供給電力量の補正量との関係を示すグラフである。
【図5】電気炉に供給される電力の時間変化を示すグラフである。
【図6】図1の実施例の最適目標総送電量演算動作を示すフローチャートである。
【図7】装入原料の温度と、係数ciとの関係を示すグラフである。
【図8】本発明の他の実施例の最適目標総送電量演算動作を示すフローチャートである。
【符号の説明】
1 電気炉
2 炉蓋
3 炉本体
4 電極
5 昇降手段
6 金属溶湯
7 スラグ
8 電圧調整手段
9 ケーブル
10 電圧測定手段
11 電流測定手段
12 計測手段
13 演算手段
14 補正手段
15 制御手段
16 調整手段
17 検出手段
18 装入手段
19 装入物[0001]
[Industrial application fields]
The present invention relates to the amount of power to be transmitted to an electric furnace in which raw materials made of metal materials such as scrap, various alloys and ores, various ironmaking materials and coke are charged and melted or melted. about electric furnaces for predetermining the optimum target value in accordance with.
[0002]
[Prior art]
Various metal melting furnaces are used for melting, melting, refining or smelting various metal materials, metals and ores, especially in steelmaking and steelmaking processes where special steel and high alloy iron including stainless steel are melted. And metal melting / melting furnaces and metal smelting furnaces are used. Of these, the electric furnace mainly contains main raw materials containing various metals such as scrap iron YAFERO alloy and ore, and mainly ironmaking, carburizing and reducing materials for refining and slag basicity adjustment. Used for melting or melting raw materials composed of auxiliary raw materials, etc., and for refining. Currently, many of the electric furnaces used are arc-heating electric furnaces that are gradually increased in size, have a large capacity, and use an AC power source or a DC power source. In such an electric furnace, a liquid main raw material such as hot metal or molten steel may be charged in combination with a solid main auxiliary material according to various circumstances and circumstances. A solid material mixed with auxiliary materials is charged. When an electrode provided in the electric furnace is energized, an arc discharge starts, and the solid raw material is melted or melted by the heat generated by the arc discharge, so that molten metals such as various metals and alloys, hot metal or molten steel, etc. The molten metal and slag are melted or melted to be melted. Then, the molten or melted molten metal and slag are appropriately refined and discharged and discharged from the electric furnace main body for the next process.
[0003]
The electric furnace used in this way usually has a single batch of processes from the charging of the solid main auxiliary material as described above to the discharge and discharge of molten metal and slag. As described above, the batch processing is repeated one after another and the operation is continuously performed. In recent years, electric furnaces adopting such an operation form have been increased in size and capacity with an emphasis on high efficiency, high productivity, and economic efficiency. Even if it is possible to discharge a large amount of molten metal as much as possible in one batch process, the solid raw materials are generally bulky, so that all the raw materials required for one batch of processing should be charged into the electric furnace only once. There are many cases where this is not possible. In such a case, most of the raw materials are initially charged before the start of energization, and when this is dissolved or melted to some extent by heating and the bulk is reduced, the remaining necessary amount of raw materials is usually once or twice. Separately add about 3 times, heat and melt or melt.
[0004]
An electric furnace that is widely used at present is an ERU type three-phase arc furnace using a three-phase alternating current. The Eruc type arc furnace is used for the main raw materials including scraps such as scrap iron and the like, and smelting and slagging for lime, etc. The charge is melted and refined by the heat generated by the arc generated when the electrode is energized in a state of being slightly separated from the charge including the auxiliary material used for slag formation. The electric furnace operation such as the melting rate of the metal is controlled by the electric power supplied to the electrode, and the optimum target total transmission amount to be supplied to the electrode in one batch operation is finally output. It is calculated and determined by multiplying the predetermined weight of the molten metal by, for example, a certain coefficient determined empirically.
[0005]
[Problems to be solved by the invention]
In the calculation method of the optimum target total power transmission amount as described above, the optimum target total power transmission amount is determined based only on the expected amount of molten metal, and the fluctuation of the charge, for example, the type of main raw material and auxiliary raw material Alternatively, it is determined regardless of the total weight of the charged material and the change in the composition due to the change in the charged amount. However, it is extremely difficult to prepare raw materials that are repeatedly charged in large quantities under the same conditions each time. For example, the properties and components of scrap are likely to vary, and the quality of ore varies depending on the production area.
[0006]
If the charging raw material is of a type or composition that is relatively easy to dissolve or melt, or if it contains a liquid main raw material that has already been dissolved or melted, control it based on the optimal target power transmission amount as described above. Even if the amount of power supplied becomes excessive and all of the charge is dissolved, power transmission to the electrode is still continued. This consumes more power and time than necessary, causing power loss. In addition, the furnace temperature rises more than necessary, and the arc generated from the electrode directly applies heat load to the refractory that covers the furnace wall, increasing the load on the electric furnace equipment such as the refractory layer, leading to faster wear. .
[0007]
On the other hand, when the charged raw material is of a kind or composition that is relatively difficult to dissolve or melt, or when the total weight of the charged raw material is larger than usual, it is supplied by controlling with the above-mentioned optimum target total power transmission amount. The amount of electric power is insufficient, and the charged raw material cannot be sufficiently dissolved, resulting in undissolved residue. As a result, the target amount of brewing cannot be secured, or auxiliary materials such as lime and sulfur remain in the molten metal due to insufficient refining. In addition, the components of the molten metal that come out vary, deviating from the target component range, and the quality of the product decreases. In addition, it is necessary to supply power again to melt or melt the remaining raw material. If the furnace lid is opened once and then reheated, heat loss and time loss occur, resulting in efficiency and productivity. Decreases. Furthermore, the operation schedule of a series of production lines that combine the degassing process or casting process after the raw material mixing process and the melting and refining process using an electric furnace is disrupted or stagnated.
[0008]
An object of the present invention, once the optimum target total power amount supplied to the electric furnace can be determined without excess or deficiency in the operation, the refractory of the abnormal wear and transmission of it to such electroforming resulting excess or deficiency It is to provide a furnace.
[0009]
[Means for Solving the Problems]
The present invention, in an electric furnace equipment charged with a plurality of types of raw materials, and melted while adjusting the height of the electrode so that the current is constant,
For each type of raw material ,
The operation pattern of the electric furnace, starting from the charging period of the raw materials, and starting the energization of the electrodes in sequence, starting period, boring period, puddle formation period, main melting period, end of melting period, falling, and heating period It is a coefficient for the operation pattern including the melting and refining processes leading to tapping, and it is calculated as the product of the coefficient that increases as the raw material that is difficult to dissolve, decreases when the temperature of the charge is high, and increases when the temperature is low. ,
A calculation means for calculating the sum of the calculation results as the optimum target total transmission amount;
Measuring means for measuring the amount of power supplied to the electric furnace;
In response to the output from the measuring means, a control means for stopping the operation when the measured value reaches the optimum target total power transmission amount calculated by the calculating means ,
The voltage supplied to the electrode is detected, and the melting and refining processes from the charging period to the starting period, the boring period, the hot water pool forming period, the main melting period, the last melting period, the falling, the heating period, and the tapping The optimal target total power transmission amount calculated by the calculation means is corrected by a correction amount that increases when the voltage supplied to the electrode decreases and decreases when the voltage supplied to the electrode decreases. Correction means to
Detection means for detecting the temperature of the tapping from the electric furnace;
In response to the output from the detection means, the output temperature is compared with a predetermined reference temperature, and when the output temperature is higher than the reference temperature so that the deviation between the output temperature and the reference temperature is small, the correction is performed in the next operation. The electric furnace equipment includes an adjusting means for decreasing the correction amount of the means and conversely increasing the correction amount of the correction means in the next operation when the output temperature is lower than the reference temperature .
Further, according to the present invention, the calculation means includes the types of raw materials for melting stainless steel or high alloy iron, the number of raw material charges, the amount of feed, the composition of the molten steel to be fed, According to the soot temperature, the coefficient is set in advance from past operation result data or by performing a dissolution test .
[0013]
[Action]
According to the invention, charged with a plurality of types of raw materials, the height current in an electric furnace equipment to dissolve while adjusting so as to be constant electrode, and the weight of the raw materials, meet the operation pattern of the electric furnace At least from the charging stage of the raw material, the ignition period, the boring period, the sump formation period, the main dissolution period, the end of melting period, the melting, the heating period, as raw material is difficult to dissolve a coefficient against the driving pattern including a refining step increases, small when high temperature charge, calculates the product of the coefficient becomes large when low the temperature for each type, operation An arithmetic means for calculating the optimum target total power transmission amount as the sum of the results, a measuring means for measuring the amount of electric power supplied to the electric furnace, and an optimum that the arithmetic means calculates the measured value in response to the output from the measuring means When it reaches the target total power transmission, And control means for stopping, detects a voltage supplied to the electrode, from the instrumentation Iriki, Tenkoki, boring stage, the basin formative years, mainly lytic phase, dissolving the end, burn through, Noborinetsuki, tapping The voltage calculated when the operation pattern including the melting and refining processes leading to is increased, is increased when the voltage supplied to the electrode is decreased, and is calculated by the correction amount that is decreased when the voltage is increased. A correction means for correcting the target total power transmission amount, a detection means for detecting the output temperature from the electric furnace, and responding to an output from the detection means, comparing the output temperature with a predetermined reference temperature, When the output temperature is higher than the reference temperature so that the deviation from the reference temperature is small, the correction amount of the correction means is decreased in the next operation, and conversely, when the output temperature is lower than the reference temperature, the correction is performed in the next operation. Correction amount of correction means Because and an adjusting means for increasing, it is possible to effectively prevent the raw material of the melt leaving or power supply excess etc.. Moreover, it is possible to further reduce the occurrence of inconveniences such as unmelted raw materials or excessive supply of electric power.
[0015]
Preferably, the calculation means includes various types of raw materials for melting stainless steel or high alloy iron, the number of raw material charges, the amount of feed, the composition of the molten steel to be fed, and the output. Depending on the temperature, the coefficient is set in advance from past performance data or by performing a dissolution test, so the quality of the component ratio as a product such as stainless steel or high alloy iron is kept constant, A suitable coefficient for the alloy can be determined.
[0016]
【Example】
FIG. 1 is a block diagram showing a simplified electric furnace configuration of an electric furnace facility according to an embodiment of the present invention. FIG. 2 is a simplified front cross-sectional view of the electric furnace of FIG. FIG. 3 is a process diagram showing an operation process of the electric furnace of FIG. FIG. 4 is a graph showing the relationship between the difference between the molten metal tapping temperature and the target temperature and the amount of power supply correction. FIG. 5 is a graph showing the time change of the electric power supplied to the electric furnace. FIG. 6 is a flowchart showing the optimum target total power transmission amount calculation operation of the embodiment of FIG. FIG. 7 is a graph showing the relationship between the charge temperature and the coefficient ci. FIG. 8 is a flowchart showing an optimum target total power transmission amount calculation operation according to another embodiment of the present invention.
[0017]
As shown in FIG. 1 and FIG. 2, the electric furnace equipment is mainly composed of an electric furnace 1, a voltage adjusting means 8, a voltage measuring means 10, a current measuring means 11, a measuring means 12, a calculating means 13, a correcting means 14, a adjusting means 16, The detection unit 17 and the control unit 15 are included.
[0018]
In general, the electric furnace 1 includes a furnace lid 2 in which an electrode 4 is mounted freely by a lifting means 5, a furnace wall 3a in which a work port and a removal port are provided, and a hearth 3b in which a bottom blowing nozzle 3c is mounted. And a furnace body 3 having the following structure. In the electric furnace 1, various raw materials are melted or melted, and the molten metal 6 and the slag 7 are stored. Since the inner surface of the furnace body 3 is in contact with the high-temperature molten metal 6 and the slag 7, a refractory layer is provided.
[0019]
The current whose voltage is adjusted by the voltage adjusting means 8 is supplied to the electrode 4 via the cable 9. A voltage measuring means 10 and a current measuring means 11 are attached to the cable 9 to measure the values of current and voltage supplied to the electrode 4. A signal from the current measuring unit 11 is input to the elevating unit 5 and the measuring unit 12. A signal from the voltage measuring unit 10 is input to the measuring / measuring unit 12 and the correcting unit 14.
[0020]
The measuring unit 12 measures the amount of electric power supplied to the electrode from the values of the current and voltage input from the voltage measuring unit 10 and the current measuring unit 11 and inputs them to the control unit 15. The computing means 13 includes a memory 13a. As will be described later, the calculation means 13 calculates the scheduled optimum target total power transmission amount and power supply pattern to be supplied to the electrodes in advance before operation, and inputs them to the control means 15. The correction unit 14 calculates a correction value of the optimum target total power transmission amount according to the signal from the voltage adjustment unit 10 or the signal from the adjustment unit 16 and inputs the correction value to the control unit 15. The adjusting means 16 receives the temperature of the molten metal 6 detected by the detecting means 17 realized by a temperature measuring probe or the like. The adjusting unit 16 adjusts the correction amount calculated by the correcting unit 14 so that the difference between the output temperature and a predetermined target temperature is small. The control unit 15 adjusts the voltage adjusting unit 8 based on signals from the measuring unit 12, the calculating unit 13, and the correcting unit 14, and inputs a current set value to the elevating unit 5.
[0021]
The melting and refining process in the electric furnace 1 of FIG. 1 is shown in FIG. In the charging period s1, the electrode 4 and the furnace lid 2 of the electric furnace 1 are lifted and swung, respectively, to open the space above the furnace body to a state in which there is nothing, and generally with a bucket or the like transported by a crane or a carriage A charge 19 is charged into the furnace by the charging means 18 realized. Since the charge 19 is mainly a solid main auxiliary material and is bulky, the entire amount of the charge 19 required for one batch operation cannot be charged into the furnace by one initial charge. There is a case. In such a case, the additional charging is performed once or in two to three times to reduce the amount of the charge 19 per charge and dissolve the charge 19 to some extent. The remaining charge 19 is charged after the bulk is reduced.
[0022]
In the ignition period s 2, energization of the electrode 4 is started by covering the furnace lid 2, and an arc is generated between the charge 19. The electrode 4 is gradually lowered from the boring period s3 to the puddle formation period s4, the current flowing between the electrode 4 and the charge 19 is kept constant, the charge 19 around the electrode 4 is melted, and the electric furnace 1 A hot water reservoir for the molten metal 6 is formed on the bottom. In the main melting period s5, the charge 19 in the electric furnace 1 is melted while moving the electrodes up and down to keep the current constant. While the electrode is energized, the current value and the voltage value supplied to the electrode 4 are detected by the voltage measuring means 10 and the current measuring means 11, and the amount of power supplied by the measuring means 12 is measured. In the main dissolution period s5, the voltage value measured by the voltage measuring unit 10 may be detected, and the optimum target total power transmission amount may be corrected by using a voltage fluctuation that deviates from a predetermined operation pattern by the correcting unit. When additional charging of the charge 19 is performed, for example, when about 80% of the charge 19 is dissolved, the charge period 19 is returned to and the charge 19 is charged. Moreover, when performing additional charging, since the molten metal 6 already exists in the furnace, it is not necessary to provide the hot water reservoir formation period s4.
[0023]
At the end of melting s6, only a small amount of solid such as the charge 19 in the furnace remains in the vicinity of the furnace wall, so that there is a possibility that the heat load of the arc on the furnace wall increases. In order to prevent this, at the end of dissolution period s6, the voltage is slightly lowered from the main dissolution period s5 to reduce the amount of power supplied. Through the melt s7 in which all of the charge 19 is dissolved, oxygen, secondary raw materials to be additionally charged, etc. are supplied into the furnace in the heating period s8, and impurities contained in the molten metal 6 are removed. After the oxygen supplied in the heat-up period s8 and the molten metal 6 have sufficiently reacted, when the amount of power measured by the measuring means 12 reaches the predetermined optimum total power transmission amount, the power supply to the electrode 4 is stopped. Then, s9 is performed for the ladle. After the tapping, inspection and repair of the electric furnace 1 are performed, and one batch operation is completed.
[0024]
After the molten metal 6 is removed from the surface layer of the ladle to remove the slag and the like, the detection means 17 measures the temperature of the molten metal 6. As shown in FIG. 4, when the output temperature is higher than a predetermined target temperature, the adjustment means 16 decreases the correction amount of the correction means 14 in the next operation, and conversely, when it is low, the correction amount is increased. It may be. The molten metal 6 is then transported to equipment for performing the next process such as a degassing process or a casting process.
[0025]
FIG. 5 shows a power supply pattern supplied to the electric furnace 1 using the embodiment of FIG. FIG. 5 (1) shows a basic power supply pattern. Initial charging of the raw material is started from time t0. At time t1, the initial charging is finished, and the electrode 4 is energized to start power transmission. Thereafter, the voltage applied at times t1, t2, t3, and t4 is increased stepwise. In each period of the ignition period s2 from time t1 to t2, the boring period s3 from time t2 to time t3, the hot water pool formation period s4 from time t3 to time t4, and the main dissolution period s5 from time t4 to time t5 The voltage supplied to the electrode 4 is kept constant. At time t5 when the supplied power reaches the optimum target total power transmission, power transmission to the electrode is stopped and output is performed.
[0026]
FIG. 5 (2) and FIG. 5 (3) are other examples of the power supply pattern. From time t1 to t4, the same behavior as the power supply pattern shown in FIG. In the main dissolution period s5 from time t4 to time t5, the voltage is temporarily reduced or power transmission is stopped from time t6 to time t7. At this time, the optimum target total power transmission amount may be corrected by the correcting unit 14 in accordance with a signal from the voltage measuring unit 10. Thereafter, power transmission is resumed from time t7, and power transmission to the electrode is stopped at time t8 when the corrected optimal target total power transmission amount is reached. Thus, the furnace temperature and the like can be adjusted by controlling the power transmission to the electrodes. In addition, since the tapping time t8 can be set to an arbitrary time, it is possible to adjust the time with the steps before and after the melting and refining step performed by the electric furnace.
[0027]
FIG. 6 shows the optimum target total power transmission amount calculation operation of the embodiment of FIG. Charges that constitute the main and auxiliary materials charged into the electric furnace 1 in step n1, such as the types of individual raw materials such as scrap such as scrap iron and lime, and the weight Mi (i = 1 to n) of each individual raw material Read the recipe. In step n2, the coefficient ci (i = 1 to n) specific to each individual raw material is read from the memory. The coefficient ci depends on, for example, the type of individual raw material for melting stainless steel or high alloy iron, the number of times of raw material charging, the amount and composition of the molten metal, the temperature of the molten metal, etc. Then, it is determined in advance from past operation result data or by performing a dissolution test or the like, and is stored in a memory. The coefficient ci becomes larger as it is attached to an individual raw material that is difficult to dissolve, and conversely, a thing attached to an element that aids dissolution of a solid charge such as molten metal may take a negative value. Further, as shown in FIG. 7, the coefficient ci depends on the temperature of the charge, and may be small when the temperature of the charge is high and large when the temperature is low.
[0028]
In step n3, the optimum target total power transmission amount W for one batch operation, that is, one charge is determined from the following equation using the weight Mi of each individual raw material and the coefficient ci. When the unit of the weight Mi is Ton, the coefficient ci is calculated as a power unit.
[0029]
[Expression 1]
Figure 0003645306
[0030]
As a result, it is possible to determine the optimum target total power transmission amount corresponding to the degree of easiness of dissolution different for each individual raw material and the increase or decrease of the amount of each individual raw material. In step n4, the optimum target total power transmission amount W is dissolved according to the weight of the charge charged in each period of the electric furnace operation, such as the initial charge period after the initial charge and the additional charge period. The amount of electric power necessary for the end period and the heat-up period is calculated and distributed, and the planned electric energy w for each period is determined. In step n5, the optimum target total power transmission amount W for each period calculated in step n4 is divided into electric power required for each period in the period such as the firing period and the boring period. In step n6, the power to be supplied and the energization time are calculated and determined according to the voltage required for each period. In step n7, a power input schedule for one operation is determined from the power and time determined in step n6. As a result, it is possible to determine the optimum optimum target total transmission amount corresponding to the composition of the charge.
[0031]
FIG. 8 shows another embodiment of the power calculation operation of the present invention. FIG. 8 is similar to the flow chart of FIG. 7, and the same steps are denoted by the same reference numerals and description thereof is omitted. In step n1a, the total weight Ms of the solid raw material and the solid charge such as slag is read. Alternatively, the total weight Ms may be obtained by calculating the sum of the weights Mi of the individual charges. In step n2a, a predetermined coefficient C determined in advance and stored in the memory is read. In step n3, the optimum target total power transmission amount W per charge is calculated from the following equation using the total weight Ms of the solid charge and the coefficient C.
[0032]
W = Ms · C (2)
Steps n4 to n7 proceed in the same way as in FIG. Thereby, the optimum target total power transmission amount that is optimal with respect to the total weight can be determined.
[0033]
Using the other examples described above, the optimum target total power transmission amount was determined with the coefficient C set to 450 to 490 (kWH / Ton / solid raw material), and the operation was performed. Compared to the case where the operation is performed using the conventional technique of multiplication, the temperature of the molten metal is reduced by about 20 ° C., and the power source unit per molten metal is about 25 (kWH / Ton · It was confirmed that only metal) was reduced. In addition, the amount of furnace repair material used was reduced. There was no increase in the number of troubles such as unmelted raw materials.
[0035]
【The invention's effect】
According to the present invention, charged with a plurality of types of raw materials, the height current in an electric furnace equipment to dissolve while adjusting so as to be constant electrode, and the weight of the raw materials, meet the operation pattern of the electric furnace At least from the charging stage of the raw material, the ignition period, the boring period, the sump formation period, the main dissolution period, the end of melting period, the melting, the heating period, as raw material is difficult to dissolve a coefficient against the driving pattern including a refining step increases, small when high temperature charge, calculates the product of the coefficient becomes large when low the temperature for each type, operation An arithmetic means for calculating the optimum target total power transmission amount as the sum of the results, a measuring means for measuring the amount of electric power supplied to the electric furnace, and an optimum that the arithmetic means calculates the measured value in response to the output from the measuring means When it reaches the target total power transmission, And a control means for stopping. Preferably, reduced when detecting a voltage supplied to the electrodes in the electric furnace facilities, before increasing when the voltage supplied to a voltage electrode out of the Kiun rolling pattern is reduced, the voltage is increased In response to the output from the correction means for correcting the optimum target total power transmission amount calculated by the calculation means or the output temperature from the electric furnace, and the output from the detection means, the output temperature is set in advance. When the output temperature is higher than the reference temperature so that the deviation between the output temperature and the reference temperature becomes smaller compared to the set reference temperature, the correction amount of the correction means is decreased in the next operation, and conversely the output temperature is Adjusting means for increasing the correction amount of the correcting means in the next operation when the temperature is lower than the reference temperature . In addition, the calculation means includes the types of raw materials for melting stainless steel or high alloy iron, the number of raw material charges, the amount of feed, the composition of the molten steel to be fed, and the temperature of the feed. In accordance with the above, the coefficient is set in advance from past operation result data or by performing a dissolution test . As a result, it is possible to reduce power consumption and prevent inconveniences related to the operation of the electric furnace, such as unmelted raw materials or excessive supply of electric power, so that energy saving and stagnation of the operation process can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a simplified electrical configuration of an electric furnace facility according to an embodiment of the present invention.
2 is a simplified front sectional view of the electric furnace of FIG. 1. FIG.
FIG. 3 is a process diagram showing an operation process of the electric furnace of FIG. 1;
FIG. 4 is a graph showing the relationship between the difference between the molten metal tapping temperature and the target temperature and the amount of power supply correction.
FIG. 5 is a graph showing a time change of electric power supplied to the electric furnace.
6 is a flowchart showing an optimum target total transmission amount calculation operation of the embodiment of FIG. 1;
FIG. 7 is a graph showing the relationship between the temperature of the charged raw material and the coefficient ci.
FIG. 8 is a flowchart showing an optimum target total transmission amount calculation operation according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Furnace lid 3 Furnace main body 4 Electrode 5 Lifting means 6 Metal melt 7 Slag 8 Voltage adjustment means 9 Cable 10 Voltage measurement means 11 Current measurement means 12 Measurement means 13 Calculation means 14 Correction means 15 Control means 16 Adjustment means 17 Detection Means 18 Charging means 19 Charge

Claims (2)

複数種類の原料を装入し、電極の高さを電流が一定になるように調整しながら溶解させる電気炉設備において、
原料の各種類毎に、重量と
電気炉の運転パターンであって少なくとも原料の装入期から、順次、電極への通電を開始する点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターンに対する係数であって溶解しにくい原料ほど大きくなり、装入物の温度の高いときには小さく、前記温度の低いときには大きくなる係数との積を演算し、
演算結果の総和を最適目標総送電量として算出する演算手段と、
電気炉に供給される電力量を計測する計測手段と、
計測手段からの出力に応答して、演算手段が算出する最適目標総送電量に計測値が到達したら操業を停止する制御手段と
電極に供給される電圧を検出し、前記装入期から、点弧期、ボーリング期、湯溜形成期、主溶解期、溶解末期、溶落、昇熱期、出銑に至る溶解および精錬工程を含む運転パターンから外れるときの電圧であって電極に供給される電圧が低下するとき増加させ、前記電圧が高くなるとき低下させる補正量によって、前記演算手段が算出する最適目標総送電量を補正する補正手段と、
電気炉からの出銑温度を検出する検出手段と、
検出手段からの出力に応答し、出銑温度を予め定める基準温度と比較し、出銑温度と基準温度との偏差が小さくなるように出銑温度が基準温度より高いとき次回の操業において前記補正手段の補正量を減少させ、逆に出銑温度が基準温度より低いときは次回の操業において前記補正手段の補正量を増加させる調整手段を含むことを特徴とする電気炉設備。
In an electric furnace facility that charges multiple types of raw materials and melts while adjusting the height of the electrodes so that the current is constant,
For each type of raw material ,
The operation pattern of the electric furnace, at least from the charging period of the raw materials, in order to start the energization to the electrodes, starting period, boring period, puddle formation period, main melting period, end of melting period, falling, heating period It is a coefficient for the operation pattern including the melting and refining processes leading to tapping, and it is calculated as the product of the coefficient that increases as the raw material that is difficult to dissolve, increases when the temperature of the charge is high, and increases when the temperature is low. ,
A calculation means for calculating the sum of the calculation results as the optimum target total transmission amount;
Measuring means for measuring the amount of power supplied to the electric furnace;
In response to the output from the measuring means, the control means for stopping the operation when the measured value reaches the optimum target total power transmission amount calculated by the calculating means ,
The voltage supplied to the electrode is detected, and the melting and refining processes from the charging period to the ignition period, the boring period, the sump formation period, the main melting period, the final melting period, the falling, the heating period, and the tapping The optimal target total power transmission amount calculated by the calculation means is corrected by a correction amount that increases when the voltage supplied to the electrode decreases and decreases when the voltage supplied to the electrode decreases. Correction means to
Detection means for detecting the temperature of the tapping from the electric furnace;
In response to the output from the detection means, the output temperature is compared with a predetermined reference temperature, and when the output temperature is higher than the reference temperature so that the deviation between the output temperature and the reference temperature is small, the correction is performed in the next operation. An electric furnace facility comprising an adjusting means for decreasing the correction amount of the means and conversely increasing the correction amount of the correction means in the next operation when the output temperature is lower than the reference temperature .
前記演算手段は、ステンレス鋼あるいは高合金鉄を溶製するための諸原料の種類と、原料の装入回数と、出銑量と、出銑される溶鋼の組成と、出銑温度とに応じて、過去の操業実績データから、または溶解試験を行って前記係数を予め設定することを特徴とする請求項に記載の電気炉設備。The calculation means depends on the types of raw materials for melting stainless steel or high alloy iron, the number of raw material charges, the amount of feed, the composition of the molten steel to be fed, and the feed temperature. The electric furnace equipment according to claim 1 , wherein the coefficient is set in advance from past operation performance data or by performing a dissolution test .
JP07673995A 1995-03-31 1995-03-31 Electric furnace equipment Expired - Fee Related JP3645306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07673995A JP3645306B2 (en) 1995-03-31 1995-03-31 Electric furnace equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07673995A JP3645306B2 (en) 1995-03-31 1995-03-31 Electric furnace equipment

Publications (2)

Publication Number Publication Date
JPH08273826A JPH08273826A (en) 1996-10-18
JP3645306B2 true JP3645306B2 (en) 2005-05-11

Family

ID=13613976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07673995A Expired - Fee Related JP3645306B2 (en) 1995-03-31 1995-03-31 Electric furnace equipment

Country Status (1)

Country Link
JP (1) JP3645306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748961B1 (en) * 2015-11-24 2017-06-19 현대제철 주식회사 Method for predicting the melt-down stage of the electric furnace
EP3572538A1 (en) * 2018-05-25 2019-11-27 Air Products And Chemicals, Inc. System and method of operating a batch melting furnace
EP3858108B1 (en) 2018-09-27 2022-04-27 SMS Group GmbH Method for operating an electric arc furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161308A (en) * 2000-11-24 2002-06-04 Daido Steel Co Ltd Production method for high strength, high fatigue resistant steel for use in structural application
EP2650386A1 (en) * 2012-04-11 2013-10-16 Siemens Aktiengesellschaft Method for operating an arc oven and melting assembly with an arc oven operated according to this method
EP2660547A1 (en) * 2012-05-03 2013-11-06 Siemens Aktiengesellschaft Metallurgical assembly
WO2020170849A1 (en) * 2019-02-19 2020-08-27 Jfeスチール株式会社 Method for predicting operating results, method for learning learning model, device for predicting operating results, and device for learning learning model
JP2024070407A (en) * 2022-11-11 2024-05-23 スチールプランテック株式会社 Additional charging time determination apparatus and melting facility, and additional charging time determination method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748961B1 (en) * 2015-11-24 2017-06-19 현대제철 주식회사 Method for predicting the melt-down stage of the electric furnace
EP3572538A1 (en) * 2018-05-25 2019-11-27 Air Products And Chemicals, Inc. System and method of operating a batch melting furnace
CN110530166A (en) * 2018-05-25 2019-12-03 气体产品与化学公司 The system and method for operating batch melting furnace
KR20190134495A (en) * 2018-05-25 2019-12-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 System and method of operating a batch melting furnace
KR102294325B1 (en) * 2018-05-25 2021-08-26 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 System and method of operating a batch melting furnace
EP3572538B1 (en) 2018-05-25 2021-12-22 Air Products And Chemicals, Inc. System and method of operating a batch melting furnace
US11441206B2 (en) 2018-05-25 2022-09-13 Air Products And Chemicals, Inc. System and method of operating a batch melting furnace
EP3858108B1 (en) 2018-09-27 2022-04-27 SMS Group GmbH Method for operating an electric arc furnace

Also Published As

Publication number Publication date
JPH08273826A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
EP2710156B1 (en) A method and a control system for controlling a melting process
KR101751075B1 (en) Steel production facility, a steel making method using the same, a method of using an electric energy in the same
JP3645306B2 (en) Electric furnace equipment
US7618582B2 (en) Continuous steel production and apparatus
WO2015071823A1 (en) Method for melting minerals containing iron, titanium and vanadium
KR20070060048A (en) Method and device for producing liquid steel
CN106399717B (en) Aluminum holding furnace group for mating aluminium continuous casting and rolling production line
US9045810B2 (en) Method for melting steel
JP2001181727A (en) Method for monitoring condition in electric furnace
JP4484717B2 (en) How to operate steelmaking equipment
JP6553532B2 (en) Electric furnace operation control system, electric furnace and electric furnace operation control method
Ho et al. Energy audit of a steel mill
WO2010016553A1 (en) Iron bath-type melting furnace
Dutta et al. Electric Furnace Processes
JPH09133468A (en) Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal
RU2576213C1 (en) Device for loading metallized pellets into the arc furnace
WO2021241538A1 (en) Operation method of stationary electric furnace
Agapitov et al. Mathematical Modelling of the Thermal State of a Ladle During Arc Heating of the Melt
JP3793473B2 (en) Operation method of a converter equipped with a hot metal storage furnace
Peter et al. Introduction of a novel, scrap-based, fully continuous steelmaking process
KR20040056611A (en) Method for Heating Molten Steel in Mini―Mill Process
JPH0254893A (en) Furnace state judging method of dc arc furnace
JPH08120354A (en) Operation of electric smelting furnace
RU2002837C1 (en) Method of autogenous smelting on non-ferrous metals in horizontal converter
JPH09137213A (en) Method for adjusting slag basicity in electric arc furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees