JPS59159255A - Controlling method of heating molten metal in tundish - Google Patents

Controlling method of heating molten metal in tundish

Info

Publication number
JPS59159255A
JPS59159255A JP3250583A JP3250583A JPS59159255A JP S59159255 A JPS59159255 A JP S59159255A JP 3250583 A JP3250583 A JP 3250583A JP 3250583 A JP3250583 A JP 3250583A JP S59159255 A JPS59159255 A JP S59159255A
Authority
JP
Japan
Prior art keywords
molten metal
tundish
injection
molten steel
tons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3250583A
Other languages
Japanese (ja)
Other versions
JPS6347537B2 (en
Inventor
Yutaka Yoshii
裕 吉井
Katsuo Kinoshita
勝雄 木下
Tsutomu Nozaki
野崎 努
Yasuhiro Kakio
垣生 泰弘
Norihiro Ueda
上田 典弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3250583A priority Critical patent/JPS59159255A/en
Publication of JPS59159255A publication Critical patent/JPS59159255A/en
Publication of JPS6347537B2 publication Critical patent/JPS6347537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the decrease in the temp. of a molten metal without pinching by charging and heating the molten metal in the large quantity in excess of heat absorption and radiation in the initial period of charging the molten metal into a tundish then charging and heating the molten metal so as to compensate the heat absorption and radiation. CONSTITUTION:The charging flow rate of a molten metal to be accepted in a tundish from a transporting ladle, etc. is regulated to >=3t/min in the initial period of charging and is increased according to the capacity of the tundish. The quantity of the electric power to be thrown to an electromagnetic induction heater for compensating the decrease in the temp. of the molten metal in the tundish is controlled. More specifically, the quantity of the electric power to be thrown when a reference level is attained is designated as 100% and the quantity of the electric power to be thrown is controlled to 20-30% until 35% of the reference level is attained and 50-65% until 70% is attained so that the continued flow of the molten metal in the bypassing route of the heater is assured. The electric power below the max. power is thrown after the reference level is attained so that the decrease in the temp. of the molten metal is prevented.

Description

【発明の詳細な説明】 (技術分計) 溶融金属たとえば溶鋼(以下これをもって溶融金属を代
表さセる)の取扱いに関してたとえば、連続鋳造モール
ドへの鋳込みを典型例とする移注操作には一般に、タン
ディツシュ(以下TDと略、す。)と呼ばれる中間容器
が、製鋼炉での精錬を経た出鋼を通常運搬取鍋を介して
受入れるために用いられ、このTDを含めた溶鋼の流動
系統によって移注される間における溶鋼の性状を、でき
る限り精錬を行った状態のままに保持することが、溶鋼
の取扱上極めて重要であり、さもなくば折角の精練労力
の大半を烏有に帰せしめるからである。
[Detailed Description of the Invention] (Technical Analysis) Regarding the handling of molten metal, such as molten steel (hereinafter referred to as molten metal), for example, in a pouring operation, a typical example of which is pouring into a continuous casting mold, , an intermediate container called a tanditshu (hereinafter abbreviated as TD) is used to receive tapped steel that has undergone refining in a steelmaking furnace via a transport ladle, and is transported by a flow system of molten steel including this TD. It is extremely important when handling molten steel to maintain the properties of the molten steel as refined as possible during the transfer, otherwise most of the refining effort will be lost to Karasu. It is.

ここに従来種々な配慮が加えられるところであるが、上
記溶鋼の性状のうち、TD内にはじめて受入れた溶鋼に
対し不可避に生じる甚しい奪熱Gこよる湿度低下の影響
を、適切に軽減することに関連して以下に述べるところ
は、主とし、て連続鋳造を含む技術の分計に位置づけら
れる。
Conventionally, various considerations have been added to this, but among the properties of the molten steel mentioned above, it is necessary to appropriately reduce the influence of the humidity drop due to the severe heat removal G that inevitably occurs when molten steel is received for the first time in the TD. What is described below in connection with this is mainly positioned as a summary of technologies that include continuous casting.

(問題点) 上記の奪熱は、運搬取鍋などからTD内に受入れられた
溶鋼の注入初期段階に、TDの内張り耐火物での吸熱と
、注入溶鋼の浴面Gこおける環境への放熱などによる熱
損失に由来して、該溶鋼の急激な温度低下を結果する。
(Problem) The above heat absorption occurs during the initial stage of injection of molten steel received into the TD from a transportation ladle, etc., due to heat absorption by the lining refractory of the TD and heat radiation from the poured molten steel to the environment at the bath surface G. Due to the heat loss caused by the above, the temperature of the molten steel suddenly decreases.

もちろんその後に引続く高温溶鋼の後続注入の下に奪熱
速度は下降するのでTD内容w4温度は、注入開始から
の時間の経過につれて漸増し、やがて−・定値に落着く
が、一般に連続鋳造モールドへの鋳込みに適合すべき出
鋼温度の過熱度には、上記の初期奪熱の影響の如きが実
操業上考慮に入れられることはない。
Of course, the heat removal rate decreases with the subsequent injection of high-temperature molten steel, so the TD content w4 temperature gradually increases as time passes from the start of injection and eventually settles to a constant value, but generally continuous casting mold In actual operation, the influence of the above-mentioned initial heat removal is not taken into account when determining the degree of superheating of the tapping temperature that is suitable for casting into steel.

従って上記のように過渡的な非定常移注期にあっては、
連続鋳造モールドなどへの鋳込み温度が低いことによる
、凝固金属組織その他の品質不良が、連続鋳造鋳片の引
抜き先端すなわちいわゆる最ボトム鋳片に余儀なくされ
るわけであり、かような品質不良は、とくに連、連鋳操
業における鋳片の継ぎ目にも同様に起る。
Therefore, in the transient unsteady transfer period as mentioned above,
Due to the low casting temperature in continuous casting molds, solidified metal structure and other quality defects are forced to the drawing tip of the continuously cast slab, that is, the so-called bottommost slab. This also occurs particularly at joints between slabs during continuous casting operations.

かような注入初期段階におけるTD内容鋼の温& 低下
を防止するには、チャンネル型の電磁誘導加熱装置(以
下インダクタと略す)をTDに付帯させ、これを用いて
適宜に溶鋼加熱を行うことが有利である。
In order to prevent such a drop in the temperature of the steel in the TD at the initial stage of injection, a channel-type electromagnetic induction heating device (hereinafter abbreviated as an inductor) should be attached to the TD, and this should be used to heat the molten steel as appropriate. is advantageous.

インダクタは、TD内にお目る溶鋼の主流動つまりその
移注/ズルに向う流れの径路に対しその、側方にて、T
Dの側壁から部分的にはみ出す迂回径路中に溶鋼チャン
ネルを形成し、これに対し電磁誘導に基く抵抗発熱を生
じさせる。
The inductor is connected to the T on the side of the path of the main flow of molten steel in the TD, that is, the flow toward the transfer/spool.
A molten steel channel is formed in a detour path that partially protrudes from the side wall of D, and resistance heat generation based on electromagnetic induction is generated in response to the molten steel channel.

ところ・が、このインダクタに対する電力投入スケジュ
ールの如何によっては、所期した溶鋼加熱が、適宜にか
つ円滑Gこ進行しないことがしばしば経験されたのであ
る。
However, it has often been experienced that, depending on the power supply schedule for this inductor, the desired heating of molten steel does not proceed smoothly and appropriately.

すプよりぢ溶鋼加熱が最も必要とされる一F記注入初期
段階には溶鋼の注入を開始するまでの間にインダクタの
迂回径路中を満たしていた気相のばか該気相との部分置
換Gこより該径路に浸入する溶inの温度影響下に該径
路を形成する耐火物から発生する種々のガスが迂回径路
内に混在し、これらはまた浸入溶鋼温度の影響を受けて
膨張し一部は径路外に放散されるにしても恩情排除され
るわけではないからである。
At the initial stage of injection, when molten steel heating is most needed, partial replacement of the gas phase that filled the detour path of the inductor until the start of molten steel injection is performed. Under the influence of the temperature of the molten metal that enters the path from G, various gases generated from the refractories that form the path are mixed in the detour path, and these also expand under the influence of the temperature of the molten steel that enters. This is because even if it is dissipated out of the path, it does not mean that it is removed from grace.

このようにして迂回径路中を部分的に占めることが余儀
なくされた溶鋼チャンネルに対しインダクタの正規定格
出力が投入されると、それによる溶鋼チャンネルの誘起
電流に基く抵抗発熱と同時、に該誘起電流によって生起
されるピンチ効果は、該発熱による気相の膨張促進下に
、局部的な溶鋼チャンネルの断面縮小を来して溶鋼チャ
ンネルの長手方向の離断、いわゆるビンチングによる電
気的な導通遮断が結果される。こうして誘起電流が流れ
なくなるともはや溶鋼チャンネルの加熱に必要な電力が
有効にかつ安定して持続され得ず、そして−たん導通遮
断を来すと溶鋼チャンネルの導通を回復するまでに時間
かがかる」二に、同様なビンチングが反覆して起る。
When the normal rated output of the inductor is applied to the molten steel channel that is forced to occupy a portion of the detour path in this way, resistance heats up based on the induced current in the molten steel channel, and at the same time, the induced current The pinch effect caused by this heat generation accelerates the expansion of the gas phase, causing a local reduction in the cross section of the molten steel channel, resulting in separation of the molten steel channel in the longitudinal direction, and electrical conduction interruption due to so-called binching. be done. If the induced current ceases to flow in this way, the power necessary to heat the molten steel channel can no longer be sustained effectively and stably, and once continuity is interrupted, it takes time to restore continuity to the molten steel channel. Second, similar binning occurs repeatedly.

この点についてはTD内溶鋼の浴面レベルとの相互関係
に対する解明に基いて、該レベルの変化に応じてインダ
クタの投入電力を制御することをさきに試み(特願昭5
8−6091−1  )、が2りの改善を得たが、かよ
うな投入電力の制限が、TD内溶鋼の注入初期における
加熱の効果を減殺する不利なしとしない。
Regarding this point, we first attempted to control the power input to the inductor according to changes in the level of molten steel in the TD based on the clarification of the interaction with the bath surface level (Japanese Patent Application No. 1983).
8-6091-1), obtained two improvements, but such limitations on input power do not have the disadvantage of reducing the effect of heating at the initial stage of injection of molten steel in the TD.

(発明の目的) TDでの受入れ溶鋼のとくに注入初期におりる温度低下
をもたらずべき熱損失を一時的に圧倒するに足る多量の
溶鋼の短時間注入を行い、その後に該熱損失を償うこと
ができるインダクタの安定な作動を、ビンチングによる
妨害なしに実現することが、この提案の目的である。
(Objective of the invention) A large amount of molten steel is injected for a short period of time to temporarily overwhelm the heat loss that should not cause a temperature drop in the molten steel received at TD, especially in the initial stage of injection, and then the heat loss is It is the aim of this proposal to achieve stable operation of compensable inductors without disturbances due to binching.

(発明の構成) 」1記の目的は、次の構成により有利に達成される。(Structure of the invention) The object of item 1 is advantageously achieved by the following configuration.

TD内に運搬取鍋などから受入れた溶鋼を連続@造モー
ルドないしはそれに類似の施設に向けて移注する操業に
際し該TD内における溶鋼の主流動の側方にて迂回径路
を形成するチャンネル型のインダクタでもって該溶鋼の
加熱を行うに当り、上記運搬取鍋などからTD&こ受入
れる溶鋼の注入流量につき、最少限度毎分3トンを超え
てTD容量が大きい程多量とする短時間注入を行うこと
、この注入に伴うTD内溶鋼の浴面レベル上昇の途次に
、 TD容量に応じて定まる、上記注入開始後のTD内溶鋼
の温度低下を補償するのに必要な、上記インダクタの最
高電力投入の時期における浴面レベルを基準として、 該基準レベルの35%に達するまでの間と、さらに70
%に達するまでの17Jjとにそれぞれ上記最高電力の
80〜20%および65〜50%の各範囲に抑制した、
段階的電力投入パターンを適用し、上記迂回径路におけ
る溶鋼の継続流動を確保すること、 」1記基準レベルに達したのち、必要な最高電力以下の
電力投入により、TD内溶爾の温度低下を防rJユする
こと の結合になる、溶鋼のTD内加熱制御方法。
A channel-type channel that forms a detour on the side of the main flow of molten steel in the TD during operations in which molten steel received from a transport ladle etc. is transferred to a continuous mold or similar facility. When heating the molten steel with an inductor, the injection flow rate of the molten steel received from the above-mentioned transport ladle or the like must be injected for a short period of time, exceeding a minimum limit of 3 tons per minute, and increasing the amount as the TD capacity increases. , while the bath level of the molten steel in the TD increases due to this injection, the maximum power input of the inductor is determined according to the TD capacity and is necessary to compensate for the temperature drop of the molten steel in the TD after the start of the injection. Based on the bath surface level at the time of
17Jj until reaching the maximum power of 80 to 20% and 65 to 50% of the maximum power, respectively.
Applying a phased power input pattern to ensure continuous flow of molten steel in the detour route described above, ``After reaching the reference level in 1, reduce the temperature of the molten steel in the TD by applying less than the maximum power required. A method for controlling heating of molten steel in a TD, which combines prevention of rJ.

ここGこ重要なことは、TDに対する注入初期において
、できる限り短時間のうちに、つまり溶鋼湿度が全体と
して、TDの内張り耐火物の吸熱や浴面からの放熱など
によって降下するのを圧倒するような急速注入をまず行
い、その後に上記の吸熱や放熱を償うべきインダクタに
よる加熱ヲ、ビンチングの発生なしに成就すべく段階的
な電力投入を適時にしかも適切に加えることであり、こ
の、組合オ)ぜにより、TD内溶鋼の温度低下が、鋳込
みの全期間を通して有効に防止されるわけである。
What is important here is that at the initial stage of pouring into the TD, the molten steel humidity as a whole should overwhelm the drop due to heat absorption by the TD lining refractory, heat radiation from the bath surface, etc., in as short a time as possible. The idea is to first perform a rapid injection like this, and then add power in stages in a timely and appropriate manner to achieve heating by the inductor to compensate for the heat absorption and heat dissipation described above without the occurrence of binching. This effectively prevents the temperature of the molten steel in the TD from decreasing throughout the entire casting period.

さて、第1図に、インダクタを付帯させたTDの一例を
部分破断てもって要部構成につき図解した。
Now, in FIG. 1, an example of a TD equipped with an inductor is shown with a partial cutaway to illustrate the main part structure.

図中1はTD、2はその移注ノズル、また3はインダク
タをあられず。TDIの容量は種々あるが、7トンの場
合と、35トン、さらには75トンのように大型の場合
とについて以下のべることとして何れの場合も通常の連
鋳機操業における鋳込み速度には、さしたるちがいはな
いことから、最終的にはこの鋳込みの際の溶鋼温度を確
保するのに必要なインダクタの正規定格電力は、前者に
おいて11000k、後者では1500kW捏度で目的
に適う。
In the figure, 1 is the TD, 2 is its transfer nozzle, and 3 is the inductor. There are various capacities of TDI, but in the case of 7 tons, large cases such as 35 tons, and even 75 tons, as described below, the casting speed in normal continuous casting machine operation is not that much. Since there is no difference, the official rated power of the inductor required to secure the molten steel temperature during pouring is 11000k for the former and 1500kW for the latter, which suits the purpose.

TDIは、慣例に従って鉄皮に内張り耐火物を施し、図
には示していないが移住ノズル2に対しその閉塞を司る
ストッパを配設し移注ノズル2から離れた図の右上方に
おいて運搬取鍋(図示略)からの注入溶鋼を受入れる。
In TDI, a refractory lining is applied to the steel shell in accordance with customary practice, and a stopper (not shown in the figure) that controls the blockage of the transfer nozzle 2 is installed, and a transport ladle is placed in the upper right part of the figure away from the transfer nozzle 2. (not shown) receives injected molten steel.

インダクタ3は、注入溶鋼の移注ノズル2Gこ向う主流
動の側方にて、迂回径路を形成する耐火物のケース44
に、1次コイル5を有するコアー6を組合わせて成る。
The inductor 3 has a refractory case 44 forming a detour path on the side of the main flow facing the injection nozzle 2G of injected molten steel.
and a core 6 having a primary coil 5.

迂回径路の形成はたとえば、はぼ円環状(ドーナツ形)
をなす銃側製のテンプレートをケース4内(こ保持して
このテンプレートの−m f T D ]、 +7.)
側壁の内面に請出させた状態にて、水冷ジャケットを介
して1次コイル5およびコアー6をテンプレートの中央
孔に挿入組込みしてがら、テンプレートのまわりでケー
ス4との間に、好ましくはマグネシア糸のドライラミン
グタイプの耐火物を用いて振動締固めの如きにより圧密
光てんし、しかるのち1次コイル5に通電してテンプレ
ートに生起される誘導電流のジュール熱にてラミング材
の焼結を行わせ、しかるのもたとえばTD内初回注入の
際に通電パワーを上げてテンプレートの溶解を生じさせ
ることによるようなC形溝の形にてTDlの側壁内面に
2か所で開口させ得るが、別法によってももちろんかま
わない。
For example, the detour route can be formed in a circular ring shape (doughnut shape).
Inside the case 4, hold the template made from the gun side (-m f T D ], +7. of this template).
While inserting and incorporating the primary coil 5 and core 6 into the central hole of the template through the water-cooling jacket while protruding from the inner surface of the side wall, preferably magnesia is inserted around the template and between it and the case 4. A dry ramming type refractory of yarn is used to compact the material by vibration compaction, and then the ramming material is sintered by the Joule heat of the induced current generated in the template by energizing the primary coil 5. However, it is possible to open the inner surface of the side wall of the TDl at two locations in the form of a C-shaped groove, for example, by increasing the current supply power during the initial injection into the TD to cause template dissolution. Of course, it doesn't matter if it's by law.

第2図には上記1次コイ/115 Gこ対する通電によ
って、コアー6Gこ生じる磁束φと、誘導電流j−との
関係を図解した。
FIG. 2 illustrates the relationship between the magnetic flux φ generated in the core 6G by energizing the primary coil/115G and the induced current j-.

次に第3図(a) 、 (b)をもって、TD内への注
入流量の大小にのみ起因したTD内溶鋼温度の時間推移
を比較して掲げた。
Next, FIGS. 3(a) and 3(b) compare the time course of the molten steel temperature in the TD, which is caused only by the magnitude of the injection flow rate into the TD.

図から明らかなように注入流量が多い迅速注入によって
、定常鋳込み域に達したときの温度(こ対する最低温度
の差ΔTは、定常鋳込み域湿度が回復されるまでの時間
tが長びくにしても力)なり僅小にとどまり、これに反
して注入流量が少いときには、時間tは短かいが、ΔT
は著大になり、このことから、注入流量を高くする短時
間注入は有利ではあるが実操業では種々の制約のために
、第3図(a)のような注入挙動(ま実現できず、せい
ぜい同図(b)との中間から、同図(a)により近づけ
ることに努力目標をおかざるを得ない。
As is clear from the figure, due to rapid injection with a large injection flow rate, the difference ΔT between the temperature (and the lowest temperature) when the steady casting region is reached, even if the time t until the humidity in the steady casting region is restored is prolonged. On the other hand, when the injection flow rate is small, the time t is short, but ΔT
Therefore, although short-time injection with a high injection flow rate is advantageous, due to various constraints in actual operation, the injection behavior shown in Figure 3 (a) (which cannot be achieved, At best, we have to aim to get closer to figure (a), which is between the intermediate level and figure (b).

さてまず容量7トン(満杯時浴深600 myn、 )
のTDIを用いて、注入流量7トン/分とする操業実験
を行い、注入開始後1分経過の際、正規定格出力100
0kWのインダクタ3により、最高電力を投入したとこ
ろ、第4図(a)に示すように、上述したビンチングが
発生し、誘導電流IGこよる抵抗発熱は成就せず、引続
き1.2分経過の際Gこ、再び1.000kwの電力投
入を行ったが、やけりビンチングが発生した。ついで注
入後2.5分に達したときに再投入を行ったところはじ
めて安定な通電加熱を行うことができたが、このように
注入開始後に2,5分も経過してからの時宜を失した加
熱によっては、所期した注入直後のTD内溶鋼の温度低
下防d−には殆ど役立たず、第4図中)に示すようにΔ
Tはかなりに大きい0 そこで第5(′A(a)に示すように、7トン/分での
注入の途次に、まず200 kw 、ついで300 k
W にそ11ぞれ抑制したπL力をおのおの17秒間に
わたってl1li Dに投入するインダクタ3の付勢に
より、溶鋼チャンネルの攪拌にて残留ガス気泡の排出を
試み、注入開始1分経過後に、1000kWの電力を投
入したが、やはりビンチングが発生した。そして注入開
始】、5分後に再投入をしてやっと安定した通電加熱を
行うことができたが、TD内湿温度推移第5図(b)の
ように依然不満足でΔTはほぼ一10°Cに達した。こ
の結果から、溶鋼チャンネル内のガス排出に必要な溶鋭
攪拌を生じさせるための出力としては、上記の200〜
300 kwでは不充分なことがわかる。
Well, first of all, the capacity is 7 tons (bath depth 600 myn when full)
We conducted an operation experiment using a TDI with an injection flow rate of 7 tons/min, and when one minute elapsed after the start of injection, the normal rated output was 100.
When the maximum power was applied using the 0kW inductor 3, as shown in Fig. 4(a), the above-mentioned binning occurred, and the resistance heat generation due to the induced current IG was not achieved, and continued for 1.2 minutes. At this point, 1,000kw of power was applied again, but binching occurred. Then, when 2.5 minutes had passed after injection, I turned it on again and was able to perform stable current heating for the first time. Depending on the heating, it is of little use in preventing the temperature of the molten steel in the TD immediately after injection, and as shown in Figure 4), Δ
T is quite large 0 Therefore, in the middle of the injection at 7 tons/min, first 200 kw and then 300 kw as shown in the fifth ('A(a))
By energizing the inductor 3, which injects the suppressed πL force into the l1li D for 17 seconds each, an attempt is made to discharge residual gas bubbles by stirring the molten steel channel, and one minute after the start of injection, the 1000 kW I turned on the power, but binching still occurred. Then, after 5 minutes, the injection was restarted and we were finally able to perform stable current heating, but as shown in Fig. 5 (b), the humidity temperature change in the TD was still unsatisfactory, and ΔT was approximately -10°C. Reached. From this result, the output to generate the melt agitation necessary for gas discharge in the molten steel channel is 200~
It turns out that 300 kW is insufficient.

そこで第61M(a)に示したようしこガス気泡の排出
を促進するため、とくに800kw、 650kwの電
力を各17秒間にわたり段階的に投入してから、注入開
始1分経過後に、1000 kwのn℃力を投入したと
きには、ピンチンブレこよる溶鋼チャンネルのとぎれが
なく、安定な通電加熱ができ、こうして第6図(b)に
示すように、TD内溶鋼の温度低下は、はじめて無視さ
れ得る程度に減少した。
Therefore, in order to promote the evacuation of the gas bubbles shown in Section 61M(a), power of 800 kW and 650 kW was introduced in stages for 17 seconds each, and then 1 minute after the start of injection, power of 1000 kW was introduced. When the n°C force is applied, there is no interruption in the molten steel channel due to pinch wobbling, and stable current heating is possible, and as shown in Figure 6 (b), the temperature drop in the molten steel in the TD can be ignored for the first time. decreased to

なお、この先行、段階的電力投入を、800 kw’9
50 kwで試したところ、ピンチングの発生を回避で
きなかった。
In addition, this advance and staged power input will be 800 kw'9
When we tried it at 50 kW, we were unable to avoid pinching.

以上の各事例においてTDIの容量が7トンの場合、イ
ンダクタの必要最高電力投入の時期を注入開始1分経過
時に定めてその際における浴深さ600祁を基準浴面レ
ベルと考え、これに至る浴面レベルの上昇の途次に、該
基準レベルの38%(200w+s)および67%(4
00間)に達した各時点Gこて、インダクタ3の正規定
格電力11000kのそれぞれ80%(300kw )
、65%(6501(W)に相当するように抑制した段
階的電力投入パターンを適用する第6図(a)の操業に
よって、基準レベル到達後の最高電力投入に至る間、ピ
ンチングによる妨害がなく、事実上TD内溶IA湿度低
下を伴わぬ鋳込みが同図(′b)のように実現できたの
である。
In each of the above cases, if the capacity of the TDI is 7 tons, the time to apply the maximum required power to the inductor is set at 1 minute after the start of injection, and the bath depth at that time of 600 m is considered to be the reference bath surface level, and this is reached. As the bath level rose, 38% (200w+s) and 67% (4
80% (300kw) of the regular rated power of 11000k for G iron and inductor 3 at each point in time when G iron and inductor 3 reached
, 65% (equivalent to 6501 (W)) The operation shown in Fig. 6 (a), which applies a stepwise power input pattern that is suppressed to correspond to 65% (6501 (W)), eliminates interference due to pinching until the maximum power is input after reaching the standard level. As a result, it was possible to perform casting without actually reducing the humidity of the IA melt in the TD, as shown in the same figure ('b).

次(こ上記基準レベルに至る注入時間を、それぞれ1.
4分(5トン7分)、 2.8分(8トン7分)(こ変
化させたほかは、第6図(a)に従う操業実験によると
、各場合とも上述1分以内(7トン/分)のときと比べ
て急速rt人による溶′M温度低下の防止効果が減じて
、それぞれΔTは一3°C,−6℃となったが、さらG
こ8゜5分(2トン/分)の注入時間の場合・すなわち
3トン/分よりも少い注入流量の下ではΔTが急激に増
大(−13°C)するためもはや所期した、初期鋳込み
温度の確保を成就し得ないことがわかった。
Next (herein, the injection time to reach the above reference level is 1.
4 minutes (5 tons, 7 minutes), 2.8 minutes (8 tons, 7 minutes) Compared to the case of rapid RT, the effect of preventing the melt's temperature from decreasing was reduced, and ΔT was -3°C and -6°C, respectively.
In the case of an injection time of 8°5 minutes (2 tons/min), that is, at an injection flow rate lower than 3 tons/min, ΔT increases rapidly (-13°C), so that the initial It was found that it was not possible to secure the casting temperature.

次に容量がそれぞれ85トンおよび75トンの大型TD
につき゛インダクタの能力を何れも1500kwに高め
、おのおの12トン/分、15トン/分の注入流量にお
いて、第6図(a)に準じた段階的電力投入パターンの
適用に関し、事実上初期鋳込み溶lA温度が期待どおり
に確保されるような注入初期加熱に適合すべき最高電力
投入までの注入開始後経過時間と、タンディツシュ容量
との関係を求めて、第7図の結果が得られ、図の斜線域
において上記適合を達し得ることかたしかめられた。
Next, large TDs with capacities of 85 tons and 75 tons, respectively.
When the capacity of each inductor is increased to 1500 kW and the injection flow rate is 12 tons/min and 15 tons/min, respectively, the initial casting melt is effectively The relationship between the tundish capacity and the elapsed time after the start of injection until the maximum power is applied, which should be suitable for the initial heating of the injection to ensure the expected lA temperature, was obtained, and the results shown in Figure 7 were obtained. It was confirmed that the above conformity could be achieved in the shaded area.

この図から明ら力)なようGこ、TD容量の増大Gこつ
れて注入流量を大きくシ、かつインダクタによる最高電
力の投入時点を遅らせること、そしてその投入時点に至
る間に、抑制さブまた適切な段階的電力投入パターンを
適用することが、ビンチングを伴わぬインダクタによる
効果的なTD内溶鋼の温度補償のために必要である。
From this figure, it is clear that increasing the TD capacity increases the injection flow rate, delays the time when the maximum power is applied by the inductor, and suppresses the blockage until the time when the maximum power is applied. Also, applying an appropriate stepwise power-on pattern is necessary for effective temperature compensation of the molten steel in the TD by the inductor without binching.

以上のべたところにおいてTDにおける溶鋼の注入流量
は、最小限毎分3トンに満たないとき、有効なTD内溶
鋼温度補償を実現できず、そしてTD容量の増加につれ
て、該流量をさらに増加することが必要である。なお注
入流量の上限については、操業条件に依存しむやみに増
すことはできず、7トンの場合、7トン/分、35トン
の場合12)ン/分、75トンの場合15トン/分がほ
ぼ限度である。
As mentioned above, when the injection flow rate of molten steel in the TD is less than the minimum 3 tons per minute, effective temperature compensation of the molten steel in the TD cannot be achieved, and as the TD capacity increases, the flow rate cannot be further increased. is necessary. The upper limit of the injection flow rate depends on the operating conditions and cannot be increased unnecessarily; in the case of 7 tons, it is 7 tons/min, in the case of 35 tons, it is 12) tons/min, and in the case of 75 tons, it is 15 tons/min. This is almost the limit.

次に」二連の急速な短時間注入中の段階的電力投入パタ
ーンの適用全経たあと最高電力を投入したときビンチン
グの発生を回避し得るTD内内温鋼浴面基準レベルにつ
いては、TD容量に応じるが、7トン程度の比較的小型
のものでは満杯レベルを、そして35トン程度の中型で
満杯レベルのはぼり4、さ’)M75)ン程度の大型に
あっては同様にほぼ1、/2程度とすることが必要であ
る。
Next, the standard level for the steel bath surface in the TD that can avoid the occurrence of binning when the maximum power is applied after the application of the stepwise power-on pattern during two consecutive rapid short-term injections is determined by the TD capacity. However, for a relatively small size of about 7 tons, the full level is 4, and for a large size of about 35 tons, it is about 1. It is necessary to set it to about /2.

上掲の段階的電力投入パターンについては、まf基準レ
ベルの85%、次に75%にそれぞれ達しない浴面レベ
ルの上昇中に、おのおの最高電力の80〜20%、およ
び65〜50%の各範囲で、順次に適用することが必要
であり、何れも時宜を失したり、またそれぞれ20%、
50%未満の低すぎる電力投入では、基準レベルに達し
た時点での最高電力投入の際におけるビンチングが有効
に回避し得ない一方、それぞれ30%、50%をこえる
過大な電力投入はその時点でピンチングが生じて、何れ
も爾後におけるインダクタの安定作動を得ることができ
なくなる。
For the phased power application pattern listed above, 80-20% of the maximum power and 65-50% of the maximum power are applied during the rise of the bath level which does not reach 85% and then 75% of the maximum reference level, respectively. It is necessary to apply each range sequentially, and neither is timely, and each range is 20%,
If the power input is too low (less than 50%), binching cannot be effectively avoided when the maximum power is applied once the reference level is reached, while excessive power input exceeding 30% and 50%, respectively, will result in binching at that point. Pinching occurs, and stable operation of the inductor cannot be obtained thereafter.

以下に、容量7トン、35トンおよび75トンの各TD
を用いて、TD内溶鋼の加熱を、前者につき11000
k、後二者につき1.500 kwのインダクタによっ
て実行した場合について、注入流量が過小な場合の比較
例と対比してこの発明による効果を実施例により験証し
た結果は次表1のとおりである。
Below, each TD with a capacity of 7 tons, 35 tons, and 75 tons
Heating the molten steel in the TD using
Table 1 below shows the results of verifying the effects of this invention using an example, in comparison with a comparative example where the injection flow rate is too small, when the latter two are performed using an inductor of 1.500 kW. be.

表  1 段階的電力投入パターンについては上側で最も成績のよ
かった適合例1,3および5について、それらの適用の
時期をかえて実験を進め、次表に示す場合に、ΔTが実
質的に解消され得た。
Table 1 Concerning the phased power input pattern, experiments were carried out by changing the timing of application of conformance examples 1, 3, and 5 that had the best results on the upper side, and it was found that ΔT was virtually eliminated in the cases shown in the following table. Obtained.

表  2 このことから最高電力の投入はTDが大容量になるほど
おそくなり、7トンで1分、85トンでは2.2分、そ
して75トンでは2.5分であるが、要はこれらの時間
内にビンチングの発生なしに最高電力が安定に投入され
得る先行的な段階的な抑制下の電力投入を、該TDに対
する急速注入にあわせ行うことが、TD内内網鋼温度低
下全回避するためGこ必要なのである。
Table 2 From this, the input of maximum power becomes slower as the capacity of the TD becomes larger, 1 minute for 7 tons, 2.2 minutes for 85 tons, and 2.5 minutes for 75 tons, but the important point is that these times In order to completely avoid a drop in the temperature of the inner mesh steel in the TD, it is possible to input power in a preliminary step-by-step manner that allows the maximum power to be input stably without occurrence of binning, in conjunction with the rapid injection into the TD. G is necessary.

かくしてこの発明によれば、インダクタによるTD内溶
ダの時宜に通した加熱に必要な最高電力の投入に従来刊
随したピンチングによる通電妨害を有効に排除すること
ができ、TD内内網鋼簡便なモールドその他類似の施設
への移注の間、とくにその初期にお番づる降温を適切に
償って、事実上定常鋳込み中のそれに一致させることが
でき、該降温に由来する製品品質の悪化が、有利に防止
できる。
Thus, according to the present invention, it is possible to effectively eliminate current flow interference due to pinching that has conventionally been associated with inputting the maximum power necessary for timely heating of the melter in the TD by the inductor, and to simplify During transfer to a mold or similar facility, the temperature drop that occurs, especially at the beginning, can be properly compensated for and virtually matched to that during steady-state pouring, so that the deterioration in product quality resulting from the temperature drop is avoided. , can be advantageously prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインダクタを付帯するTDの部分を破断して要
部構成をあられした斜視図、 第2図はインダクタによる誘起電流の発生挙動説明図、 第3図(a) 、 (b)はTD内受入れ溶鋼の注入流
量が該溶鋼温度に及ぼす影響の比較図表であり、第41
1A (a) 、(1:l)、第5図(a) 、 (b
)、第6 m(a) 、 (b)ハそれぞれインダクタ
の電力投入パターンと、それニヨる溶銅温度推移のグラ
フであり、 第7図ロゴTD容量と最高電力投入時期との適否弁別線
図である。
Figure 1 is a perspective view of the TD with the inductor attached to it broken to reveal the main structure. Figure 2 is an explanatory diagram of the behavior of induced current generated by the inductor. Figures 3 (a) and (b) are the TD. This is a comparative chart of the influence of the injection flow rate of internally received molten steel on the temperature of the molten steel, and it is the 41st
1A (a), (1:l), Fig. 5 (a), (b
), 6 m(a) and (b) are graphs of the inductor power input pattern and the corresponding molten copper temperature transition, respectively, and Figure 7 is a diagram showing the suitability of the logo TD capacity and the maximum power input timing. It is.

Claims (1)

【特許請求の範囲】 1− タンディツシュ内に運搬取鍋などから受入れた溶
融金属を連続鋳造モールドないしはそれに類似のIIJ
l股に向けて移注する操業に際し該タンディツシュ内に
おける溶融金属の主流動の側方にて迂回径路を形成する
チャンネル型の電磁誘導加熱装置でもって該溶融金属の
加熱を行うに当り、 上記運搬取鍋などからタンディツシュに受入れる溶融金
属の注入流量につき最少限度毎分3トンを越えてタンデ
ィツシュ容量が大きい程多量とする、短時間注入を行う
こと、この注入に伴うタンディツシュ内溶融金属の浴面
レベル上昇の途次Gこ、 タンディツシュ容h(に応じて定まる、上記注入開始後
のタンプメツシュ内溶融金属の温度低下を補償するのに
必要な、」1記電磁誘導加熱装置の最高電力投入の時期
における浴面レベルを基準として、 該基準レベルの35%に達するまでの間と、さらに70
%に達するまでの間とに、それぞれ上記最高電力の3(
)〜20%および65〜50%の各範囲に抑制した、 段階的電力投入パターンを適用し、上記迂回径路におけ
る溶融金属の継続流動を確保すること、 上記基準レベルに達したのぢ、必要な最高ηL力以下の
電力投入により、タンディツシュ内溶融金属の温度低下
を防止すること、の結合を特徴とする、溶融金属のタン
ディツシュ内加熱制御方法。
[Claims] 1- Molten metal received from a transport ladle etc. into a tundish is cast into a continuous casting mold or similar IIJ.
When the molten metal is heated by a channel-type electromagnetic induction heating device that forms a detour on the side of the main flow of molten metal in the tundish during the operation of transferring the molten metal to the tundish, the above-mentioned transportation Regarding the injection flow rate of molten metal received into the tundish from a ladle etc., the minimum limit is 3 tons per minute, and the larger the tundish capacity, the higher the amount, and the injection is carried out for a short time, and the bath level of the molten metal in the tundish due to this injection. During the rising G, the tundish volume h (determined according to Based on the bath surface level, until it reaches 35% of the standard level, and for a further 70% of the standard level.
% of the maximum power above, respectively.
) to 20% and 65 to 50%, respectively, to ensure continuous flow of molten metal in the detour route; A method for controlling heating of molten metal in a tundish, comprising: preventing a drop in temperature of the molten metal in the tundish by inputting power below a maximum ηL force.
JP3250583A 1983-02-28 1983-02-28 Controlling method of heating molten metal in tundish Granted JPS59159255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3250583A JPS59159255A (en) 1983-02-28 1983-02-28 Controlling method of heating molten metal in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3250583A JPS59159255A (en) 1983-02-28 1983-02-28 Controlling method of heating molten metal in tundish

Publications (2)

Publication Number Publication Date
JPS59159255A true JPS59159255A (en) 1984-09-08
JPS6347537B2 JPS6347537B2 (en) 1988-09-22

Family

ID=12360840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3250583A Granted JPS59159255A (en) 1983-02-28 1983-02-28 Controlling method of heating molten metal in tundish

Country Status (1)

Country Link
JP (1) JPS59159255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135088A (en) * 1984-12-05 1986-06-23 富士電機株式会社 Power control for tundish
JPS61249655A (en) * 1985-04-26 1986-11-06 Kawasaki Steel Corp Method and apparatus for controlling temperature of molten steel in tundish
JPS62118954A (en) * 1985-11-19 1987-05-30 Kobe Steel Ltd Continuous casting method
EP0249098A1 (en) * 1986-06-07 1987-12-16 BROWN, BOVERI & CIE Aktiengesellschaft Installation for reheating liquid steel tapped from a transport ladle
CN109128122A (en) * 2018-10-22 2019-01-04 东北大学 A kind of channel-type induction heating ladle device and heating means

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135088A (en) * 1984-12-05 1986-06-23 富士電機株式会社 Power control for tundish
JPS61249655A (en) * 1985-04-26 1986-11-06 Kawasaki Steel Corp Method and apparatus for controlling temperature of molten steel in tundish
JPS62118954A (en) * 1985-11-19 1987-05-30 Kobe Steel Ltd Continuous casting method
JPH0526589B2 (en) * 1985-11-19 1993-04-16 Kobe Steel Ltd
EP0249098A1 (en) * 1986-06-07 1987-12-16 BROWN, BOVERI & CIE Aktiengesellschaft Installation for reheating liquid steel tapped from a transport ladle
CN109128122A (en) * 2018-10-22 2019-01-04 东北大学 A kind of channel-type induction heating ladle device and heating means

Also Published As

Publication number Publication date
JPS6347537B2 (en) 1988-09-22

Similar Documents

Publication Publication Date Title
EP2207638B1 (en) Semi-liquid metal processing and sensing device and method of using same
JPS59159255A (en) Controlling method of heating molten metal in tundish
US6217825B1 (en) Device and fireproof nozzle for the injection and/or casting of liquid metals
JPH077015Y2 (en) Channel type inductor
WO1984002863A1 (en) Method of heating molten steel in tundish for continuous casting apparatus
US3192303A (en) Method of reducing overheating in melting troughs and similar devices in melting and holding furnaces
JPS59202142A (en) Heating method of nozzle to be immersed into tundish
JP2021156455A (en) Working control method for casting device
JPH0394967A (en) Method for discharging molten metal from bottom pouring type vessel
JP3693028B2 (en) Preheating device for tundish for continuous casting and its preheating method
JPH10277702A (en) Heat insulating device for runner of mold
JPH11104804A (en) Method for adjusting material
JPS59223148A (en) Induction heating method of molten metal in tundish
JP3649175B2 (en) Pretreatment method for long-time continuous casting
JPH0252156A (en) Method and device for heating molten steel in pouring apparatus
US3651856A (en) Method of continuously casting steel
JPH03207563A (en) Method for induction-heating conductive molten body
JPS58148057A (en) Method for heating molten steel for continuous casting
JP2001340943A (en) Method for controlling temperature of molten steel in tundish
JP3260606B2 (en) Preheating method of tundish for continuous casting
KR100335605B1 (en) Heat controllable tundish
US2067110A (en) Superheating induction furnace
JPH01262054A (en) Method for using tundish heater
JPH06246406A (en) Method for adjusting overheating degree of molten steel in continuous casting mold
JPH01271055A (en) Running method of electromagnetic pump for pouring molten metal or stopping pouring