JP6059389B1 - Melting control method for fast induction melting furnace - Google Patents
Melting control method for fast induction melting furnace Download PDFInfo
- Publication number
- JP6059389B1 JP6059389B1 JP2016121488A JP2016121488A JP6059389B1 JP 6059389 B1 JP6059389 B1 JP 6059389B1 JP 2016121488 A JP2016121488 A JP 2016121488A JP 2016121488 A JP2016121488 A JP 2016121488A JP 6059389 B1 JP6059389 B1 JP 6059389B1
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- control method
- condition
- molten metal
- melting furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002844 melting Methods 0.000 title claims abstract description 83
- 230000008018 melting Effects 0.000 title claims abstract description 83
- 230000006698 induction Effects 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- 238000003756 stirring Methods 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 32
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 14
- 239000000956 alloy Substances 0.000 abstract description 14
- 230000006866 deterioration Effects 0.000 abstract description 9
- 229910000838 Al alloy Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000004512 die casting Methods 0.000 description 5
- 238000012827 research and development Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Furnace Details (AREA)
- General Induction Heating (AREA)
Abstract
【課題】被加熱材を短時間に高速溶解させた際にも合金の品質低下を抑制することができる高速誘導溶解炉の溶解制御方法を提供する。【解決手段】高速誘導溶解炉の溶解制御方法は、加熱コイル61に印加される印加電力Pおよび周波数fを、(1)前記被加熱材の溶湯撹拌力Fを、溶湯表面の被膜が溶湯中に巻き込まれない第1条件と、(2)前記周波数fを、前記被加熱材の溶湯表面の飛散を抑制する第2条件と、(3)前記周波数fを、前記炉壁の自己加熱を抑制する第3条件とを満たすように、(4)溶湯撹拌力Fを少なくとも前記印加電力Pと前記周波数fとを含む関係式として規定した第4条件を用いて算出するものである。【選択図】なしDisclosed is a melting control method for a high-speed induction melting furnace capable of suppressing deterioration in quality of an alloy even when a material to be heated is melted at high speed in a short time. A melting control method of a high-speed induction melting furnace includes an applied electric power P and a frequency f applied to a heating coil 61, (1) a molten metal stirring force F of the material to be heated, and a coating on the molten metal surface in the molten metal. A first condition that is not caught in, (2) a second condition that suppresses the frequency f from being scattered on the surface of the molten metal, and (3) a frequency f that suppresses self-heating of the furnace wall. (4) The molten metal stirring force F is calculated using a fourth condition that is defined as a relational expression including at least the applied power P and the frequency f. [Selection figure] None
Description
炉壁の外周に設けられた加熱コイルに電力供給手段を介して高周波電力を供給することにより炉内に収納された被加熱材を高速溶解させる高速誘導溶解炉の溶解制御方法に関する。 The present invention relates to a melting control method for a high-speed induction melting furnace in which high-frequency power is supplied to a heating coil provided on the outer periphery of a furnace wall through power supply means to rapidly melt a material to be heated stored in the furnace.
従来、この種の誘導溶解炉としては、本願出願人および本願発明者らによる下記特許文献1に示すように、炉壁の外周に設けられた加熱コイルに電力供給手段を介して電力を供給することにより炉内に収納された被溶解材を溶解させる誘導溶解炉が知られている。 Conventionally, as this type of induction melting furnace, as shown in the following Patent Document 1 by the present applicant and the present inventors, electric power is supplied to a heating coil provided on the outer periphery of the furnace wall via electric power supply means. There is known an induction melting furnace for melting a material to be melted stored in the furnace.
本願出願人および発明者は、誘導溶解炉の研究・開発のパイオニアとして、下記特許文献1では、溶解した被溶解材に成分調整材を添加する第2段階において、溶湯内に生じる撹拌力を制御し、成分調整材を被溶解材に溶け込ませるのに適した周波数の制御信号を生成している。 As a pioneer of research and development of induction melting furnaces, the present applicant and the inventor control the stirring force generated in the molten metal in the second stage in which the component adjusting material is added to the molten material to be melted in the following Patent Document 1. And the control signal of the frequency suitable for making a component adjustment material melt | dissolve in to-be-melted material is produced | generated.
ここで、アルミニウムやマグネシウムなどを短時間に高速で溶解してダイカストマシンに供給する場合には、溶湯の撹拌力により表面の酸化膜を巻き込む等することにより、アルミ合金やマグネシウム合金の品質悪化を招き、ダイカストマシンに供給する方法としては適さないというのがダイカスト業界の常識であった。 Here, when aluminum or magnesium is melted at a high speed in a short time and supplied to the die casting machine, the quality of the aluminum alloy or magnesium alloy is deteriorated by, for example, entraining the surface oxide film with the stirring force of the molten metal. It was common sense in the die casting industry that it was not suitable as a method for supplying to die casting machines.
誘導溶解炉の研究・開発のパイオニアである本願出願人および発明者は、鋭意の試験・研究を繰り返す中で、溶湯の撹拌力により表面の酸化膜を巻き込む等することによる合金の品質悪化を招く要因として、介在物数K値に着目することで、ダイカストに適した撹拌力を生じさせることができるとの知見に至った。 The applicant and the inventor, who are pioneers in the research and development of induction melting furnaces, lead to deterioration of the quality of the alloy due to the inclusion of an oxide film on the surface by the stirring force of the molten metal, while repeating intensive testing and research. As a factor, the inventors have found that a stirring force suitable for die casting can be generated by paying attention to the inclusion number K value.
本発明は、かかる知見に基づくものであり、被加熱材を短時間に高速溶解させた際にも合金の品質低下を抑制することができる高速誘導溶解炉の溶解制御方法を提供することを目的とする。 The present invention is based on such knowledge, and an object of the present invention is to provide a melting control method for a high-speed induction melting furnace that can suppress deterioration in quality of an alloy even when a material to be heated is melted at high speed in a short time. And
第1発明の高速誘導溶解炉の溶解制御方法は、炉壁の外周に設けられた加熱コイルに電力供給手段を介して高周波電力を供給することにより炉内に収納された被加熱材を短時間に高速溶解させる高速誘導溶解炉の溶解制御方法であって、
前記加熱コイルに印加される印加電力Pおよび周波数fを、
(1)前記被加熱材の溶湯撹拌力Fを、溶湯表面の被膜が溶湯中に巻き込まれない第1条件と、
(2)前記周波数fを、前記被加熱材の溶湯表面の飛散を抑制する第2条件と、
(3)前記周波数fを、前記炉壁の自己加熱を抑制する第3条件と
を満たすように、
(4)溶湯撹拌力Fを少なくとも前記印加電力Pと前記周波数fとを含む関係式として規定した第4条件を用いて算出することを特徴とする。
According to the first aspect of the present invention, there is provided a melting control method for a high speed induction melting furnace in which a high-frequency power is supplied to a heating coil provided on the outer periphery of the furnace wall via a power supply means to quickly store a material to be heated stored in the furnace. Is a melting control method for a high speed induction melting furnace that melts at high speed.
The applied power P and frequency f applied to the heating coil are
(1) The first condition that the molten metal stirring force F of the heated material is such that the coating on the molten metal surface is not involved in the molten metal,
(2) a second condition that suppresses the frequency f from scattering on the surface of the molten metal of the heated material;
(3) The frequency f is satisfied so as to satisfy a third condition for suppressing self-heating of the furnace wall.
(4) The molten metal stirring force F is calculated using a fourth condition defined as a relational expression including at least the applied power P and the frequency f.
第1発明の高速誘導溶解炉の溶解制御方法によれば、誘導溶解炉の研究・開発のパイオニアである本願出願人および発明者は、合金の品質評価値である介在物数K値に着目することで、介在物数K値と撹拌力とが比例関係にあり、介在物数K値が品質水準値となる撹拌力を生じさせる必要があるとの知見に至った。 According to the melting control method for a high speed induction melting furnace of the first invention, the applicant and the inventor who are pioneers in research and development of induction melting furnaces pay attention to the number K of inclusions which is a quality evaluation value of the alloy. Thus, the present inventors have found that there is a proportional relationship between the inclusion number K value and the stirring force, and it is necessary to generate the stirring force at which the inclusion number K value becomes the quality level value.
かかる知見に基づいて、加熱コイルに印加される印加電力Pおよび周波数fを、(1)被加熱材の溶湯撹拌力Fを、溶湯表面の被膜が溶湯中に巻き込まれない第1条件とすることで、合金の品質を担保することができる。 Based on this knowledge, the applied power P and the frequency f applied to the heating coil are set to (1) the molten metal stirring force F of the material to be heated as the first condition in which the coating on the molten metal surface is not caught in the molten metal. Thus, the quality of the alloy can be ensured.
さらに、この溶湯撹拌力の条件を、(4)溶湯撹拌力Fを少なくとも印加電力Pと周波数fとを含む関係式として規定した第4条件を用いて印加電力Pと周波数fとの関係式として算出することができる。 Further, the condition of the molten metal stirring force is defined as (4) a relational expression between the applied power P and the frequency f using a fourth condition that defines the molten metal stirring force F as a relational expression including at least the applied power P and the frequency f. Can be calculated.
また、(2)周波数fを、前記被加熱材の溶湯表面の飛散を抑制する第2条件と、(3)周波数fを、前記炉壁の自己加熱を抑制する第3条件とを満たすようにすることで、誘導溶解炉による具体的な操業を可能とすることができる。 Further, (2) the frequency f satisfies a second condition for suppressing scattering of the molten metal surface of the heated material, and (3) the frequency f satisfies a third condition for suppressing self-heating of the furnace wall. By doing so, a specific operation by an induction melting furnace can be made possible.
このようにして求められた印加電圧Pおよび周波数fにより、被加熱材を短時間に高速溶解させた際にも合金の品質低下を抑制することができる。 With the applied voltage P and the frequency f thus determined, the quality of the alloy can be suppressed even when the material to be heated is melted at high speed in a short time.
第2発明の高速誘導溶解炉の溶解制御方法は、第1発明において、
(1)前記第1条件は、溶湯撹拌力Fが上限撹拌力F1より小さいものであり、
(2)前記第2条件は、周波数fが下限周波数f2より大きいものであり、
(3)前記第3条件は、周波数fが上限周波数f3より小さいものであり、
(4)前記第4条件は、下式で
The melting control method of the high speed induction melting furnace of the second invention is the first invention,
(1) The first condition is that the molten metal stirring force F is smaller than the upper limit stirring force F1,
(2) The second condition is that the frequency f is larger than the lower limit frequency f2.
(3) The third condition is that the frequency f is smaller than the upper limit frequency f3.
(4) The fourth condition is as follows:
第2発明の高速誘導溶解炉の溶解制御方法によれば、第1〜第4条件を具体的に設定することができる。このようにして求められた印加電圧Pおよび周波数fにより、被加熱材を短時間に高速溶解させた際にも合金の品質低下を具体的に抑制することができる。 According to the melting control method for a high speed induction melting furnace of the second invention, the first to fourth conditions can be specifically set. With the applied voltage P and the frequency f thus determined, even when the material to be heated is melted at high speed in a short time, it is possible to specifically suppress the deterioration of the alloy quality.
第3発明の高速誘導溶解炉の溶解制御方法は、第2発明において、
前記第1および第4条件により、下式を満たし
The melting control method of the fast induction melting furnace of the third invention is the second invention,
By the first and fourth conditions, the following formula is satisfied
f2<f<f3
を満たすことを特徴とする。
It is characterized by satisfying.
第3発明の高速誘導溶解炉の溶解制御方法によれば、第1および第4条件により具体的に充足すべき印加電圧Pと周波数fとの関係式を設定することができる。さらに、第2および第3条件から具体的に充足すべき周波数fの条件式を設定することができる。このようにして求められた印加電圧Pおよび周波数fにより、被加熱材を短時間に高速溶解させた際にも合金の品質低下を具体的に抑制することができる。 According to the melting control method of the high speed induction melting furnace of the third invention, the relational expression between the applied voltage P and the frequency f that should be specifically satisfied by the first and fourth conditions can be set. Further, it is possible to set a conditional expression of the frequency f that should be specifically satisfied from the second and third conditions. With the applied voltage P and the frequency f thus determined, even when the material to be heated is melted at high speed in a short time, it is possible to specifically suppress the deterioration of the alloy quality.
第4発明の高速誘導溶解炉の溶解制御方法は、第3発明において、
前記加熱コイルに印加される印加電力Pおよび周波数fを、さらに
(5)印加電力Pが下限印加電力P5以上という第5条件をも満たすように、
前記第1〜第5条件を充足する周波数fと印加電力Pとの領域をマップ上に表わし、該領域内の周波数fと印加電力Pとを任意に選択可能とすることを特徴とする。
According to a fourth aspect of the present invention, there is provided a melting control method for a high speed induction melting furnace according to the third aspect of the present invention,
The applied power P and the frequency f applied to the heating coil are further satisfied so that (5) the applied power P also satisfies the fifth condition that the lower limit applied power P5 or more.
A region of the frequency f and the applied power P that satisfies the first to fifth conditions is represented on a map, and the frequency f and the applied power P in the region can be arbitrarily selected.
第4発明の高速誘導溶解炉の溶解制御方法によれば、第1〜第4条件を満たす印加電圧Pと周波数fとは、これらを軸とする平面マップ上に展開することできるところ、第5条件の下限印加電力P5を設定することで、第1〜第5条件を満たす印加電力Pと周波数fとのマップ上の領域を設定することができる。 According to the melting control method of the high speed induction melting furnace of the fourth invention, the applied voltage P and the frequency f satisfying the first to fourth conditions can be developed on a plane map having these as axes. By setting the lower limit applied power P5 of the condition, it is possible to set a region on the map of the applied power P and the frequency f satisfying the first to fifth conditions.
このようにしてマップ上の閉じられた領域として求められた印加電圧Pおよび周波数fにより、被加熱材を短時間に高速溶解させた際にも合金の品質低下を具体的に抑制することができる。 Thus, the applied voltage P and the frequency f obtained as a closed region on the map can specifically suppress the deterioration of the quality of the alloy even when the material to be heated is rapidly melted in a short time. .
第5発明の高速誘導溶解炉の溶解制御方法は、第4発明において、
前記第1条件の上限撹拌力F1を、前記被加熱材の溶湯表面の飛散を抑制する上限撹拌力F2を考慮しながら段階的に規定し、前記領域内の周波数fと印加電力Pとを段階的に任意に選択可能とすることを特徴とする。
According to a fifth aspect of the present invention, there is provided a melting control method for a high speed induction melting furnace according to the fourth aspect of the present invention,
The upper limit stirring force F1 of the first condition is defined in a stepwise manner in consideration of the upper limit stirring force F2 that suppresses scattering of the molten metal surface of the heated material, and the frequency f and the applied power P in the region are stepped. It can be arbitrarily selected.
第5発明の高速誘導溶解炉の溶解制御方法によれば、第1〜第5条件を充足するマップ上の閉じられた領域は、第1条件〜第5条件を段階的に設定することができるところ、第1条件の上限撹拌力F1を被加熱材の溶湯表面の飛散を抑制する上限撹拌力F2を考慮しながら段階的に規定することで、領域内の周波数fと印加電力Pとを段階的に任意に選択可能とすることができる。 According to the melting control method of the fast induction melting furnace of the fifth invention, the closed region on the map satisfying the first to fifth conditions can set the first to fifth conditions stepwise. However, by defining the upper limit stirring force F1 of the first condition stepwise while considering the upper limit stirring force F2 that suppresses the scattering of the molten metal surface of the material to be heated, the frequency f and the applied power P in the region are stepped. It can be arbitrarily selected.
このようにしてマップ上の閉じられた領域として段階的に求められた印加電圧Pおよび周波数fにより、被加熱材を短時間に高速溶解させた際にも合金の品質低下を具体的に抑制することができる。 In this way, the applied voltage P and the frequency f obtained stepwise as a closed region on the map specifically suppress the deterioration of the alloy quality even when the material to be heated is rapidly melted in a short time. be able to.
第6発明の高速誘導溶解炉の溶解制御方法は、第1〜第5発明のいずれかにおいて、
前記被加熱材の質量および比熱から、該被加熱材を所望温度に加熱する際の積算電力量を算出することを特徴とする。
In any one of the first to fifth inventions, the melting control method for the high speed induction melting furnace of the sixth invention,
From the mass of the material to be heated and the specific heat, an integrated power amount for heating the material to be heated to a desired temperature is calculated.
第6発明の高速誘導溶解炉の溶解制御方法によれば、加熱コイルに印加される印加電力Pおよび周波数fを決定することで、被加熱材の質量および比熱から、該被加熱材を所望温度に加熱する際の積算電力量を併せて算出することができる。これにより、積算電力量が印加されたか否かを判定することにより、溶解終了判定をすることができ、被加熱材を短時間に高速溶解させた際にも合金の品質低下を抑制しつつ、確実に被加熱材を溶解させることができる。 According to the melting control method of the high speed induction melting furnace of the sixth aspect of the present invention, by determining the applied power P and the frequency f applied to the heating coil, the material to be heated is set to a desired temperature from the mass and specific heat of the material to be heated. It is also possible to calculate the integrated power amount when heating at the same time. Thereby, by determining whether or not the integrated power amount has been applied, it is possible to determine the end of melting, while suppressing deterioration in the quality of the alloy even when the material to be heated is melted at high speed in a short time, The material to be heated can be surely dissolved.
図1を参照して、本実施形態の高速誘導溶解炉の一例について説明する。なお、高速誘導溶解炉は、これに限定されるものではなく、高周波電源設備であれば、他の構成であってもよい。 With reference to FIG. 1, an example of the fast induction melting furnace of this embodiment is demonstrated. Note that the high speed induction melting furnace is not limited to this, and may have other configurations as long as it is a high frequency power supply facility.
高速誘導溶解炉は、溶解炉内に収納された被加熱材Xを溶解させるものであり、具体的には、電源1と、高圧受電盤2と、変換装置用変圧器3と、電力変換装置4と、高周波整合装置5と、誘導加熱装置6と、コントローラ100とを備える。 The high-speed induction melting furnace melts the material to be heated X stored in the melting furnace. Specifically, the power source 1, the high-voltage power receiving panel 2, the converter transformer 3, and the power converter. 4, a high-frequency matching device 5, an induction heating device 6, and a controller 100.
電源1は、交流電源であって、高圧受電盤2に接続されている。 The power source 1 is an AC power source and is connected to the high voltage power receiving panel 2.
高圧受電盤2は、誘導加熱装置6への電源通電・停止と故障発生時の電源遮断を行う装置であって、パワーヒューズ2aと遮断器2bとを備える。パワーヒューズ2aは、短絡事故時に電流遮断する手段であって、遮断器2bは、電源の通電と停止に伴う開閉動作を行う。 The high-voltage power receiving panel 2 is a device for energizing / stopping the power to the induction heating device 6 and shutting off the power when a failure occurs, and includes a power fuse 2a and a circuit breaker 2b. The power fuse 2a is a means for interrupting current in the event of a short circuit accident, and the circuit breaker 2b performs an opening / closing operation associated with energization and stop of the power source.
変換装置用変圧器3は、高圧受電盤2に接続され、電力変換装置4への入力電圧が所定の値となるように調整する。 The transformer for converter 3 is connected to the high voltage power receiving panel 2 and adjusts so that the input voltage to the power converter 4 becomes a predetermined value.
電力変換装置4は、変換装置用変圧器3に接続され、50Hzまたは60Hzの商用電源から任意の高周波電流を生成するための装置であって、制御回路10と、交流/直流変換器である順変換器41a,41bと、直流/交流変換器である逆変換器42a,42bとを備え、制御回路10からの出力制御信号により制御される。 The power conversion device 4 is a device for generating an arbitrary high-frequency current from a commercial power supply of 50 Hz or 60 Hz, connected to the transformer 3 for the conversion device, and is a control circuit 10 and an AC / DC converter. Converters 41a and 41b and inverse converters 42a and 42b, which are DC / AC converters, are controlled by an output control signal from the control circuit 10.
具体的に、電力変換装置4は、入力側にダイオード式順変換器41a,41bを備え、出力側にIGBT式逆変換器42a,42bを備え、順変換器41a,41bに直列に平滑用リアクトル43aが接続されると共に、順変換器41a,41bに並列に平滑用コンデンサ44が接続される。 Specifically, the power converter 4 includes diode type forward converters 41a and 41b on the input side, IGBT type reverse converters 42a and 42b on the output side, and a smoothing reactor in series with the forward converters 41a and 41b. 43a is connected, and a smoothing capacitor 44 is connected in parallel to the forward converters 41a and 41b.
さらに、電力変換装置4は、順変換器41a,41bの出力側の直流電圧を検出して直流電圧信号(a)を出力する直流電圧検出器45を備え、直流電圧検出器45の出力値は、制御回路10に出力される。 Furthermore, the power conversion device 4 includes a DC voltage detector 45 that detects a DC voltage on the output side of the forward converters 41a and 41b and outputs a DC voltage signal (a). The output value of the DC voltage detector 45 is Are output to the control circuit 10.
なお、制御回路10による電力変換装置4の制御内容については詳細を後述する。 Details of the control content of the power conversion device 4 by the control circuit 10 will be described later.
高周波整合装置5は、電力変換装置4と誘導加熱装置6との間に設けられて、誘導加熱装置6が低力率であるため負荷力率を改善する。 The high-frequency matching device 5 is provided between the power conversion device 4 and the induction heating device 6 and improves the load power factor because the induction heating device 6 has a low power factor.
具体的に、高周波整合装置5は、共振用コンデンサ51a,51bと、高周波整合装置5の出力電流を検出して出力電流信号(d)を出力する電流検出器52および出力電圧を検出して出力電圧信号(e)を出力する電圧検出器53等から構成される。 Specifically, the high-frequency matching device 5 detects and outputs the resonance capacitors 51a and 51b, the current detector 52 that detects the output current of the high-frequency matching device 5 and outputs the output current signal (d), and the output voltage. The voltage detector 53 is configured to output a voltage signal (e).
誘導加熱装置6は、電力変換装置4と高周波整合装置5とから供給される高周波電流を加熱コイル61に通電させることにより、溶解炉本体内に収納された被加熱材Xにうず電流を発生させ、うず電流により発生するジュール熱で被加熱材Xを加熱溶解させる。 The induction heating device 6 generates an eddy current in the material X to be heated housed in the melting furnace body by energizing the heating coil 61 with a high-frequency current supplied from the power conversion device 4 and the high-frequency matching device 5. The material to be heated X is heated and melted by Joule heat generated by eddy current.
コントローラ100は、制御誘導溶解炉の運転・停止を始めとする誘導溶解炉の運転の全般を制御する。 The controller 100 controls the overall operation of the induction melting furnace including the operation / stop of the control induction melting furnace.
次に、説明を後回しにした制御回路10について説明する。 Next, the control circuit 10 that will be described later will be described.
制御回路10は、主に、出力調整等の制御を行うと共に、誘導溶解炉の制御装置として、IGBT式逆変換器42a,42bの制御を行う制御信号生成部としての機能を備え、加熱コイル61に高周波電力を供給することにより炉内に収納された被加熱材Xを短時間に高速溶解させる溶解制御方法を実行する。 The control circuit 10 mainly performs control such as output adjustment, and as a control device for the induction melting furnace, has a function as a control signal generation unit that controls the IGBT inverters 42a and 42b. A melting control method is performed in which the material to be heated X accommodated in the furnace is rapidly melted in a short time by supplying high-frequency power to the furnace.
具体的に、制御回路10は、被加熱材Xに応じて加熱コイル61に印加される印加電力Pおよび周波数fを、
(1)前記被加熱材の溶湯撹拌力Fを、溶湯表面の被膜が溶湯中に巻き込まれない第1条件と、
(2)前記周波数fを、前記被加熱材の溶湯表面の飛散を抑制する第2条件と、
(3)前記周波数fを、前記炉壁の自己加熱を抑制する第3条件と
を満たすように、
(4)溶湯撹拌力Fを少なくとも印加電力Pと周波数fとを含む関係式として規定した第4条件を用いて算出する。
Specifically, the control circuit 10 determines the applied power P and the frequency f applied to the heating coil 61 according to the material to be heated X,
(1) The first condition that the molten metal stirring force F of the heated material is such that the coating on the molten metal surface is not involved in the molten metal,
(2) a second condition that suppresses the frequency f from scattering on the surface of the molten metal of the heated material;
(3) The frequency f is satisfied so as to satisfy a third condition for suppressing self-heating of the furnace wall.
(4) The molten metal stirring force F is calculated using a fourth condition defined as a relational expression including at least the applied power P and the frequency f.
より具体的には、
(1)前記第1条件は、溶湯撹拌力Fが上限撹拌力F1より小さいものである。例えば、被加熱材Xがアルミ合金である場合には、アルミ合金の品質を決定する介在物数K値が、例えば、0.9未満となるように、介在物数K値と比例関係にある溶湯撹拌力Fの上限撹拌力F1が決定される。例えば、この場合、F1=43.1[kg/cm2]である。
(2)前記第2条件は、周波数fが下限周波数f2より大きいものである。例えば、被加熱材Xがアルミ合金である場合には、f2=8000[Hz]であり、これ以下の場合には、溶湯撹拌力Fが過剰に大きくなり、溶湯が飛散し得る。
(3)前記第3条件は、周波数fが上限周波数f3より小さいものである。例えば、被加熱材Xがアルミ合金である場合には、f3=10000[Hz]であり、これ以上の場合には、炉自体(るつぼ自体)が加熱されてしまい、熱ショックによりるつぼが割れる可能性がある。
(4)第4条件は、下式で
More specifically,
(1) The first condition is that the molten metal stirring force F is smaller than the upper limit stirring force F1. For example, when the material X to be heated is an aluminum alloy, the number K of inclusions that determines the quality of the aluminum alloy is proportional to the number K of inclusions, for example, to be less than 0.9. An upper limit stirring force F1 of the molten metal stirring force F is determined. For example, in this case, F1 = 43.1 [kg / cm 2].
(2) The second condition is that the frequency f is greater than the lower limit frequency f2. For example, when the material X to be heated is an aluminum alloy, f2 = 8000 [Hz]. When the temperature is less than this, the molten metal stirring force F becomes excessively large and the molten metal can be scattered.
(3) The third condition is that the frequency f is smaller than the upper limit frequency f3. For example, when the material to be heated X is an aluminum alloy, f3 = 10000 [Hz]. When the temperature is higher than this, the furnace itself (the crucible itself) is heated, and the crucible may be broken by a heat shock. There is sex.
(4) The fourth condition is
さらに、第1および第4条件により、下式を満たし Furthermore, the following equation is satisfied by the first and fourth conditions.
一方、第2および第3条件により
f2<f<f3
すなわち、前記アルミ合金の場合には、
8000[Hz]<f<10000[Hz]
となり、これら2つを満たす印加電力Pおよび周波数fとして算出される。
On the other hand, according to the second and third conditions, f2 <f <f3
That is, in the case of the aluminum alloy,
8000 [Hz] <f <10000 [Hz]
Thus, the applied power P and the frequency f satisfying these two are calculated.
さらに、以上の第1〜第4条件に加えて、(5)印加電力Pが下限印加電力P5以上という第5条件を考慮すると、第1〜第5条件を充足する周波数fと印加電力Pとの領域をマップ上に表わすことができる。 Furthermore, in addition to the first to fourth conditions described above, (5) considering the fifth condition that the applied power P is equal to or higher than the lower limit applied power P5, the frequency f and the applied power P satisfying the first to fifth conditions Can be represented on the map.
例えば、上記アルミ合金の場合には、P5=20kWであり、この場合の第5条件は、P≧20kWとなる。 For example, in the case of the above aluminum alloy, P5 = 20 kW, and the fifth condition in this case is P ≧ 20 kW.
具体的には、図2に示すように、第1〜第5条件を充足する周波数fと印加電力Pとの領域(図中領域(I))をマップ上に表わすことができ、制御回路10は、領域(I)内の周波数fと印加電力Pとを任意に選択することができる。 Specifically, as shown in FIG. 2, a region (region (I) in the figure) between the frequency f and the applied power P satisfying the first to fifth conditions can be represented on the map, and the control circuit 10 Can arbitrarily select the frequency f and the applied power P in the region (I).
さらに、マップ上では、上記第1条件の上限撹拌力F1を、被加熱材Xの溶湯表面の飛散を抑制する上限撹拌力F2を考慮しながら段階的に規定することもできる。 Furthermore, on the map, the upper limit stirring force F1 of the first condition can be defined in a stepwise manner in consideration of the upper limit stirring force F2 that suppresses the scattering of the molten metal surface of the heated material X.
かかる上限撹拌力F2および第4条件により、下式を満たし The upper limit stirring force F2 and the fourth condition satisfy the following formula
ここで、領域(I)内から周波数fおよび印加電力Pは、次のようにして決定される。 Here, the frequency f and the applied power P are determined from the region (I) as follows.
まず、周波数fは、周波数fが大きいほど、合金表面に集中する電力が多くなり、被加熱材Xの固有抵抗によるジュール熱も大きくなる。そのため、被加熱材Xのバルクの大きさが小さいほど、表面積が大きく加熱効率が高まる。一方で、被加熱材Xのバルクの大きさが大きい場合には、表面にのみ電流が集中して材料内部まで加熱が進行せず、溶解能力が低下することなる。 First, as the frequency f increases, the power concentrated on the alloy surface increases and the Joule heat due to the specific resistance of the material X to be heated also increases. Therefore, the smaller the bulk size of the material to be heated X, the larger the surface area and the higher the heating efficiency. On the other hand, when the bulk size of the material to be heated X is large, current concentrates only on the surface and heating does not proceed to the inside of the material, so that the melting ability is lowered.
そこで、周波数fは、被加熱材Xのバルクの大きさが大きいほど、周波数fを小さく(f2側を)選択すると共に、被加熱材Xのバルクの大きさが小さいほど、周波数fを大きく(f3側を)選択する。 Therefore, the frequency f is selected to be smaller (f2 side) as the bulk size of the heated material X is larger, and the frequency f is larger as the bulk size of the heated material X is smaller ( Select f3 side).
さらに、印加電力Pは、例えば、何分以内に被加熱材Xを溶解完了させる必要があるか等の生産タクトタイムに合わせて、より短時間に溶解させる必要がある場合には、領域(I)の範囲内で(領域(II)に近い)高電力側を選択し、時間に余裕がある場合には、領域(I)の範囲内で(P=P5に近い)低電力側を選択する。 Furthermore, the applied electric power P is, for example, in the region (I) when it is necessary to dissolve the material to be heated X in a shorter time in accordance with the production tact time such as it is necessary to complete the melting within several minutes. ) In the range of (), select the high power side (close to region (II)), and if there is time, select the low power side in the range of region (I) (close to P = P5). .
以上のようにして、領域(I)内から周波数fおよび印加電力Pが決定される。 As described above, the frequency f and the applied power P are determined from within the region (I).
なお、制御回路10は、上記周波数fと印加電力Pの決定のほか、被加熱材Xの質量および比熱から、該被加熱材を所望温度に加熱する際の積算電力量を算出する。 In addition to determining the frequency f and the applied power P, the control circuit 10 calculates the integrated power amount when heating the heated material to a desired temperature from the mass and specific heat of the heated material X.
ここで、前記アルミ合金を、f=10000[Hz]で、溶解終了温度である680℃まで上昇させるための実験結果式として、比熱の代わりに Here, instead of specific heat, as an experimental result formula for raising the aluminum alloy to 680 ° C. which is the melting end temperature at f = 10000 [Hz].
これにより、かかる計算式から、制御回路10は、積算電力量が印加されたか否かを判定することにより、溶解終了判定をすることができ、過度な溶解を抑制しながら確実に被加熱材を溶解させることができる。 Thereby, from such a calculation formula, the control circuit 10 can determine the end of melting by determining whether or not the integrated power amount has been applied, and reliably control the material to be heated while suppressing excessive melting. Can be dissolved.
以上、詳しく説明したように、本実施形態の加熱コイル61に、上記条件を充足する周波数fと印加電力Pからなる高周波電力を供給することにより、被加熱材Xを短時間に高速溶解させた際にも合金の品質低下を抑制することができる。 As described above in detail, the material to be heated X is melted at high speed in a short time by supplying the heating coil 61 of the present embodiment with high-frequency power composed of the frequency f and the applied power P satisfying the above conditions. Even in this case, it is possible to suppress deterioration of the quality of the alloy.
なお、本実施形態では、アルミ合金を例に説明したが被加熱材Xは、短時間に高速で溶解してダイカストマシンに供給するものであれば、例えば、銅、鉛、錫、亜鉛、マグネシウムなどの非鉄金属およびその合金であってもよい。 In the present embodiment, the aluminum alloy has been described as an example. However, the material to be heated X is, for example, copper, lead, tin, zinc, magnesium, as long as it can be melted at high speed in a short time and supplied to the die casting machine. Nonferrous metals such as these and alloys thereof may also be used.
1…電源、2…高圧受電盤、3…変換装置用変圧器、4…電力変換装置、5…高周波整合装置、6…誘導加熱装置、10…制御回路(制御信号生成部)、41a,41b…ダイオード式順変換器、42a,42b…IGBT式逆変換器、61…加熱コイル、100…コントローラ、X…被加熱材。 DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... High voltage receiving board, 3 ... Transformer for conversion apparatuses, 4 ... Power conversion apparatus, 5 ... High frequency matching apparatus, 6 ... Induction heating apparatus, 10 ... Control circuit (control signal production | generation part), 41a, 41b ... diode type forward converter, 42a, 42b ... IGBT type reverse converter, 61 ... heating coil, 100 ... controller, X ... material to be heated.
Claims (6)
前記加熱コイルに印加される印加電力Pおよび周波数fを、
(1)前記被加熱材の溶湯撹拌力Fを、溶湯表面の被膜が溶湯中に巻き込まれない第1条件と、
(2)前記周波数fを、前記被加熱材の溶湯表面の飛散を抑制する第2条件と、
(3)前記周波数fを、前記炉壁の自己加熱を抑制する第3条件と
を満たすように、
(4)溶湯撹拌力Fを少なくとも前記印加電力Pと前記周波数fとを含む関係式として規定した第4条件を用いて算出することを特徴とする高速誘導溶解炉の溶解制御方法。 This is a melting control method for a high-speed induction melting furnace in which high-frequency power is supplied to a heating coil provided on the outer periphery of the furnace wall via a power supply means to rapidly melt a material to be heated stored in the furnace in a short time. And
The applied power P and frequency f applied to the heating coil are
(1) The first condition that the molten metal stirring force F of the heated material is such that the coating on the molten metal surface is not involved in the molten metal,
(2) a second condition that suppresses the frequency f from scattering on the surface of the molten metal of the heated material;
(3) The frequency f is satisfied so as to satisfy a third condition for suppressing self-heating of the furnace wall.
(4) A melting control method for a high speed induction melting furnace, wherein the molten metal stirring force F is calculated using a fourth condition defined as a relational expression including at least the applied power P and the frequency f.
(1)前記第1条件は、溶湯撹拌力Fが上限撹拌力F1より小さいものであり、
(2)前記第2条件は、周波数fが下限周波数f2より大きいものであり、
(3)前記第3条件は、周波数fが上限周波数f3より小さいものであり、
(4)前記第4条件は、下式で
(1) The first condition is that the molten metal stirring force F is smaller than the upper limit stirring force F1,
(2) The second condition is that the frequency f is larger than the lower limit frequency f2.
(3) The third condition is that the frequency f is smaller than the upper limit frequency f3.
(4) The fourth condition is as follows:
前記第1および第4条件により、下式を満たし
f2<f<f3
を満たすことを特徴とする高速誘導溶解炉の溶解制御方法。
In the melting control method of the fast induction melting furnace according to claim 2,
By the first and fourth conditions, the following formula is satisfied
A melting control method for a high-speed induction melting furnace, characterized in that:
前記加熱コイルに印加される印加電力Pおよび周波数fを、さらに
(5)印加電力Pが下限印加電力P5以上という第5条件をも満たすように、
前記第1〜第5条件を充足する周波数fと印加電力Pとの領域をマップ上に表わし、該領域内の周波数fと印加電力Pとを任意に選択可能とすることを特徴とする高速誘導溶解炉の溶解制御方法。 In the melting control method of the high-speed induction melting furnace according to claim 3,
The applied power P and the frequency f applied to the heating coil are further satisfied so that (5) the applied power P also satisfies the fifth condition that the lower limit applied power P5 or more.
A region of the frequency f and the applied power P that satisfies the first to fifth conditions is represented on a map, and the frequency f and the applied power P in the region can be arbitrarily selected. Melting control method for melting furnace.
前記第1条件の上限撹拌力F1を、前記被加熱材の溶湯表面の飛散を抑制する上限撹拌力F2を考慮しながら段階的に規定し、前記領域内の周波数fと印加電力Pとを段階的に任意に選択可能とすることを特徴とする高速誘導溶解炉の溶解制御方法。 In the melting control method of the high speed induction melting furnace according to claim 4,
The upper limit stirring force F1 of the first condition is defined in a stepwise manner in consideration of the upper limit stirring force F2 that suppresses scattering of the molten metal surface of the heated material, and the frequency f and the applied power P in the region are stepped. A melting control method for a high-speed induction melting furnace, characterized by being arbitrarily selectable.
前記被加熱材の質量および比熱から、該被加熱材を所望温度に加熱する際の積算電力量を算出することを特徴とする高速誘導溶解炉の溶解制御方法。 In the melting control method of the high-speed induction melting furnace according to any one of claims 1 to 5,
A melting control method for a high-speed induction melting furnace, wherein an integrated electric energy for heating the material to be heated to a desired temperature is calculated from the mass and specific heat of the material to be heated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016121488A JP6059389B1 (en) | 2016-06-20 | 2016-06-20 | Melting control method for fast induction melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016121488A JP6059389B1 (en) | 2016-06-20 | 2016-06-20 | Melting control method for fast induction melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6059389B1 true JP6059389B1 (en) | 2017-01-11 |
JP2017228348A JP2017228348A (en) | 2017-12-28 |
Family
ID=57756156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016121488A Active JP6059389B1 (en) | 2016-06-20 | 2016-06-20 | Melting control method for fast induction melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6059389B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310833A (en) * | 1998-04-28 | 1999-11-09 | Kobe Steel Ltd | Method for melting metal and alloy and melting and casting method thereof |
JP2001191164A (en) * | 1999-12-28 | 2001-07-17 | Fuji Electric Co Ltd | Local furnace of press-casting machine |
JP2011017482A (en) * | 2009-07-08 | 2011-01-27 | Furukawa Electric Co Ltd:The | Method and device for removing inclusion in molten metal, and metallic material |
JP5656532B2 (en) * | 2010-09-28 | 2015-01-21 | 北芝電機株式会社 | Induction melting furnace |
-
2016
- 2016-06-20 JP JP2016121488A patent/JP6059389B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310833A (en) * | 1998-04-28 | 1999-11-09 | Kobe Steel Ltd | Method for melting metal and alloy and melting and casting method thereof |
JP2001191164A (en) * | 1999-12-28 | 2001-07-17 | Fuji Electric Co Ltd | Local furnace of press-casting machine |
JP2011017482A (en) * | 2009-07-08 | 2011-01-27 | Furukawa Electric Co Ltd:The | Method and device for removing inclusion in molten metal, and metallic material |
JP5656532B2 (en) * | 2010-09-28 | 2015-01-21 | 北芝電機株式会社 | Induction melting furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2017228348A (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5579610B2 (en) | Semi-liquid metal processing / detection device, and processing / detection method using the device | |
JP2011069606A (en) | Arc melting facility and method of manufacturing molten metal using the arc melting facility | |
JP6059389B1 (en) | Melting control method for fast induction melting furnace | |
JP4729582B2 (en) | Electronic switching method for supplying electrical energy into an AC electric furnace | |
JP5726103B2 (en) | Dissolving state judgment device for arc furnace | |
JP5815904B1 (en) | Induction melting furnace | |
JP5656532B2 (en) | Induction melting furnace | |
JP5079865B2 (en) | Induction melting furnace | |
JP5862523B2 (en) | Electrode lifting device | |
JP5530116B2 (en) | Alarm processing method for induction melting furnace | |
WO2015125624A1 (en) | Continuous casting device for ingot formed from titanium or titanium alloy | |
EP3580997B1 (en) | Integrated flicker control for arc furnace | |
US1347838A (en) | Method op treating metals | |
JP5074535B2 (en) | Induction melting furnace controller | |
Ristiana et al. | Modeling and control of temperature dynamics in induction furnace system | |
Kulkarni et al. | Power efficiency tracking of induction furnaces | |
JP6954556B2 (en) | Induction melting furnace | |
JP2014061526A (en) | Protection control method of welding device | |
JP2014124664A (en) | Method of casing ingot of titanium or titanium alloy continuously | |
JP6390528B2 (en) | Overload protection device for variable speed motor | |
JP5912976B2 (en) | Electrode lifting control method and apparatus for arc furnace | |
CN102072653A (en) | Electric arc induction furnace and smelting control method | |
JP6486983B2 (en) | Abnormality detection apparatus and abnormality detection method for induction melting furnace | |
Frizen et al. | Control of electromagnetic stirring by power focusing in large induction crucible furnaces | |
JP2011258316A (en) | Controller for induction smelting furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20161025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6059389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |