JP6954556B2 - Induction melting furnace - Google Patents

Induction melting furnace Download PDF

Info

Publication number
JP6954556B2
JP6954556B2 JP2016244884A JP2016244884A JP6954556B2 JP 6954556 B2 JP6954556 B2 JP 6954556B2 JP 2016244884 A JP2016244884 A JP 2016244884A JP 2016244884 A JP2016244884 A JP 2016244884A JP 6954556 B2 JP6954556 B2 JP 6954556B2
Authority
JP
Japan
Prior art keywords
temperature
measuring means
heated
furnace
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244884A
Other languages
Japanese (ja)
Other versions
JP2018098153A (en
Inventor
和茂 国井
和茂 国井
佑介 橋本
佑介 橋本
右問 大亀
右問 大亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2016244884A priority Critical patent/JP6954556B2/en
Publication of JP2018098153A publication Critical patent/JP2018098153A/en
Application granted granted Critical
Publication of JP6954556B2 publication Critical patent/JP6954556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、炉壁の外周に設けられた加熱コイルに電力供給手段を介して高周波電力を供給することにより炉内に収納された被加熱材を溶解させる誘導溶解炉に関する。 The present invention relates to an induction melting furnace that melts a material to be heated stored in the furnace by supplying high frequency power to a heating coil provided on the outer periphery of the furnace wall via a power supply means.

従来、この種の誘導溶解炉としては、下記特許文献1に示すように、炉壁の外周に設けられた加熱コイルにより被加熱材を加熱溶解させる金属溶解炉において、炉蓋を貫通して被加熱材の溶解温度を計測する光ファイバ式の放射温度計を備えるものが知られている。 Conventionally, as this type of induction melting furnace, as shown in Patent Document 1 below, in a metal melting furnace in which a material to be heated is heated and melted by a heating coil provided on the outer periphery of the furnace wall, the material to be heated is covered through the furnace lid. Those equipped with an optical fiber type radiation thermometer that measures the melting temperature of the heating material are known.

特開平6−159944号公報Japanese Unexamined Patent Publication No. 6-159944

ここで、従来の金属溶解炉では、比較的小型の誘導溶解炉において、鋳造に必要な量の原料を1回の鋳造毎に加熱溶融させて順次供給するものであり、大型の溶融炉を使用し、その中で複数回の鋳造に相当する量の溶湯を溶融した後、一回の鋳造に必要な量の溶湯を出湯して鋳型に供給する場合には、出湯の度に、持ち出しの熱量と残った溶湯の量が変化し、正確な保持温度の管理が困難であるという問題があった。 Here, in the conventional metal melting furnace, in a relatively small induction melting furnace, the amount of raw material required for casting is heated and melted for each casting and sequentially supplied, and a large melting furnace is used. However, when the amount of molten metal equivalent to multiple castings is melted and then the amount of molten metal required for one casting is discharged and supplied to the mold, the amount of heat taken out each time the molten metal is discharged. There was a problem that the amount of the remaining molten metal changed and it was difficult to accurately control the holding temperature.

そこで、本発明は、出湯の度に溶湯の量が変化した場合でも正確な保持温度の管理が可能な誘導溶解炉を提供することを目的とする。 Therefore, an object of the present invention is to provide an induction melting furnace capable of accurately controlling the holding temperature even when the amount of molten metal changes each time the hot water is discharged.

第1発明の誘導溶解炉は、炉壁の外周に設けられた加熱コイルに電力供給手段を介して高周波電力を供給することにより炉内に収納された被加熱材を溶解させる誘導溶解炉であって、
前記炉内に収納された被加熱材の重量を計測する重量計測手段と、
前記炉の炉蓋に設けられ、該炉内に収納された被加熱材の温度を非接触で計測する放射温度計測手段からなる第1温度計測手段と、
前記炉内に収納された被加熱材に一時的に接触させて直接温度計測する第2温度計測手段と、
前記電力供給手段を介した前記加熱コイルへの高周波電力の供給を制御する電力制御手段とを備え
記電力制御手段は、
前記炉内に収容された被加熱材を昇温させる昇温過程では、前記第1温度計測手段による計測温度と前記第2温度計測手段による計測温度のうち該第2温度計測手段による計測温度を優先し、該第2温度計測手段による計測温度から昇温完了時間を算出し、算出した昇温完了時間まで被加熱材を加熱溶解させると共に、
加熱溶解後の出湯過程では、前記炉の傾動および傾動からの復帰を判定し、傾動後に復帰したことトリガとして、前記第1温度計測手段による計測温度と前記重量計測手段により計測された被加熱材の質量とを取得し、取得した該計測温度および該質量から保持電力を算出し、算出した保持電力を前記加熱コイルに印加することを特徴とする。
The induction melting furnace of the first invention is an induction melting furnace that melts a material to be heated stored in the furnace by supplying high frequency power to a heating coil provided on the outer periphery of the furnace wall via a power supply means. hand,
A weight measuring means for measuring the weight of the material to be heated stored in the furnace, and
A first temperature measuring means including a radiation temperature measuring means provided on the furnace lid of the furnace and measuring the temperature of the material to be heated housed in the furnace in a non-contact manner.
A second temperature measuring means for directly measuring the temperature by temporarily contacting the material to be heated stored in the furnace, and
It is provided with a power control means for controlling the supply of high frequency power to the heating coil via the power supply means .
Before Symbol power control means,
In the heating process of raising the temperature of the material to be heated housed in the furnace, the temperature measured by the second temperature measuring means out of the temperature measured by the first temperature measuring means and the temperature measured by the second temperature measuring means is determined. With priority, the temperature rise completion time is calculated from the temperature measured by the second temperature measuring means, and the material to be heated is heated and melted until the calculated temperature rise completion time.
The tapping process after heating and dissolving, to determine the return from tilting and the tilting of the furnace, as a trigger that has returned after tilting, heated measured by the measuring temperature and the weight measuring unit by the first temperature measuring means The feature is that the mass of the material is acquired, the holding power is calculated from the acquired measured temperature and the mass, and the calculated holding power is applied to the heating coil.

第1発明の誘導溶解炉によれば、炉内に収容された被加熱材を昇温させる昇温過程では、非接触式の放射温度計測手段である第1温度計測手段により、被加熱材の温度を連続的に計測して設定温度とすることができる。 According to the induction melting furnace of the first invention, in the heating process of raising the temperature of the material to be heated housed in the furnace, the material to be heated is subjected to the first temperature measuring means which is a non-contact type radiation temperature measuring means. The temperature can be continuously measured to obtain the set temperature.

さらに、出湯過程では、第1温度計測手段による計測温度に加えて、重量計測手段により計測された被加熱材(溶湯)の質量から保持温度を算出することにより、出湯の度に溶湯の量が変化した場合でも正確な保持温度の管理ができる。 Further, in the hot water discharge process, the holding temperature is calculated from the mass of the material to be heated (melted metal) measured by the weight measuring means in addition to the temperature measured by the first temperature measuring means, so that the amount of the molten metal is increased each time the hot water is discharged. Accurate holding temperature control is possible even if it changes.

このように、第1発明の誘導溶解炉によれば、出湯の度に溶湯の量が変化した場合でも正確な保持温度の管理が可能となる。 As described above, according to the induction melting furnace of the first invention, it is possible to accurately control the holding temperature even when the amount of molten metal changes each time the hot water is discharged.

ここで、発明の誘導溶解炉によれば、被加熱材を加熱溶融させる昇温過程では、溶解した被加熱材の表面にスラグなどの介在物が存在し、炉蓋に設けた放射温度計では正確な溶解温度の管理が困難な場合もあるところ、かかる昇温過程において、第1温度計測手段に加えて又は代えて、被加熱材と直接接触して温度計測する第2温度計測手段による計測温度から昇温完了時間を算出し、算出した昇温完了時間まで被加熱材を加熱溶解させることで、昇温過程における温度管理性を向上させることができる。 Here, according to the induction melting furnace of the first invention, in the heating process of heating and melting the material to be heated, inclusions such as slag are present on the surface of the melted material to be heated, and the radiation temperature provided on the furnace lid. Since it may be difficult to accurately control the melting temperature with a meter, a second temperature measuring means that measures the temperature in direct contact with the material to be heated in addition to or instead of the first temperature measuring means in the heating process. By calculating the temperature rise completion time from the temperature measured by the above and heating and melting the material to be heated until the calculated temperature rise completion time, the temperature controllability in the temperature rise process can be improved.

このように、第発明の誘導溶解炉によれば、被加熱材と直接接触して温度計測する第2温度計測手段を第1温度計測手段による温度計測の補完又は代替としても用いることができ、昇温過程における温度管理性を高めることができると共に、出湯過程において出湯の度に溶湯の量が変化した場合でも正確な保持温度の管理ができる。 As described above, according to the induction melting furnace of the first invention, the second temperature measuring means for directly contacting the material to be heated to measure the temperature can be used as a complement or a substitute for the temperature measurement by the first temperature measuring means. In addition to improving the temperature controllability in the temperature rise process, it is possible to accurately control the holding temperature even when the amount of molten metal changes each time the hot water is discharged in the hot water discharge process.

本実施形態の誘導溶解炉の全体的な構成を示すシステム構成図。The system block diagram which shows the overall structure of the induction melting furnace of this embodiment. 図1の誘導溶解炉における処理内容を示すフローチャート。The flowchart which shows the processing content in the induction melting furnace of FIG.

図1に示すように、本実施形態の誘導溶解炉は、誘導溶解炉は、溶解炉本体X内に収納された被加熱材Yを溶解させるものである。 As shown in FIG. 1, in the induction melting furnace of the present embodiment, the induction melting furnace melts the material Y to be heated housed in the melting furnace main body X.

具体的に、誘導溶解炉は、電源1と、高圧受電盤2と、高調波フィルタ3と、変換装置用変圧器4と、高周波インバータ5と、高周波整合装置6と、加熱コイル7と、重量計測手段8と、温度計測手段9(9A,9B)と、制御回路10と、コントローラ100(本発明の電力制御手段に相当する)とを備える。 Specifically, the induction melting furnace includes a power source 1, a high-voltage power receiving board 2, a harmonic filter 3, a transformer for a converter 4, a high-frequency inverter 5, a high-frequency matching device 6, a heating coil 7, and a weight. It includes a measuring means 8, a temperature measuring means 9 (9A, 9B), a control circuit 10, and a controller 100 (corresponding to the power control means of the present invention).

電源1は、定格の交流電源であって、高圧受電盤2に接続されている。 The power supply 1 is a rated AC power supply and is connected to the high-voltage power receiving board 2.

高圧受電盤2は、誘導加熱装置への電源通電・停止と故障発生時の電源遮断を行う装置であって、パワーヒューズ21と、遮断機22と、計器用変流器23と、計器用変圧器24とを備える。 The high-voltage power receiving board 2 is a device that energizes / stops the power supply to the induction heating device and shuts off the power supply when a failure occurs, and is a power fuse 21, a breaker 22, an instrument transformer 23, and an instrument transformer. A vessel 24 is provided.

パワーヒューズ21は、短絡事故時に電流遮断する手段であって、遮断機22は、電源の通電と停止に伴う開閉動作を行う。また、計器用変流器23は、この回路の回路電流をを制御回路10への出力信号に変換して制御回路10へ出力する。同様に、計器用変圧器24は、この回路の回路電圧を制御回路10への出力信号に変換して制御回路10へ出力する。 The power fuse 21 is a means for shutting off the current in the event of a short-circuit accident, and the circuit breaker 22 performs an opening / closing operation when the power supply is energized and stopped. Further, the instrument transformer 23 converts the circuit current of this circuit into an output signal to the control circuit 10 and outputs it to the control circuit 10. Similarly, the instrument transformer 24 converts the circuit voltage of this circuit into an output signal to the control circuit 10 and outputs it to the control circuit 10.

高調波フィルタ3は、高圧受電盤2に接続され、高周波インバータ5から高調波電流が電力系統に流出しないように抑制する装置であって、限流リアクトル31と、直列リアクトル32と、高調波コンデンサ33とから構成される。また、高調波フィルタ3は、高調波電流が所定値を超過した場合に異常信号である信号を制御回路10へ出力する。 The harmonic filter 3 is a device connected to the high-voltage power receiving panel 2 to suppress the harmonic current from flowing out from the high-frequency inverter 5 to the power system, and is a current limiting reactor 31, a series reactor 32, and a harmonic capacitor. It is composed of 33. Further, the harmonic filter 3 outputs a signal which is an abnormal signal to the control circuit 10 when the harmonic current exceeds a predetermined value.

変換装置用変圧器4は、高調波フィルタ3に接続され、高周波インバータ5が所定の出力電圧を出力するために、高周波インバータ5への入力電圧を調整する装置であって、温度上昇や内部ガス圧異常などの際に異常信号である信号を制御回路10へ出力する。 The transformer 4 for a converter is a device connected to a harmonic filter 3 and adjusts an input voltage to the high-frequency inverter 5 in order for the high-frequency inverter 5 to output a predetermined output voltage. A signal that is an abnormal signal is output to the control circuit 10 in the event of a pressure abnormality or the like.

高周波インバータ5は、変換装置用変圧器4に接続され、50Hzまたは60Hzの商用電源から任意の高周波電流を生成するための装置であって、交流/直流変換器である順変換器51と、直流/交流変換器である逆変換器52から構成され、制御回路10からの運転・停止・出力制御信号により制御される。 The high-frequency inverter 5 is a device connected to a transformer 4 for a converter to generate an arbitrary high-frequency current from a commercial power source of 50 Hz or 60 Hz, and is a forward converter 51 which is an AC / DC converter and a direct current. It is composed of an inverse converter 52, which is an AC converter, and is controlled by a start / stop / output control signal from the control circuit 10.

また、高周波インバータ5には、直流リアクトル53が内蔵されており、順変換器51で生成する直流電圧に重畳するリプル成分を除去すると共に、逆変換器52や加熱コイル7などの負荷破損時の過電流の急激な流出を抑制する。 Further, the high-frequency inverter 5 has a built-in DC reactor 53, which removes the ripple component superimposed on the DC voltage generated by the forward converter 51, and at the same time, when the load of the reverse converter 52, the heating coil 7, etc. is damaged. Suppresses the sudden outflow of overcurrent.

さらに、高周波インバータ5は、故障時に制御回路10に故障状態を伝える信号や、電圧・電流・電力・周波数といった稼動時の電気データ(電力供給状態に相当する)を、必要に応じてコントローラ100へ出力する。 Further, the high-frequency inverter 5 transmits a signal for transmitting the failure state to the control circuit 10 at the time of failure and electrical data (corresponding to the power supply state) during operation such as voltage, current, power, and frequency to the controller 100 as needed. Output.

高周波整合装置6は、高周波インバータ5に接続され、高周波インバータ5と加熱コイル7とのインピーダンス整合を図る装置である。高周波整合装置6は、インピーダンス整合を図るための高周波整合変圧器61と、加熱コイル7の遅れ力率を進み力率に補償する力率調整コンデンサ62とを備え、これらの構成要素の温度上昇や破損などの異常信号を制御回路10へ出力する。 The high-frequency matching device 6 is a device connected to the high-frequency inverter 5 to achieve impedance matching between the high-frequency inverter 5 and the heating coil 7. The high-frequency matching device 6 includes a high-frequency matching transformer 61 for impedance matching and a power factor adjusting capacitor 62 for advancing the delayed power factor of the heating coil 7 and compensating for the power factor. An abnormal signal such as damage is output to the control circuit 10.

加熱コイル7は、高周波インバータ5から供給された高周波電力により、溶解炉本体X内に収納された鉄等の被加熱材Yにうず電流を発生させ,うず電流により金属材料間に発生するジュール熱で被加熱材Yを昇温させて溶解させる。 The heating coil 7 generates a vortex current in the material Y to be heated such as iron housed in the melting furnace main body X by the high frequency power supplied from the high frequency inverter 5, and the Joule heat generated between the metal materials by the vortex current. The temperature of the material Y to be heated is raised to melt it.

このとき、図示しない温度検出手段や冷却水路の循環機構などの際に異常信号が制御回路10に出力される。 At this time, an abnormal signal is output to the control circuit 10 at the time of a temperature detecting means (not shown), a circulation mechanism of a cooling water channel, or the like.

重量計測手段8は、例えば、溶解炉本体Xの下方に設けられた質量測定手段であるロードセルであって、溶解炉本体X内に収納された被加熱材Yの質量を計測し、その質量信号をコントローラ100へ出力する。 The weight measuring means 8 is, for example, a load cell which is a mass measuring means provided below the melting furnace main body X, measures the mass of the material Y to be heated housed in the melting furnace main body X, and measures the mass signal thereof. Is output to the controller 100.

なお、重量計測手段8は、ロードセル以外の質量計測手段であってもよい、例えば、溶解炉本体X内に投入する際に被加熱材の質量を予め計測すると共に出湯量の質量を計測する外部質量計測手段により、溶解炉本体X内の質量を間接的に算出してもよい。 The weight measuring means 8 may be a mass measuring means other than the load cell. For example, the mass of the material to be heated is measured in advance and the mass of the amount of hot water discharged is measured when the material is put into the melting furnace main body X. The mass in the melting furnace main body X may be indirectly calculated by the mass measuring means.

温度計測手段9は、溶解炉本体Xの炉蓋Zに貫通して設けられ、溶解炉本体X内の被加熱材Yの温度を非接触式に計測する放射温度計測手段である第1温度計測手段9Aと、溶解炉本体X内で溶解された被加熱材Yの温度を直接計測する第2温度計測手段9Bとを備える。 The temperature measuring means 9 is provided so as to penetrate the furnace lid Z of the melting furnace main body X, and is a first temperature measuring means which is a radiation temperature measuring means for measuring the temperature of the material Y to be heated in the melting furnace main body X in a non-contact manner. The means 9A and the second temperature measuring means 9B for directly measuring the temperature of the material Y to be heated melted in the melting furnace main body X are provided.

第1温度計測手段9A及び第2温度計測手段9Bの計測温度は、それぞれコントローラ100へ出力される。 The measured temperatures of the first temperature measuring means 9A and the second temperature measuring means 9B are output to the controller 100, respectively.

制御回路10は、誘導溶解炉に所定の運転をさせるための制御回路であって、加熱コイル7への電力制御を高周波インバータ5への制御信号を介して実行する。このほか、制御回路10は、誘導溶解炉の各構成要素が破損あるいは定格を超過した運転条件になった場合に、誘導溶解炉を保護するものであり、各種信号を処理するための演算装置(シーケンサ)及びプログラム(ソフトウェア)等から構成される。 The control circuit 10 is a control circuit for causing the induction melting furnace to perform a predetermined operation, and executes power control to the heating coil 7 via a control signal to the high frequency inverter 5. In addition, the control circuit 10 protects the induction melting furnace when each component of the induction melting furnace is damaged or the operating conditions exceed the rating, and is an arithmetic unit for processing various signals ( It is composed of a sequencer) and a program (software).

コントローラ100は、誘導溶解炉の運転・停止のほか、後述する重量計測手段8及び温度計測手段9に基づく出力値の演算処理など、誘導溶解炉の運転の全般を制御する。 The controller 100 controls the overall operation of the induction melting furnace, such as the operation / stop of the induction melting furnace, the calculation processing of the output value based on the weight measuring means 8 and the temperature measuring means 9, which will be described later.

次に、図2に示すフローチャートを参照して、重量計測手段8及び温度計測手段9に基づくコントローラ100による印加電力の出力値の演算処理について説明する。 Next, the calculation process of the output value of the applied power by the controller 100 based on the weight measuring means 8 and the temperature measuring means 9 will be described with reference to the flowchart shown in FIG.

まず、コントローラ100は、重量計測手段8から溶解炉本体X内に収納されて加熱溶解させる被加熱材Yの質量を取得する(STEP11)。 First, the controller 100 acquires the mass of the material Y to be heated, which is housed in the melting furnace main body X and is heated and melted, from the weight measuring means 8 (STEP 11).

次に、コントローラ100は、被加熱材Yの溶湯温度の設定値を取得する(STEP12)。溶湯温度の設定値は、被加熱材Yの種類等から設定されてもよく、予め操業予定登録がされている場合には、操業予定登録内容から自動的に設定されるようにしてもよい。 Next, the controller 100 acquires the set value of the molten metal temperature of the material Y to be heated (STEP 12). The set value of the molten metal temperature may be set from the type of the material Y to be heated or the like, and if the operation schedule is registered in advance, it may be automatically set from the operation schedule registration contents.

次に、コントローラ100は、次式に基づいて昇温時間t[h]を算出する(STEP13)。 Next, the controller 100 calculates the temperature rising time t [h] based on the following equation (STEP 13).

Figure 0006954556
Figure 0006954556

ここで、M[kg]は、被加熱材Yの質量であり、ΔT[℃]は、目標温度である溶湯温度の設定値との温度差であり、P[kW]は印加電力であり、Ks,Kpは、定数であり、ncは加熱コイル7の効率であり、(LOSS)は、誘導溶解炉の設計値から定まる熱損失値である。 Here, M [kg] is the mass of the material Y to be heated, ΔT [° C.] is the temperature difference from the set value of the molten metal temperature, which is the target temperature, and P [kW] is the applied power. Ks and Kp are constants, nc is the efficiency of the heating coil 7, and (LOSS) is the heat loss value determined from the design value of the induction melting furnace.

コントローラ100は、印加電力P[kW]が予め設定されている場合(例えば、昇温時間を最短とするように最大出力とするように設定されている場合)には、上式に基づいて昇温時間t[h]を算出して、制御回路10を介して被加熱材Yの昇温を開始する。 When the applied power P [kW] is preset in the controller 100 (for example, when the maximum output is set so as to minimize the temperature rise time), the controller 100 rises based on the above equation. The warm time t [h] is calculated, and the temperature rise of the material Y to be heated is started via the control circuit 10.

一方、コントローラ100は、印加電力P[kW]が予め設定されていない場合(例えば、溶解完了時間が設定されている場合)には、上式に基づいて、印加電力P[kW]を算出して、制御回路10を介して被加熱材Yの昇温を開始する。 On the other hand, when the applied power P [kW] is not set in advance (for example, when the melting completion time is set), the controller 100 calculates the applied power P [kW] based on the above equation. Then, the temperature of the material Y to be heated is started via the control circuit 10.

次に、コントローラ100は、第1温度計測手段9A及び第2温度計測手段9Bの計測温度を所定のタイミングで取得する(STEP14)。 Next, the controller 100 acquires the measured temperatures of the first temperature measuring means 9A and the second temperature measuring means 9B at predetermined timings (STEP 14).

ここで、コントローラ100は、第1温度計測手段9Aと第2温度計測手段9Bの計測温度に温度差がある場合には、第2温度計測手段9Bの計測温度を優先して、次の昇温完了警報処理等を行う。昇温過程では、溶解した被加熱材の表面にスラグなどの介在物が存在し、炉蓋に設けた放射温度計では正確な溶解温度の取得が困難な場合もあるためである。 Here, when there is a temperature difference between the measured temperatures of the first temperature measuring means 9A and the second temperature measuring means 9B, the controller 100 gives priority to the measured temperature of the second temperature measuring means 9B and raises the next temperature. Performs completion alarm processing, etc. This is because in the process of raising the temperature, inclusions such as slag are present on the surface of the melted material to be heated, and it may be difficult to obtain an accurate melting temperature with a radiation thermometer provided on the furnace lid.

次に、コントローラ100は、STEP14で取得した計測温度に基づいて、上式から昇温完了時間が所定時間後(例えば30秒後)である場合には、昇温完了警報を図示しないスピーカおよびモニタ等を介してユーザ(作業者)に報知する(STEP15)。 Next, based on the measured temperature acquired in STEP 14, when the temperature rise completion time is after a predetermined time (for example, 30 seconds) from the above equation, the controller 100 gives a temperature rise completion alarm to a speaker and a monitor (not shown). Notify the user (worker) via the like (STEP 15).

そして、昇温完了時間となると、コントローラ100は、被加熱材Yを溶湯温度の設定値に保持する保持モード(本発明の出湯過程に相当する)に移行する(STEP21)。 Then, when the temperature rise completion time is reached, the controller 100 shifts to a holding mode (corresponding to the hot water discharge process of the present invention) in which the material Y to be heated is held at the set value of the molten metal temperature (STEP 21).

保持モードにおいて、コントローラ100は、溶解炉本体Xが出湯のために傾動したか(傾動ボタンが選択されたか)を判定すると共に(STEP22)、傾動から復帰したか(復帰ボタンが選択されか)を判定する(STEP23)。 In the holding mode, the controller 100 determines whether the melting furnace main body X has tilted due to hot water (whether the tilt button has been selected) (STEP 22) and whether the melting furnace body X has returned from tilting (whether the return button has been selected). Judgment (STEP23).

そして、傾動がない場合には(STEP22でNO)、保持モードをそのまま維持し、傾動が選択されたが(STEP22でYES)、復帰しない場合には(STEP23でNO)、復帰するまで待機する。 Then, if there is no tilt (NO in STEP22), the holding mode is maintained as it is, and tilt is selected (YES in STEP22), but if it does not return (NO in STEP23), it waits until it returns.

次いで、傾動後に復帰すると(STEP23でYES)、コントローラ100は、溶解炉本体X内の被加熱材Yの質量を取得する(STEP24)。 Then, when returning after tilting (YES in STEP 23), the controller 100 acquires the mass of the material Y to be heated in the melting furnace main body X (STEP 24).

さらに、コントローラ100は、溶解炉本体X内の被加熱材Yの温度を第1温度計測手段9Aにより取得する(STEP25)。ここで、保持モードにおいて、第1温度計測手段9Aの測定温度を優先して用いるのは、出湯時には、溶解した被加熱材の表面にスラグなどの介在物が存在しても除滓等によって既に除去されているためである。 Further, the controller 100 acquires the temperature of the material Y to be heated in the melting furnace main body X by the first temperature measuring means 9A (STEP 25). Here, in the holding mode, the measurement temperature of the first temperature measuring means 9A is preferentially used because even if inclusions such as slag are present on the surface of the melted material to be heated at the time of hot water, it is already removed by slag or the like. This is because it has been removed.

次に、コントローラ100は、STEP24で取得した質量およびSTEP25で取得した計測温度から、上式に基づいて保持電力を算出し(STEP26)、算出した保持電力を制御回路10を介して加熱コイル7に印加する。 Next, the controller 100 calculates the holding power based on the above equation from the mass acquired in STEP 24 and the measured temperature acquired in STEP 25 (STEP 26), and transfers the calculated holding power to the heating coil 7 via the control circuit 10. Apply.

次に、コントローラ100は、出湯が完了するまで(出湯完了ボタンが選択されるまで)、上述の保持モードにおける処理STEP22〜26を繰り返す(STEP27)。 Next, the controller 100 repeats the processes STEP 22 to 26 in the above-mentioned holding mode until the hot water discharge is completed (until the hot water discharge completion button is selected) (STEP 27).

以上が、重量計測手段8及び温度計測手段9に基づくコントローラ100による印加電力の出力値の演算処理の詳細であり、かかるコントローラ100による処理によれば、出湯の度に、持ち出しの熱量と残った溶湯の量が変化する場合にも、正確な保持温度の管理が可能となる。 The above is the details of the calculation processing of the output value of the applied power by the controller 100 based on the weight measuring means 8 and the temperature measuring means 9, and according to the processing by the controller 100, the amount of heat taken out and the amount of heat remaining each time the hot water is discharged. Accurate control of the holding temperature is possible even when the amount of molten metal changes.

なお、本実施形態では、温度計測手段9として、放射温度計測手段である第1温度計測手段9Aと、溶湯に一時的に直接接触させて温度計測する第2温度計測手段9Bとを併用し、昇温過程では第2温度計測手段9Bを優先して用いると共に、保持モード(出湯過程)では、第1温度計測手段9Aを優先して用いる場合について説明したが、これに限定されるものではく、昇温過程において、溶解した被加熱材の表面にスラグなどの介在物が少ないか、介在物があっても除滓を適時実行することで、第1温度計測手段9Aを用いて、第2温度計測手段9Bを省略してもよい。 In the present embodiment, as the temperature measuring means 9, the first temperature measuring means 9A, which is a radiation temperature measuring means, and the second temperature measuring means 9B, which measures the temperature by temporarily directly contacting the molten metal, are used in combination. The case where the second temperature measuring means 9B is preferentially used in the temperature raising process and the first temperature measuring means 9A is preferentially used in the holding mode (hot water discharge process) has been described, but the present invention is not limited to this. In the process of raising the temperature, there are few inclusions such as slag on the surface of the melted material to be heated, or even if there are inclusions, the removal is performed in a timely manner. The temperature measuring means 9B may be omitted.

また、第2温度計測手段9Bを省略することなく、昇温過程において、第1温度計測手段9Aと第2温度計測手段9Bとを併用し、これらの計測温度に所定の閾値を超える差がある場合に第1温度計測手段9Aに代えて第2温度計測手段9Bの計測温度を採用するようにしてもよい。 Further, without omitting the second temperature measuring means 9B, the first temperature measuring means 9A and the second temperature measuring means 9B are used in combination in the temperature raising process, and there is a difference in the measured temperatures exceeding a predetermined threshold value. In some cases, the measured temperature of the second temperature measuring means 9B may be adopted instead of the first temperature measuring means 9A.

1…電源、2…高圧受電盤、3…高調波フィルタ、4…変換装置用変圧器、5…高周波インバータ、6…高周波整合装置、7…加熱コイル、8…重量計測手段、9A…第1温度計測手段、9B…第2温度計測手段、10…制御回路、100…コントローラ(電力制御手段)、X…溶解炉本体、Y…被加熱材、Z…炉蓋。 1 ... Power supply, 2 ... High voltage power receiving board, 3 ... Harmonic filter, 4 ... Transformer for converter, 5 ... High frequency inverter, 6 ... High frequency matching device, 7 ... Heating coil, 8 ... Weight measuring means, 9A ... 1st Temperature measuring means, 9B ... Second temperature measuring means, 10 ... Control circuit, 100 ... Controller (electric power control means), X ... Melting furnace body, Y ... Heated material, Z ... Furnace lid.

Claims (1)

炉壁の外周に設けられた加熱コイルに電力供給手段を介して高周波電力を供給することにより炉内に収納された被加熱材を溶解させる誘導溶解炉であって、
前記炉内に収納された被加熱材の重量を計測する重量計測手段と、
前記炉の炉蓋に設けられ、該炉内に収納された被加熱材の温度を非接触で計測する放射温度計測手段からなる第1温度計測手段と、
前記炉内に収納された被加熱材に一時的に接触させて直接温度計測する第2温度計測手段と、
前記電力供給手段を介した前記加熱コイルへの高周波電力の供給を制御する電力制御手段とを備え
記電力制御手段は、
前記炉内に収容された被加熱材を昇温させる昇温過程では、前記第1温度計測手段による計測温度と前記第2温度計測手段による計測温度のうち該第2温度計測手段による計測温度を優先し、該第2温度計測手段による計測温度から昇温完了時間を算出し、算出した昇温完了時間まで被加熱材を加熱溶解させると共に、
加熱溶解後の出湯過程では、前記炉の傾動および傾動からの復帰を判定し、傾動後に復帰したことトリガとして、前記第1温度計測手段による計測温度と前記重量計測手段により計測された被加熱材の質量とを取得し、取得した該計測温度および該質量から保持電力を算出し、算出した保持電力を前記加熱コイルに印加することを特徴とする誘導溶解炉。
An induction melting furnace that melts the material to be heated stored in the furnace by supplying high-frequency power to a heating coil provided on the outer periphery of the furnace wall via a power supply means.
A weight measuring means for measuring the weight of the material to be heated stored in the furnace, and
A first temperature measuring means including a radiation temperature measuring means provided on the furnace lid of the furnace and measuring the temperature of the material to be heated housed in the furnace in a non-contact manner.
A second temperature measuring means for directly measuring the temperature by temporarily contacting the material to be heated stored in the furnace, and
It is provided with a power control means for controlling the supply of high frequency power to the heating coil via the power supply means .
Before Symbol power control means,
In the heating process of raising the temperature of the material to be heated housed in the furnace, the temperature measured by the second temperature measuring means out of the temperature measured by the first temperature measuring means and the temperature measured by the second temperature measuring means is determined. With priority, the temperature rise completion time is calculated from the temperature measured by the second temperature measuring means, and the material to be heated is heated and melted until the calculated temperature rise completion time.
The tapping process after heating and dissolving, to determine the return from tilting and the tilting of the furnace, as a trigger that has returned after tilting, heated measured by the measuring temperature and the weight measuring unit by the first temperature measuring means An induction melting furnace characterized in that the mass of a material is acquired, the holding power is calculated from the acquired measured temperature and the mass, and the calculated holding power is applied to the heating coil.
JP2016244884A 2016-12-16 2016-12-16 Induction melting furnace Active JP6954556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244884A JP6954556B2 (en) 2016-12-16 2016-12-16 Induction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244884A JP6954556B2 (en) 2016-12-16 2016-12-16 Induction melting furnace

Publications (2)

Publication Number Publication Date
JP2018098153A JP2018098153A (en) 2018-06-21
JP6954556B2 true JP6954556B2 (en) 2021-10-27

Family

ID=62633140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244884A Active JP6954556B2 (en) 2016-12-16 2016-12-16 Induction melting furnace

Country Status (1)

Country Link
JP (1) JP6954556B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213787A (en) * 1988-06-30 1990-01-18 Shinko Electric Co Ltd Automatic operation device for crucible type smelting furnace
JP2748611B2 (en) * 1989-11-10 1998-05-13 トヨタ自動車株式会社 Melting furnace temperature control method and apparatus
JPH0799308B2 (en) * 1992-11-24 1995-10-25 栃木県 Metal melting furnace
JPH0956059A (en) * 1995-08-09 1997-02-25 Shinko Electric Co Ltd High-frequency power unit for dual system high-frequency induction furnace
JP2000274951A (en) * 1999-03-18 2000-10-06 Kobe Steel Ltd Cold crucible induction melting system and tapping method

Also Published As

Publication number Publication date
JP2018098153A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
EP1889517B1 (en) Induction heating system having multiple temperature input control
RU2507724C2 (en) Control method of melting process in electric-arc furnace, and signal processing device, programme code and data carrier for implementation of that method
JP6294566B2 (en) System and method for determining the temperature of a metal melt in an electric arc furnace
US20080198894A1 (en) Method For Regulating the Melting Process in an Electric-Arc Furnace
WO2007119363A1 (en) High frequency heating device
JP6954556B2 (en) Induction melting furnace
JP5530116B2 (en) Alarm processing method for induction melting furnace
JP2748611B2 (en) Melting furnace temperature control method and apparatus
JP5079865B2 (en) Induction melting furnace
CN111965225B (en) Crucible monitoring method and device in vacuum induction melting furnace
JP5656532B2 (en) Induction melting furnace
JP5360182B2 (en) Resin sealing device and control method of resin sealing device
JP7118777B2 (en) Blister tester and method
JP4378857B2 (en) Induction heating melting furnace
JP3737180B2 (en) Temperature control method for casting mold
CN108870971A (en) A kind of electromagnetic welding furnace temperature control method
JP6486983B2 (en) Abnormality detection apparatus and abnormality detection method for induction melting furnace
JP6059389B1 (en) Melting control method for fast induction melting furnace
JP2019184191A (en) Tapping method in induction heating melting device and induction heating melting device
JP4920720B2 (en) Induction heating cooker
JP2000213728A (en) Temperature rise controller and control method for electric resistance type ash melting furnace
JPS5855707A (en) Measuring device for pickup of slag in channel type induction furnace
JPH11162632A (en) Input power control method for electrode of electric furnace
JP2011003373A (en) Heating cooker
JP5105946B2 (en) Cooking equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6954556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250